
Analysis of Inherent Randomness
of the Linux kernel

Nicholas Mc Guire (DSLab Lanzhou University, China)
Peter Okech (Strathmore University, Kenya)

Georg Schiesser (Opentech, Austria)

11th Real-Time Linux Workshop, Dresden – Sept 2009

2

Agenda

● Introduction

● Concept of Inherent randomness

● De-randomization

● Timestamp precision

● Conclusion and future work

3

How do we guarantee predictability?

● Tackling the problem of real-time postulates
deterministic hardware and software

● The approach to guarantee predictability is to
hunt for latency maximum and eliminate it
– Typically identified with a particular code path or

event sequence

4

Questions to Think About!

● How deterministic is the execution of code on
modern super scalar CPUs ?

● How predictable is the overall system if a
complex OS (such as GNU/Linux) is run on
top of modern CPUs?

5

Inherent Randomness

● We claim that there is a certain level of
randomness that is associated with
complexity

● Some of the jitters in code execution time
can be attributed to this inherent non-
determinism
– And not specific code path

6

Sources of Indeterminism

● The source of indeterminism of interest to us
are those that we classify as either internal
and intentional

● Internal indeterminism arise from the direct
or indirect referencing of global variables by
an application

● Global variables include free shadow registers, TLB,
BTB, available cache and memory, timeout in
communications e.t.c

7

Sources of Indeterminism (2)

● Cases when an application uses random data
for its decisions is can be regarded as
intensional non-determinism, and this may
include:
– Use of random numbers, asynchronous event

timestamp, error conditions

● These sources are amplified by concurrency
and asynchronous events

Impact of Indeterminism

● These (and other sources of) non-determinism
means that individual application code, while
exhibiting a well defined local state, has no
deterministic global state.
– We are unable to predict the actual behavior of the

application

● We will illustrate the indeterminism using two
examples
– Timing of instructions
– printf() function

9

Example 1 - Timing

● The code consists of 5 integer instructions
– First in a warmup loop to ensure they are cache

hot
– Then measure the times of the final execution

● Results show that the code never reach a
constant execution time

10

Code – 5 integer instruction
Timing

__asm__ __volatile__("cli":::"memory");
for (j = 0; j < w; j++){

x1 = 1;
x2 = x1 * 1;
x3 = x1 * 1;
x3--;
dummy += x3 / 4;

}
__asm__ __volatile__("cpuid\n\t" \
 "rdtsc\n\t":\
 "=A" (start));
x1 = 1;
x2 = x1 * 1;
x3 = x1 * 1;
x3--;
dummy += x3 / 4;

__asm__ __volatile__("cpuid\n\t":\
 "=A" (stop));
__asm__ __volatile__("cli":::"memory");
timestamps[n++] = ((long) (stop - start));

11

Example 1 – Timing Results

12

Example 2 – printf()

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define MSG "Hello World\n"

int main(int argc, char **arg){
int ret;

ret = printf(MSG);
if (ret == strlen(MSG)) {

return EXIT_SUCCESS;
} else {

return EXIT_FAILURE;
}

}

13

Example 2 – printf()

● The code exhibits non-determinism
– At application level, printf() could fail
– At system level, spawning the application could

fail
–

● There are hundreds of points in the code
where failures are possible
– A guarantee of output can only a certain

probability
–

● Main source of non-determinism is not the
scope of application code!

14

Main Goal

● We seek to establish a real-time metric by
demonstrating coupling between
instruction/CPU complexity and randomness

● We introduce two metrics
– Inherent system randomness
– Timestamp precision

● These metrics could be considered as lower
bounds for any high level metrics (such as
Interrupt latency, WCET)

15

Inherent Randomness

● To demonstrate the inherent randomness in
complex hardware we
– developed a software RNG based on hardware

non-determinism
– Performed formal analysis of random bit-stream

produced
– Compared the results over a spectrum of HW of

varying complexity (currently only on IA)

16

TRNG Code Outline

allocate_buffer()
mlockall()
touch_buffer()

while(n < stream_size){
 buffer[n++]=get_bit_from_tsc(bit)
}

write_buffer_to_file()

17

Code for the TRNG

__inline__ unsigned long long int hwtime(int shift)
{

unsigned long long int x,res;
int i;
int bit=1;
res=0;

bit<<=shift;
for(i=0;i<32;i++){

__asm__ __volatile__("rdtsc\n\t":"=A" (x));
res|=(((x&bit)>>shift)<<i);
usleep(delay);

}
return res;

}

18

TRNG results

● If underlying system is deterministic, the
code will yield a non random sequence

● The code surprisingly produce good random
sequence of bits
– If run in a tight loop, the sequence is random

though show a pattern
– The quality of randomness reaches very high

quality if call to usleep() allows execution of
unknown code

● OS randomizing access patterns

19

TRNG results (2)

● Based on the test from random.org, it should be
noted that
– Chi square clearly and reliably in the random range
– Entropy in the range of hardware solutions
– arithmetic mean in a reasonable range
– Monte Carlo estimation of Pi
– serial correlation negligible

20

Typical Run Results

 trng.c 128 bytes (Core Duo 2)
 Entropy = 7.996973/byte.
 compres = 0 %.
 chi sqr = 19.63.
 Arit mean = 128.2059
 Mont Car Pi = 3.137520601, err. 0.13 %
 Ser. Corel. = 0.003759

● Test from the TestU01 (L'Ecuyer, 2002) test
suite also confirmed that quality of
randomness is high

21

Software TRNG comparison

● The bit sequence produced by the software
TRNG was compared with
– Geiger-Muller tube detector of background

radiation (hotbits.org)
– Thermal noise probe (random.org)
– /dev/random (Core Duo 2 2.6.26 Debian)
– /dev/urandom (Core Duo 2 2.6.26 Debian)

22

De-randomization

● We needed to confirm that the inherent
randomness can be attributed to the CPU
– This required that code used does not exhibit

random execution time

23

Constraints

● Constraints needed to achieve predictable
execution time could include
– Warm up loops to ensure cache hot code and data
– Simple set of instructions
– Use of local data that fit into a single L1 cache line
– Interrupt disabling
– Well selected CPU frequency for constant execution

time
– No SMP
– Serialized instruction
– Tuned loop to fit instruction pipeline

24

De-randomizing code

warmup_loop {
sequence

}
rdtsc
sequence
rdtsc

25

Comments on De-randomization

● Even with these efforts, it is not possible to
achieve constant execution times

● What we see is the inherent variance of the
CPU execution time for a given simple
sequence of instructions

● De-randomization is not practically feasible!
– Any real life code should exhibit inherent

randomness

26

Timestamp Precision

● A fundamental requirement for time based
decision making is that an event is precisely
timestamped.
– In an RTOS no decision can be more precise

than the timestamp capability

● Timestamp precision depends on
– Time source resolution
– Inherent randomness of hardware and software
– Isolation of time-sampling code

27

Measuring Timestamp Precision

● To measure the timestamp precision
– we run two consecutive calls to “rdtsc”
– Calculate the deference
– Search for max/min values

● For a given setting (priorities and scheduling
policies), one can get an overview of lower
bounds of timing at code level
–

● Also could give a suitable lower bound for
OS level scheduling jitters

28

Timestamp Precision code

while (n < loops)
{

unsigned long long index=0;
usleep(1);
hwtime2 = rdtsc();
hwtime1 = rdtsc();

jitter = hwtime1 - hwtime2;
index = jitter /scale;

if (index > GRAPH_SIZE) {
out_of_bounds = 1;

} else {
graph[policy][index] +=1;

}
n++;

}

29

Reading the TSC

● We have not used the a serializing
instruction (cpuid +rdtsc or rdtscp)

● Serializing instructions using cpuid have a
profound negative impact on timestamp
precision
– Is a main limitation
– cpuid can take up hundreds of cpu-cycles

30

Impact of cpuid to read the TSC

31

Conclusion

● Modern CPUs are inherently random

● Complex general purpose OS amplifies this
inherent randomness substantially

● A set of acceptable metrics to describe these
basic properties (inherent randomness and
time precision) is required.

32

Conclusion (2)

● Practical conclusions
– Real time metrics must take into account the

inherent randomness of modern computing
systems

– A statistical approach to performance
measurement is the only meaningful way

33

Conclusion (3)

● The by-product of this work, the software
TRNG can be used
– For the initialization of the random number pool

at boot time or
– To generate entropy for systems that do not

have sufficient sources from asynchronous
events

34

Future work

● Cover inherent randomness in more depth

● Investigate different models that allows for
good estimations of execution times for real-
time systems based on complex
hardware/software

35

Thank you

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

