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How do we guarantee predictability?

● Tackling the problem of real-time postulates 
deterministic hardware and software

● The approach to guarantee predictability is to 
hunt for latency maximum and eliminate it
– Typically identified with a particular code path or 

event sequence
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Questions to Think About!

● How deterministic is the execution of code on 
modern super scalar CPUs ?

● How predictable is the overall system if a 
complex OS (such as GNU/Linux) is run on 
top of modern CPUs?
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Inherent Randomness

● We claim that there is a certain level of 
randomness that is associated with 
complexity

● Some of the jitters in code execution time 
can be attributed to this inherent non-
determinism
– And not specific code path
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Sources of Indeterminism

● The source of indeterminism of interest to us 
are those that we classify as either internal 
and intentional

● Internal indeterminism arise from the direct 
or indirect referencing of global variables by 
an application

● Global variables include free shadow registers, TLB, 
BTB, available cache and memory, timeout in 
communications e.t.c
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Sources of Indeterminism (2)

● Cases when an application uses random data 
for its decisions is can be regarded as 
intensional non-determinism, and this may 
include:
– Use of random numbers, asynchronous event 

timestamp, error conditions

● These sources are amplified by concurrency 
and asynchronous events



Impact of Indeterminism

● These (and other sources of) non-determinism 
means that individual application code, while 
exhibiting a well defined local state, has no 
deterministic global state.
– We are unable to predict the actual behavior of the 

application

● We will illustrate the indeterminism using two 
examples
– Timing of instructions
– printf()  function
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Example 1 - Timing

● The code consists of 5 integer instructions
– First in a warmup loop to ensure they are cache 

hot
– Then measure the times of the final execution

● Results show that the code never reach a 
constant execution time
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Code – 5 integer instruction 
Timing

__asm__ __volatile__("cli":::"memory");
for (j = 0; j < w; j++){

x1 = 1;
x2 = x1 * 1;
x3 = x1 * 1;
x3--;
dummy += x3 / 4;

}
__asm__ __volatile__("cpuid\n\t" \
       "rdtsc\n\t":\
      "=A" (start));
x1 = 1;
x2 = x1 * 1;
x3 = x1 * 1;
x3--;
dummy += x3 / 4;

__asm__ __volatile__("cpuid\n\t":\
      "=A" (stop));
__asm__ __volatile__("cli":::"memory");
timestamps[n++] = ((long) (stop - start));
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Example 1 – Timing Results
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Example 2 – printf()

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define MSG "Hello World\n"

int main(int argc, char **arg){
int ret;

ret = printf(MSG);
if (ret == strlen(MSG))  {

return EXIT_SUCCESS;
} else {

return EXIT_FAILURE;
}

}
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Example 2 – printf()

● The code exhibits non-determinism
– At application level, printf() could fail
– At system level, spawning the application could 

fail
–

● There are hundreds of points in the code 
where failures are possible
– A guarantee of output can only a certain 

probability
–

● Main source of non-determinism is not the 
scope of application code!
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Main Goal

● We seek to establish a real-time metric by 
demonstrating coupling between 
instruction/CPU complexity and randomness

● We introduce two metrics
– Inherent system randomness
– Timestamp precision

● These metrics could be considered as lower 
bounds for any high level metrics (such as 
Interrupt latency, WCET)
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Inherent Randomness

● To demonstrate the inherent randomness in 
complex hardware we
– developed a software RNG based on hardware 

non-determinism
– Performed formal analysis of random bit-stream 

produced
– Compared the results over a spectrum of HW of 

varying complexity (currently only on IA)
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TRNG Code Outline

allocate_buffer()
mlockall()
touch_buffer()

while(n < stream_size){
   buffer[n++]=get_bit_from_tsc(bit)
}

write_buffer_to_file()
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Code for the TRNG

__inline__ unsigned long long int hwtime(int shift)
{

unsigned long long int x,res;
int i;
int bit=1;
res=0;

     
bit<<=shift;
for(i=0;i<32;i++){

__asm__ __volatile__("rdtsc\n\t":"=A" (x));
res|=(((x&bit)>>shift)<<i);
usleep(delay);

}
return res;

}
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TRNG results

● If underlying system is deterministic, the 
code will yield a non random sequence

● The code surprisingly produce good random 
sequence of bits
– If run in a tight loop, the sequence is random 

though show a pattern
– The quality of randomness reaches very high 

quality if call to usleep() allows execution of 
unknown code

● OS randomizing access patterns



19

TRNG results (2)

● Based on the test from random.org, it should be 
noted that
– Chi square clearly and reliably in the random range
– Entropy in the range of hardware solutions
– arithmetic mean in a reasonable range 
– Monte Carlo estimation of Pi
– serial correlation negligible
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Typical Run Results

    trng.c 128 bytes (Core Duo 2)
     Entropy = 7.996973/byte.
     compres = 0 %.
     chi sqr = 19.63.
     Arit mean = 128.2059
     Mont Car Pi = 3.137520601, err. 0.13 %
     Ser. Corel. = 0.003759

● Test from the TestU01 (L'Ecuyer, 2002) test 
suite also confirmed that quality of 
randomness is high
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Software TRNG comparison

● The bit sequence produced by the software 
TRNG was compared with
– Geiger-Muller tube detector of background 

radiation (hotbits.org)
– Thermal noise probe (random.org)
– /dev/random (Core Duo 2 2.6.26 Debian)
– /dev/urandom (Core Duo 2 2.6.26 Debian)
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De-randomization

● We needed to confirm that the inherent 
randomness can be attributed to the CPU
– This required that code used does not exhibit 

random execution time
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Constraints

● Constraints needed to achieve predictable 
execution time could include
– Warm up loops to ensure cache hot code and data
– Simple set of instructions 
– Use of local data that fit into a single L1 cache line
– Interrupt disabling
– Well selected CPU frequency for constant execution 

time
– No SMP
– Serialized instruction
– Tuned loop to fit instruction pipeline
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De-randomizing code

warmup_loop {
sequence

}
rdtsc
sequence
rdtsc
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Comments on De-randomization

● Even with these efforts, it is not possible to 
achieve constant execution times

● What we see is the inherent variance of the 
CPU execution time for a given simple 
sequence of instructions

● De-randomization is not practically feasible!
– Any real life code should exhibit inherent 

randomness
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Timestamp Precision

● A fundamental requirement for time based 
decision making is that an event is precisely 
timestamped.
– In an RTOS no decision can be more precise 

than the timestamp capability

● Timestamp precision depends on
– Time source resolution
– Inherent randomness of hardware and software
– Isolation of time-sampling code 
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Measuring Timestamp Precision

● To measure the timestamp precision 
– we run two consecutive calls to “rdtsc”
– Calculate the deference
– Search for max/min values

● For a given setting (priorities and scheduling 
policies), one can get an overview of lower  
bounds of timing at code level
–

● Also could give a suitable lower bound for 
OS level scheduling jitters
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Timestamp Precision code

while (n < loops)
{

unsigned long long index=0;
usleep(1);
hwtime2 = rdtsc();
hwtime1 = rdtsc();

jitter = hwtime1 - hwtime2;
index = jitter /scale;

if (index > GRAPH_SIZE) {
out_of_bounds = 1;

} else {
graph[policy][index] +=1;

}
n++;

}
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Reading the TSC

● We have not used the a serializing 
instruction (cpuid +rdtsc or rdtscp)

● Serializing instructions using cpuid have a 
profound negative impact on timestamp 
precision
– Is a main limitation
– cpuid can take up hundreds of cpu-cycles
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Impact of cpuid to read the TSC
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Conclusion

● Modern CPUs are inherently random

● Complex general purpose OS amplifies this 
inherent randomness substantially

● A set of acceptable metrics to describe these 
basic properties (inherent randomness and 
time precision) is required.
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Conclusion (2)

● Practical conclusions
– Real time metrics must take into account the 

inherent randomness of modern computing 
systems

– A statistical approach to performance 
measurement is the only meaningful way



33

Conclusion (3)

● The by-product of this work, the software 
TRNG can be used 
– For the initialization of the random number pool 

at boot time or
– To generate entropy for systems that do not 

have sufficient sources from asynchronous 
events
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Future work

● Cover inherent randomness in more depth

● Investigate different models that allows for 
good estimations of execution times for real-
time systems based on complex 
hardware/software
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Thank you

Questions?
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