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Abstract 
This short paper is intended to serve as an introduction to a publicly available research 
study undertaken by Adelard for the UK Health and Safety Executive [1]. The main 
focus for this project was “software of uncertain pedigree” (SOUP) used in safety-
related applications. It outlines an overall safety justification approach and ways in 
which the use of SOUP can be incorporated within that approach. The full report is 
available from the HSE web site. 

 
 
Introduction 
This paper outlines the findings of a publicly available research study undertaken by 
Adelard for the UK Health and Safety Executive [1]. The main focus for this project was 
“software of uncertain pedigree” (SOUP) used in safety-related applications. The paper 
will discuss the potential benefits and problems of using SOUP for safety-related 
applications, and then describe an overall safety justification approach that includes 
consideration of SOUP. We then discuss ways of controlling the costs and risks of 
using SOUP in safety-related applications both in development and subsequent 
operation. An example application of the approach is given in the Appendix. 
 
What is a SOUP? 
In determining an assurance approach for SOUP, it is useful to be clear about what 
characterises it. SOUP comes in a variety of forms: 

• software components that form part of a program (such as graphic libraries) 

• standalone programs and utilities (e.g. compilers and stress analysis packages) 

• operating system kernels, networking service, web servers and database engines 

• complete systems where the hardware and software are integrated (such as PLCs)  
 

Advantages of using SOUP 
Mass market SOUP can reduce the cost of development—indeed, it may be the only 
way of producing certain systems in a practicable time. Perhaps more significantly from 
a safety viewpoint, there are good theoretical and empirical reasons for believing that 
extensive use of a SOUP product will result in increased reliability (as faults are 
reported by users and corrected by the developers). This is illustrated in the following 



  

 
 2/11 

figure taken from our earlier research and published in a report  to the UK Health and 
Safety Commission. 
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Intuitively, one might expect that SOUP could be highly reliable if the following 
conditions apply: 

• small programs 

• good quality development process 

• extensive field experience 

• good fault reporting, diagnosis and correction infrastructure 

• stable product 
This intuition is supported by a recent reliability growth theory [2], which shows that 
times-to-failure can increase at least linearly with usage time. The theory predicts that 
worst case mean time to failure after a usage time t is: 

MTTF(t) ≥ (e ⋅ t) / (N ⋅ d) 
where N is the number of residual faults at initial release, d is the number of times the 
software fails before it is fixed, and e is the exponential constant (2.7181). 
Ideally faults should be diagnosed and fixed immediately (i.e. d=1); poor diagnosis 
(d>>1) has the effect of “scaling up” the failure rate contribution of each fault.  
If the software is upgraded with new functions, this introduces an entirely new set of 
faults ∆N. As these faults will initially have relatively little usage time ∆t, the failure rate 
will be dominated by the new faults, i.e. the MTTF bound for a software upgrade is 
always less than: 

e ⋅ ∆t / (∆N ⋅ d) 

where ∆t is the usage time since the upgrade, and ∆N is the number of new faults 
introduced by the upgrade. So while reliability improves as “bug fix” versions are 
introduced, reliability falls at the next major release when new functions are added, and 
there is no overall growth in reliability for a continuously changing SOUP product 
(indeed there can be a long-term decline). 
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The theory supports current engineering intuition, as small programs and a good 
quality development process reduce N, extensive field experience increases t, good 
fault reporting, diagnosis and correction infrastructure reduces d, and a stable product 
avoids “upgrade” effects that limit reliability growth. 
 

Problems in using SOUP 
From current theory and available experience, it is possible for SOUP to be reliable but 
there are also risks in gaining adequate assurance that it is reliable, because the 
SOUP is usually a “black-box” with limited design documentation (although this may be 
available for “open source” SOUP). In addition the SOUP will often have additional 
functions that could compromise the integrity of a safety related application. It is 
therefore necessary to provide a convincing justification for the use of SOUP for a 
safety-related application. 
 

Safety justification approach 
We recommend the use of a documented, phased safety justification that sets out the 
safety claims for the system, and the evidence and arguments that support them. This 
is a generic approach that can apply to any system whether or not it contains SOUP. 
We identify five safety justification stages that can be required on a real project. They 
are: 

• Preliminary Safety Justification 

• Architectural Safety Justification 

• Implementation Safety Justification 

• Installation Safety Justification 

• Operational Safety Justification 
These are essentially evolutionary phases in the construction of the overall safety case. 
The process starts by establishing the claims, then the arguments and evidence are 
elaborated as the design and implementation of the system progresses. 
The characteristics of the safety justification stages, and the main SOUP-specific 
activities within them, are as follows. 
Preliminary Safety Justification - This establishes the system context, whether the 
safety justification is for a complete system or a component within a system. It also 
establishes safety requirements and attributes for the system, independently of the 
technology used for implementation. It defines operational requirements and 
constraints such as maintenance levels and time to repair. 
Architectural Safety Justification - This defines the system or subsystem 
architecture and makes trade-offs between the design of the system and the options for 
the safety justification. It defines the assumptions that need to be validated and the 
evidence that needs to be provided in the component safety justifications. It also 
defines how the design addresses the preliminary operating and installation aspects for 
the safety justification (e.g. via maintainability, modifiability, and usability attributes). 
The Architectural Safety Justification can be considered at two levels:  

• top-level—the assignment of safety requirements to equipment 
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• computer level—the identification of a hardware/software architecture to meet the 
safety requirements 

Safety properties that might be identified for a system include: 

• functional behaviour 

• accuracy 

• reliability and availability 

• fail-safe behaviour 

• time response 

• throughput (e.g. transactions/sec) 

• response to overload 

• security (from attack) 

• usability (avoidance of human error) 

• maintainability (avoid errors when system is modified) 
The safety functions and their associated performance attributes will be allocated to 
programmable electronic systems (PES) and other compenents. Again these 
requirements are not SOUP-specific, but at the next stage the computer-level 
architecture will have to address the hazards posed by SOUP within the PES. 
The types of evidence available for the safety justification will depend on the 
computer/software architecture chosen to implement these requirements. The options 
here could be: 

• a complete hardware/SOUP software package (like a PLC) configured by user-level 
programming (using e.g. PLC logic diagrams) 

• off-the-shelf hardware, with various SOUP components, like an operating system, 
compilers, and library routines 

• no SOUP at all (if justification is too difficult) 
The choice of implementation approach will be driven by: 

• the cost of implementation 

• the cost of obtaining evidence  

• the adequacy of the safety arguments and evidence for the specified safety 
requirements (typically more diverse and better-supported evidence is needed for 
more stringent safety requirements) 

• the cost and feasibility of maintaining the arguments and evidence over the system 
lifetime 

Implementation Safety Justification - This safety justification argues that the design 
intent of the architectural safety justification has been implemented and that the actual 
design features and the development process provide the evidence that the safety 
requirements are satisfied. This stage might include results and analyses planned for 
SOUP components (e.g. to provide additional evidence), but all results would be 
treated in a broadly similar way.  
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Installation Safety Justification - This stage needs to demonstrate that the 
installation is consistent with the design and that operation and maintenance 
procedures are implemented. In the case of SOUP, this would include appropriate 
mechanisms for reporting faults, and procedures for dealing with new faults. The 
process differs from “in-house” software, as there may be no direct method for fixing 
faults, so “work-arounds” may need to be identified and justified in the operational 
safety justification. 
The Installation Safety Justification also defines any safety-related operational 
procedures identified in the previous safety justifications. Human factors related issues 
are addressed such as staffing requirements and competence levels, training of 
operators and maintenance personnel, and facilities for long-term support. 
This safety justification stage also records and resolves any non-compliance with the 
original safety requirements. 
Operational Safety Justification - This reports on whether safety is being achieved in 
practice. It reports on compliance to operating and maintenance assumptions. It 
identifies areas where system changes may be required (for technical and safety 
reasons). It updates the safety justification in the light of changes. 
To support this safety justification stage, some mechanism has to be identified for: 

• ensuring that the operational and installation constraints are implemented (e.g. by 
documented conditions of use, training, etc.) 

• monitoring the performance of the operational system to identify safety problems for 
future correction 

In the case of SOUP, additional evidence may be obtained from other users of the 
SOUP (providing there is an adequate fault reporting and dissemination infrastructure) 
so that latent faults in the software can be identified from a broader range of field 
experience. 
 

Safety justification of an architecture containing SOUP 
The design choices made at the architectural design stage have a major impact on the 
safety assurance of systems containing SOUP. The choices should be determined by: 

• the adequacy of the available safety evidence and arguments 

• the cost of obtaining additional safety evidence 

• the cost of maintaining the evidence over the system’s lifetime 
A “design for assurance” approach within the architectural safety justification can help 
to minimise costs while maximising safety. For each candidate architecture, a hazard 
analysis should be carried out to identify the dangerous failures of the architectural 
components including failures of SOUP. Methods for limiting the effect of such failures 
should be identified, e.g.  

• partitioning (functional or physical isolation of SOUP) 

• “wrappers” (interfaces restricting the use of SOUP features)   

• diversity (implementation with diverse SOUP)  

• safety and credibility checks (checking SOUP results in a wrapper)  

• external safety checks and interlocks (to limit consequences of failure)  
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• dynamic safety checks (e.g. software watchdogs/dynamic test inputs to reveal 
software lock-ups).  

Alternatively, evidence can be produced to demonstrate that the probability of failure is 
acceptably low so that no run-time defences are required. The cost and safety of the 
candidate architectures can then be assessed, including the costs of developing and 
maintaining the safety justification. 
 

Evidence profiles for SOUP 
Where a user standardises on specific SOUP, pre-existing evidence can be used in 
any safety justification that uses that SOUP—this can help to reduce the cost of 
constructing the overall safety justification. We recommend the compilation of an 
“evidence profile” for each SOUP component. The evidence profile summarises the 
available types of safety evidence for a SOUP component, and where available may 
include: 

• test evidence 

• analytic evidence (of the product and the implementation process) 

• field experience (if the product has been used in former applications) 
This profile can include “trusted third party” evidence, where the SOUP product or 
process has been assessed to some accepted criterion (e.g. TÜV certification, IEC 
61508 assessment, ISO 9001-3 process certification, etc.). 
The profile can also include information about the stability, usage time and software 
size. This information can be used to make an estimate of the expected program 
reliability based on the worst case bound reliability theory [2] discussed earlier.  
Safety evidence for SOUP may be black box evidence (e.g. testing and field 
experience), or white box (e.g. analytic evidence). In many instances it may be possible 
to obtain adequate evidence by treating a SOUP component as a black box, and the 
report [1] contains criteria for deciding when black box evidence is sufficient, and when 
white box evidence is required.  
The rigour of evidence produced will also have to be commensurate with the required 
safety integrity level of the application. Generally speaking the rigour will increase with 
integrity level, and some forms of evidence may be viewed as essential at the higher 
levels (e.g. analysis of the source code). 

 
Additional evidence for SOUP 
Clearly when there is insufficient pre-existing evidence available for the SOUP (and this 
is often the case for high integrity applications), it will be necessary to produce 
additional evidence by testing and analysis. This can be expensive compared with a 
specially engineered product that was designed to comply with the relevant 
engineering standards. These additional costs have to be included in the decision to 
use SOUP components to implement safety-related functions. 
Any additional analysis and test requirements for SOUP are fed to the implementation 
stage. The implementation safety justification has to assess: 

• whether the planned tests and analyses have yielded the expected results 

• whether evidence is deficient 
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• the safety impact of any deviations 

• whether changes are required to the safety arguments, or additional evidence is 
required 

• whether installation or operational constraints have to be imposed to maintain 
safety (e.g. interfacing requirements, limitations on mission times, operational 
procedures, requirements for re-calibration and maintenance) 

Some of these issues will have to be re-addressed in the Operational Safety 
Justification if the SOUP used in the safety application is upgraded over time (e.g. to 
support new hardware or software functions). Methods for minimising the long term 
risks of SOUP are discussed in the next section. 
 

Long term risk management of SOUP 
Long-term management of safety-related SOUP can be used to limit the risks 
associated with their use. This includes strategies such as: 

• standardisation on a limited number of SOUP components and suppliers 

• gaining access to SOUP fault histories for “early warnings” of SOUP problems  

• organisation-wide data collection and dissemination of SOUP problems 

• a phased strategy for introducing new or updated SOUP within the organisation (i.e. 
use in low integrity applications first) 

Such a controlled approach to the use of SOUP has the advantage that it generates 
evidence of satisfactory operation, so that there is a stronger “evidence profile” 
available when constructing a case for the next safety-related application. In addition, 
the standardisation of SOUP and SOUP configurations implies that one can re-use 
safety arguments for new systems (e.g. have component safety justifications for items 
such as operating systems and compilers). 
 

Closing remarks 
This paper has outlined a generic approach for justifying the safety of systems 
implemented with SOUP. An example application of this approach is given in the 
Appendix. For further details, please refer to the full version of the report [1] which is 
available on-line from the HSE web site. 
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Appendix: DUST-EXPERT safety case example 
To illustrate how this proposed approach to SOUP is applied in practice we will take 
parts of the DUST-EXPERT™ advisory system safety case as an example. DUST-
EXPERT is an expert system that advises on safety measures for handling explosive 
dusts in industry. The full safety case contains a more detailed justification than that 
presented here, but the shortened description below shows how the safety case fits 
into our proposed approach. 

Preliminary Safety Case 
At this stage we identify the relevant safety attributes for the advisor from the list given 
in the paper. The selection of safety relevant attributes and the associated safety 
claims are shown in the table below. Note that not all safety attributes apply, e.g. it is 
an offline advisor so attributes such as real-time response, throughput and availability 
have no safety relevance. 

 Safety claim 
1 Functional correctness (must implement the specified dust explosion 

calculation) 
2 Accuracy (the results are sufficiently accurate when calculated using finite-

precision arithmetic, and numerical instability should be detected) 
3 Security (appropriate steps are taken to prevent malicious and accidental 

changes to methods and data) 
4 Modifiability (the chance of maintenance-induced errors is minimised) 
5 Fail safety (there is a low probability of unrevealed failures) 
6 Usability (the system makes it hard for users to make errors) 

 
These claims had to be justified to SIL 2, which implies that the probability of a 
dangerous result is between 10-2 and 10-3 per consultation. 

Architectural safety case 
The chosen architecture contained the following SOUP components: 

Component Function 
Microsoft Windows provides windowing and operating system services 

IFAD toolbox used for VDM specification of application (and to generate test 
data)  

LPA Prolog used to define rules for the expert system kernel 

Microsoft C++ used to program the graphical user interface (GUI) for the 
advisor 

Microsoft Visual 
test 

used to automate GUI tests 

 
The main element in the “evidence profiles” for these products was an extensive user 
base and supplier track record (although for Prolog and C++, fault histories were 
available). In the following table, the hazards of the SOUP and the associated defences 
are identified. Note that these include defences in the development process that detect 
failures in off-line SOUP tools. 
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Tool Dangerous failure 
consequences 

Defences 

IFAD toolbox Failure to meet requirements 
 
 
Failure to provide truthful oracle 
 
Failure to detect type errors 

Acceptance tests, animation of 
specification, proofs of safety 
properties 
Low probability of compensating 
fault 
Checks at Prolog level 

LPA Prolog 
system 

Faulty code Diverse checking by static 
analysis, acceptance tests, 
statistical tests 

Microsoft 
Visual C++ 

Faulty code 
 
Failure to detect untested C++ 
code 

Diverse checking by static 
analysis, acceptance tests, 
statistical tests 
As above 

Microsoft 
Visual Test 

Failure to detect failures during 
testing 

Manual testing on Windows 3.1 
version, tests by HSE 

Prolog static 
checking tools 

Failure to detect some faults in 
Prolog code 

Acceptance tests, statistical 
tests 

Prolog test 
coverage 
harness 

Failure to detect untested code Acceptance tests, statistical 
tests 

Microsoft 
Windows 

Failures to display, perform file 
access, etc. 

Detectable by user as “crash” or 
freeze. 

 
In addition to this there were a number of defences built into the application design and 
development process. 

Development features Comment 
SIL 2 development 
process 

To aid correctness 

VDM specification  To aid correctness of spec, and statistical test data 

Statistical testing Statistical tests to show the 10-3 failure target is met. 

Directed testing To ensure that all Prolog code is tested 
 

Design Features Comment 
Feedback of user-
specified input  

Reveals data corruption in the GUI interface 

Interval arithmetic Reveals unstable calculation method 

Databases for explosion 
data and calculation 
methods 

Permits easy modification for new types of dust, or 
explosion calculation methods 

Access controls Ensures databases are secure from unauthorised 
changes 
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Implementation Safety Case 
This provided: 

• evidence that the SIL 2 process was followed (documents, audits, etc.) 

• results of the directed tests and statistical tests 

Installation Safety Case 
This marshalled all the safety case elements for the client, and ensured that 
appropriate installation and operation documentation was available to the users. The 
overall assurance of safety properties and the amount of diverse evidence used to 
justify the safety properties is summarised in the table below. Note that the bracketed 
comments identify cases where the assurance applied to specific parts of the system 
functionality. 

Attribute Assurance 
evidence functional 

correctness 
accuracy security modifiability fail 

safety 
usability 

directed 
testing  

•   
(methods & 

GUI) 

•  
(methods) 

    

statistical 
testing  

•   
(methods & 

GUI) 

•  
(methods) 

    

analytical 
arguments 

•   
(VDM &  
Prolog 
source) 

     

desk checks  •  
(database
, methods 
& warning 
screens) 

    

field data  •   
(run-time 
system) 

     

interval 
arithmetic  

 •  
(methods) 

 •   
(will detect 
instability in 

new methods) 

•   

design 
diversity  

    •   

prototyping •  
(of GUI) 

    •  

stress/ 
overload 
testing 

    •   

manual checks  •  •      
access control    •     
database for 
methods and 
explosion data  

   •    
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Operational Safety Case 
As part of the ongoing maintenance for the product, the safety case is updated in the 
light of changes. This includes changes to (or reported faults in) SOUP components 
that affect the run-time software, e.g. changes of operating systems or C++ versions. 
The safety case would justify any changes and present the results of the statistical 
tests to demonstrate that the integrity of the expert system is maintained. 
 


