

 1/11

Justifying the use of software of uncertain pedigree
(SOUP) in safety related applications

Peter Bishop, Robin Bloomfield and Peter Froome
Adelard

Abstract
This short paper is intended to serve as an introduction to a publicly available research
study undertaken by Adelard for the UK Health and Safety Executive [1]. The main
focus for this project was “software of uncertain pedigree” (SOUP) used in safety-
related applications. It outlines an overall safety justification approach and ways in
which the use of SOUP can be incorporated within that approach. The full report is
available from the HSE web site.

Introduction
This paper outlines the findings of a publicly available research study undertaken by
Adelard for the UK Health and Safety Executive [1]. The main focus for this project was
“software of uncertain pedigree” (SOUP) used in safety-related applications. The paper
will discuss the potential benefits and problems of using SOUP for safety-related
applications, and then describe an overall safety justification approach that includes
consideration of SOUP. We then discuss ways of controlling the costs and risks of
using SOUP in safety-related applications both in development and subsequent
operation. An example application of the approach is given in the Appendix.

What is a SOUP?
In determining an assurance approach for SOUP, it is useful to be clear about what
characterises it. SOUP comes in a variety of forms:

• software components that form part of a program (such as graphic libraries)

• standalone programs and utilities (e.g. compilers and stress analysis packages)

• operating system kernels, networking service, web servers and database engines

• complete systems where the hardware and software are integrated (such as PLCs)

Advantages of using SOUP
Mass market SOUP can reduce the cost of development—indeed, it may be the only
way of producing certain systems in a practicable time. Perhaps more significantly from
a safety viewpoint, there are good theoretical and empirical reasons for believing that
extensive use of a SOUP product will result in increased reliability (as faults are
reported by users and corrected by the developers). This is illustrated in the following

 2/11

figure taken from our earlier research and published in a report to the UK Health and
Safety Commission.

Operational Usage (years)

0.1

1

10

100

1000

10000

0.1 1 10 100 1000 10000 100000

MTTF Limit

Achieved
MTTF
(Years)

SIL 3

SIL 2

SIL 1

Intuitively, one might expect that SOUP could be highly reliable if the following
conditions apply:

• small programs

• good quality development process

• extensive field experience

• good fault reporting, diagnosis and correction infrastructure

• stable product
This intuition is supported by a recent reliability growth theory [2], which shows that
times-to-failure can increase at least linearly with usage time. The theory predicts that
worst case mean time to failure after a usage time t is:

MTTF(t) ≥ (e ⋅ t) / (N ⋅ d)
where N is the number of residual faults at initial release, d is the number of times the
software fails before it is fixed, and e is the exponential constant (2.7181).
Ideally faults should be diagnosed and fixed immediately (i.e. d=1); poor diagnosis
(d>>1) has the effect of “scaling up” the failure rate contribution of each fault.
If the software is upgraded with new functions, this introduces an entirely new set of
faults ∆N. As these faults will initially have relatively little usage time ∆t, the failure rate
will be dominated by the new faults, i.e. the MTTF bound for a software upgrade is
always less than:

e ⋅ ∆t / (∆N ⋅ d)

where ∆t is the usage time since the upgrade, and ∆N is the number of new faults
introduced by the upgrade. So while reliability improves as “bug fix” versions are
introduced, reliability falls at the next major release when new functions are added, and
there is no overall growth in reliability for a continuously changing SOUP product
(indeed there can be a long-term decline).

 3/11

The theory supports current engineering intuition, as small programs and a good
quality development process reduce N, extensive field experience increases t, good
fault reporting, diagnosis and correction infrastructure reduces d, and a stable product
avoids “upgrade” effects that limit reliability growth.

Problems in using SOUP
From current theory and available experience, it is possible for SOUP to be reliable but
there are also risks in gaining adequate assurance that it is reliable, because the
SOUP is usually a “black-box” with limited design documentation (although this may be
available for “open source” SOUP). In addition the SOUP will often have additional
functions that could compromise the integrity of a safety related application. It is
therefore necessary to provide a convincing justification for the use of SOUP for a
safety-related application.

Safety justification approach
We recommend the use of a documented, phased safety justification that sets out the
safety claims for the system, and the evidence and arguments that support them. This
is a generic approach that can apply to any system whether or not it contains SOUP.
We identify five safety justification stages that can be required on a real project. They
are:

• Preliminary Safety Justification

• Architectural Safety Justification

• Implementation Safety Justification

• Installation Safety Justification

• Operational Safety Justification
These are essentially evolutionary phases in the construction of the overall safety case.
The process starts by establishing the claims, then the arguments and evidence are
elaborated as the design and implementation of the system progresses.
The characteristics of the safety justification stages, and the main SOUP-specific
activities within them, are as follows.
Preliminary Safety Justification - This establishes the system context, whether the
safety justification is for a complete system or a component within a system. It also
establishes safety requirements and attributes for the system, independently of the
technology used for implementation. It defines operational requirements and
constraints such as maintenance levels and time to repair.
Architectural Safety Justification - This defines the system or subsystem
architecture and makes trade-offs between the design of the system and the options for
the safety justification. It defines the assumptions that need to be validated and the
evidence that needs to be provided in the component safety justifications. It also
defines how the design addresses the preliminary operating and installation aspects for
the safety justification (e.g. via maintainability, modifiability, and usability attributes).
The Architectural Safety Justification can be considered at two levels:

• top-level—the assignment of safety requirements to equipment

 4/11

• computer level—the identification of a hardware/software architecture to meet the
safety requirements

Safety properties that might be identified for a system include:

• functional behaviour

• accuracy

• reliability and availability

• fail-safe behaviour

• time response

• throughput (e.g. transactions/sec)

• response to overload

• security (from attack)

• usability (avoidance of human error)

• maintainability (avoid errors when system is modified)
The safety functions and their associated performance attributes will be allocated to
programmable electronic systems (PES) and other compenents. Again these
requirements are not SOUP-specific, but at the next stage the computer-level
architecture will have to address the hazards posed by SOUP within the PES.
The types of evidence available for the safety justification will depend on the
computer/software architecture chosen to implement these requirements. The options
here could be:

• a complete hardware/SOUP software package (like a PLC) configured by user-level
programming (using e.g. PLC logic diagrams)

• off-the-shelf hardware, with various SOUP components, like an operating system,
compilers, and library routines

• no SOUP at all (if justification is too difficult)
The choice of implementation approach will be driven by:

• the cost of implementation

• the cost of obtaining evidence

• the adequacy of the safety arguments and evidence for the specified safety
requirements (typically more diverse and better-supported evidence is needed for
more stringent safety requirements)

• the cost and feasibility of maintaining the arguments and evidence over the system
lifetime

Implementation Safety Justification - This safety justification argues that the design
intent of the architectural safety justification has been implemented and that the actual
design features and the development process provide the evidence that the safety
requirements are satisfied. This stage might include results and analyses planned for
SOUP components (e.g. to provide additional evidence), but all results would be
treated in a broadly similar way.

 5/11

Installation Safety Justification - This stage needs to demonstrate that the
installation is consistent with the design and that operation and maintenance
procedures are implemented. In the case of SOUP, this would include appropriate
mechanisms for reporting faults, and procedures for dealing with new faults. The
process differs from “in-house” software, as there may be no direct method for fixing
faults, so “work-arounds” may need to be identified and justified in the operational
safety justification.
The Installation Safety Justification also defines any safety-related operational
procedures identified in the previous safety justifications. Human factors related issues
are addressed such as staffing requirements and competence levels, training of
operators and maintenance personnel, and facilities for long-term support.
This safety justification stage also records and resolves any non-compliance with the
original safety requirements.
Operational Safety Justification - This reports on whether safety is being achieved in
practice. It reports on compliance to operating and maintenance assumptions. It
identifies areas where system changes may be required (for technical and safety
reasons). It updates the safety justification in the light of changes.
To support this safety justification stage, some mechanism has to be identified for:

• ensuring that the operational and installation constraints are implemented (e.g. by
documented conditions of use, training, etc.)

• monitoring the performance of the operational system to identify safety problems for
future correction

In the case of SOUP, additional evidence may be obtained from other users of the
SOUP (providing there is an adequate fault reporting and dissemination infrastructure)
so that latent faults in the software can be identified from a broader range of field
experience.

Safety justification of an architecture containing SOUP
The design choices made at the architectural design stage have a major impact on the
safety assurance of systems containing SOUP. The choices should be determined by:

• the adequacy of the available safety evidence and arguments

• the cost of obtaining additional safety evidence

• the cost of maintaining the evidence over the system’s lifetime
A “design for assurance” approach within the architectural safety justification can help
to minimise costs while maximising safety. For each candidate architecture, a hazard
analysis should be carried out to identify the dangerous failures of the architectural
components including failures of SOUP. Methods for limiting the effect of such failures
should be identified, e.g.

• partitioning (functional or physical isolation of SOUP)

• “wrappers” (interfaces restricting the use of SOUP features)

• diversity (implementation with diverse SOUP)

• safety and credibility checks (checking SOUP results in a wrapper)

• external safety checks and interlocks (to limit consequences of failure)

 6/11

• dynamic safety checks (e.g. software watchdogs/dynamic test inputs to reveal
software lock-ups).

Alternatively, evidence can be produced to demonstrate that the probability of failure is
acceptably low so that no run-time defences are required. The cost and safety of the
candidate architectures can then be assessed, including the costs of developing and
maintaining the safety justification.

Evidence profiles for SOUP
Where a user standardises on specific SOUP, pre-existing evidence can be used in
any safety justification that uses that SOUP—this can help to reduce the cost of
constructing the overall safety justification. We recommend the compilation of an
“evidence profile” for each SOUP component. The evidence profile summarises the
available types of safety evidence for a SOUP component, and where available may
include:

• test evidence

• analytic evidence (of the product and the implementation process)

• field experience (if the product has been used in former applications)
This profile can include “trusted third party” evidence, where the SOUP product or
process has been assessed to some accepted criterion (e.g. TÜV certification, IEC
61508 assessment, ISO 9001-3 process certification, etc.).
The profile can also include information about the stability, usage time and software
size. This information can be used to make an estimate of the expected program
reliability based on the worst case bound reliability theory [2] discussed earlier.
Safety evidence for SOUP may be black box evidence (e.g. testing and field
experience), or white box (e.g. analytic evidence). In many instances it may be possible
to obtain adequate evidence by treating a SOUP component as a black box, and the
report [1] contains criteria for deciding when black box evidence is sufficient, and when
white box evidence is required.
The rigour of evidence produced will also have to be commensurate with the required
safety integrity level of the application. Generally speaking the rigour will increase with
integrity level, and some forms of evidence may be viewed as essential at the higher
levels (e.g. analysis of the source code).

Additional evidence for SOUP
Clearly when there is insufficient pre-existing evidence available for the SOUP (and this
is often the case for high integrity applications), it will be necessary to produce
additional evidence by testing and analysis. This can be expensive compared with a
specially engineered product that was designed to comply with the relevant
engineering standards. These additional costs have to be included in the decision to
use SOUP components to implement safety-related functions.
Any additional analysis and test requirements for SOUP are fed to the implementation
stage. The implementation safety justification has to assess:

• whether the planned tests and analyses have yielded the expected results

• whether evidence is deficient

 7/11

• the safety impact of any deviations

• whether changes are required to the safety arguments, or additional evidence is
required

• whether installation or operational constraints have to be imposed to maintain
safety (e.g. interfacing requirements, limitations on mission times, operational
procedures, requirements for re-calibration and maintenance)

Some of these issues will have to be re-addressed in the Operational Safety
Justification if the SOUP used in the safety application is upgraded over time (e.g. to
support new hardware or software functions). Methods for minimising the long term
risks of SOUP are discussed in the next section.

Long term risk management of SOUP
Long-term management of safety-related SOUP can be used to limit the risks
associated with their use. This includes strategies such as:

• standardisation on a limited number of SOUP components and suppliers

• gaining access to SOUP fault histories for “early warnings” of SOUP problems

• organisation-wide data collection and dissemination of SOUP problems

• a phased strategy for introducing new or updated SOUP within the organisation (i.e.
use in low integrity applications first)

Such a controlled approach to the use of SOUP has the advantage that it generates
evidence of satisfactory operation, so that there is a stronger “evidence profile”
available when constructing a case for the next safety-related application. In addition,
the standardisation of SOUP and SOUP configurations implies that one can re-use
safety arguments for new systems (e.g. have component safety justifications for items
such as operating systems and compilers).

Closing remarks
This paper has outlined a generic approach for justifying the safety of systems
implemented with SOUP. An example application of this approach is given in the
Appendix. For further details, please refer to the full version of the report [1] which is
available on-line from the HSE web site.

References
[1] P G Bishop, R E Bloomfield and P K D Froome, “Justifying the use of software of

uncertain pedigree (SOUP) in safety-related applications”, Health and Safety
Executive Contract Research Report, CRR 336/2001, ISBN 0 7176 2010 7,
HSE, May 2001, http://www.hse.gov.uk/research/crr_pdf/2001/crr01336.pdf

[2] P G Bishop and R E Bloomfield, “A Conservative Theory for Long-Term
Reliability Growth Prediction”, IEEE Trans. Reliability, vol. 45, no. 4, Dec. 96, pp
550–560

[3] HMSO, The Safety of Operational Computer Systems, HMSO 1998

 8/11

Appendix: DUST-EXPERT safety case example
To illustrate how this proposed approach to SOUP is applied in practice we will take
parts of the DUST-EXPERT™ advisory system safety case as an example. DUST-
EXPERT is an expert system that advises on safety measures for handling explosive
dusts in industry. The full safety case contains a more detailed justification than that
presented here, but the shortened description below shows how the safety case fits
into our proposed approach.

Preliminary Safety Case
At this stage we identify the relevant safety attributes for the advisor from the list given
in the paper. The selection of safety relevant attributes and the associated safety
claims are shown in the table below. Note that not all safety attributes apply, e.g. it is
an offline advisor so attributes such as real-time response, throughput and availability
have no safety relevance.

 Safety claim
1 Functional correctness (must implement the specified dust explosion

calculation)
2 Accuracy (the results are sufficiently accurate when calculated using finite-

precision arithmetic, and numerical instability should be detected)
3 Security (appropriate steps are taken to prevent malicious and accidental

changes to methods and data)
4 Modifiability (the chance of maintenance-induced errors is minimised)
5 Fail safety (there is a low probability of unrevealed failures)
6 Usability (the system makes it hard for users to make errors)

These claims had to be justified to SIL 2, which implies that the probability of a
dangerous result is between 10-2 and 10-3 per consultation.

Architectural safety case
The chosen architecture contained the following SOUP components:

Component Function
Microsoft Windows provides windowing and operating system services

IFAD toolbox used for VDM specification of application (and to generate test
data)

LPA Prolog used to define rules for the expert system kernel

Microsoft C++ used to program the graphical user interface (GUI) for the
advisor

Microsoft Visual
test

used to automate GUI tests

The main element in the “evidence profiles” for these products was an extensive user
base and supplier track record (although for Prolog and C++, fault histories were
available). In the following table, the hazards of the SOUP and the associated defences
are identified. Note that these include defences in the development process that detect
failures in off-line SOUP tools.

 9/11

Tool Dangerous failure
consequences

Defences

IFAD toolbox Failure to meet requirements

Failure to provide truthful oracle

Failure to detect type errors

Acceptance tests, animation of
specification, proofs of safety
properties
Low probability of compensating
fault
Checks at Prolog level

LPA Prolog
system

Faulty code Diverse checking by static
analysis, acceptance tests,
statistical tests

Microsoft
Visual C++

Faulty code

Failure to detect untested C++
code

Diverse checking by static
analysis, acceptance tests,
statistical tests
As above

Microsoft
Visual Test

Failure to detect failures during
testing

Manual testing on Windows 3.1
version, tests by HSE

Prolog static
checking tools

Failure to detect some faults in
Prolog code

Acceptance tests, statistical
tests

Prolog test
coverage
harness

Failure to detect untested code Acceptance tests, statistical
tests

Microsoft
Windows

Failures to display, perform file
access, etc.

Detectable by user as “crash” or
freeze.

In addition to this there were a number of defences built into the application design and
development process.

Development features Comment
SIL 2 development
process

To aid correctness

VDM specification To aid correctness of spec, and statistical test data

Statistical testing Statistical tests to show the 10-3 failure target is met.

Directed testing To ensure that all Prolog code is tested

Design Features Comment
Feedback of user-
specified input

Reveals data corruption in the GUI interface

Interval arithmetic Reveals unstable calculation method

Databases for explosion
data and calculation
methods

Permits easy modification for new types of dust, or
explosion calculation methods

Access controls Ensures databases are secure from unauthorised
changes

 10/11

Implementation Safety Case
This provided:

• evidence that the SIL 2 process was followed (documents, audits, etc.)

• results of the directed tests and statistical tests

Installation Safety Case
This marshalled all the safety case elements for the client, and ensured that
appropriate installation and operation documentation was available to the users. The
overall assurance of safety properties and the amount of diverse evidence used to
justify the safety properties is summarised in the table below. Note that the bracketed
comments identify cases where the assurance applied to specific parts of the system
functionality.

Attribute Assurance
evidence functional

correctness
accuracy security modifiability fail

safety
usability

directed
testing

•
(methods &

GUI)

•
(methods)

statistical
testing

•
(methods &

GUI)

•
(methods)

analytical
arguments

•
(VDM &
Prolog
source)

desk checks •
(database
, methods
& warning
screens)

field data •
(run-time
system)

interval
arithmetic

 •
(methods)

 •
(will detect
instability in

new methods)

•

design
diversity

 •

prototyping •
(of GUI)

 •

stress/
overload
testing

 •

manual checks • •
access control •
database for
methods and
explosion data

 •

 11/11

Operational Safety Case
As part of the ongoing maintenance for the product, the safety case is updated in the
light of changes. This includes changes to (or reported faults in) SOUP components
that affect the run-time software, e.g. changes of operating systems or C++ versions.
The safety case would justify any changes and present the results of the statistical
tests to demonstrate that the integrity of the expert system is maintained.

