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FOREWORD BY HSE 

A key element of a computer based system for protection or control is the operating system. 
There is a growing trend to base safety systems on general purpose commercial products such 
as Linux and Microsoft Windows rather than on operating systems developed specially for 
safety. Statutory regulators and other assessors of computer based safety systems need a 
practical procedure for assessing the safety integrity of a commercial operating system.  

This report describes preliminary work in a collaboration between three UK agencies: the 
Defence Procurement Agency of the Ministry of Defence; the Civil Aviation Authority; and 
the Health and Safety Executive.  

The goals of this collaboration are: 

�� To develop a description scheme which can be applied to a wide range of commercial 
operating systems, and which will permit an assessment of the key operating system 
attributes that are relevant to its use in a safety application. 

�� To develop a forecasting model to estimate the cost of achieving a specific level of 
confidence in the behaviour of an operating system. 

�� To assess in detail one or more operating systems of commercial importance in safety 
applications. 

Preliminary work on this programme has focussed on two operating system of commercial 
importance which have been proposed for safety applications – Microsoft Windows XP, and 
Linux. For each a scoping study was made to investigate the practical aspects of the above 
goals. The findings of the two scoping studies will be evaluated to decide how to proceed to a 
full operating system assessment. 

This Linux report should be read in conjunction with a companion report on Microsoft 
Windows XP: “Windows XP - Scoping Study for the Operating Systems - Integrity 
Evaluation of Windows”, produced by Praxis Critical Systems under contract to the Defence 
Procurement Agency, but which for administrative convenience is published by the Health 
and Safety Executive. 
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EXECUTIVE SUMMARY 

In recent years, the Linux operating system has been widely adopted by major organisations 
as the basis of their information technology infrastructure and product range.  There are clear 
advantages in using Linux, for example a lower cost of acquisition than that for proprietary 
operating systems, wide availability on different platforms and avoidance of dependence on 
one supplier.  Linux is also perceived as being reliable, and the availability of the Linux 
source text provides the ability to modify the operating system and to correct defects where 
necessary.  

There is now interest in using Linux in safety related applications.  This report has been 
commissioned by the UK Health and Safety Executive (HSE) under contract number 
4383/R38.036 and is sponsored by HSE, the UK Ministry of Defence (MoD) and the Safety 
Regulation Group (SRG) of the UK Civil Aviation Authority. 

The objective of the study as set out by HSE was to carry out a scoping study into the 
availability and quality of evidence to assess the safety and integrity of the Linux operating 
system. 

The report sets out three basic criteria to decide whether an operating system is suitable for 
use in a safety related system, namely that the operating system must be sufficiently well 
understood, that it must be suitable for the characteristics of the safety related application, and 
that it must be sufficiently reliable.   

Linux is assessed against the first two of these criteria and it is concluded that it would be 
suitable for use in some classes of safety related applications, provided that they do not have 
to meet very stringent timing requirements typical of “hard real time” systems.  A framework 
for conducting a hazard analysis of the use of Linux in any given safety related system is 
introduced. 

Sources of evidence that Linux is sufficiently reliable are considered, namely field service 
experience, testing and analysis.  There is considerable field service experience available 
although much of this is of an anecdotal rather than a formal nature.  Linux has been formally 
tested by a number of organisations and therefore some testing evidence is available.  It is 
concluded by the study that existing test suites would form a good basis for a project to certify 
Linux for safety related applications, but that there is a need for a single specification, 
covering all aspects of behaviour including robustness, against which to test.  The role of 
analysis in certifying Linux is considered, with a directed manual inspection process being 
recommended. 

The overall conclusion of the study is that Linux would be, in broad terms, suitable for use in 
many safety related applications with SIL 1 and SIL 2 integrity requirements, and that it 
certification to SIL 3 might be possible.  However, it is not likely to be either suitable or 
certifiable for SIL 4 applications. 

An outline work programme is given for a possible Linux certification project with some 
approximate effort estimates. 
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1 INTRODUCTION 

In recent years, the Linux operating system has been widely adopted by major organisations 
as the basis of their information technology infrastructure and product range.  There are clear 
advantages in using Linux, for example a lower cost of acquisition than that of proprietary 
operating systems, wide availability on different platforms and avoidance of dependence on 
one supplier.  Linux is also perceived as being reliable, and the availability of the Linux 
source text provides the ability to modify the operating system and to correct defects where 
necessary.  

There is now interest in using Linux in safety related applications.  This report has been 
commissioned by the UK Health and Safety Executive (HSE) under contract number 
4383/R38.036 and is sponsored by HSE, the UK Ministry of Defence (MoD) and the Safety 
Regulation Group (SRG) of the UK Civil Aviation Authority. 

The role of an operating system is to manage the hardware resources of the computer on 
behalf of application programs and users.  An operating system forms a layer between the 
application programs and the hardware resources, and any failure in the operating system will 
almost inevitably lead to total failure of all applications running on the given hardware.  The 
integrity of an operating system is thus crucial to the integrity of any safety related system in 
which that operating system is used. 

The objective of the study as set out by HSE was to carry out a scoping study into the 
availability and quality of evidence to assess the safety and integrity of the Linux operating 
system.  HSE and the other project sponsors are considering a possible project to certify 
Linux (or another operating system) for use in safety related systems.  The information in this 
report is intended to support the sponsors in deciding whether such a project is necessary or 
feasible, and if so how it might be carried out. 

Note that the term “qualification” is used in some industries, notably aerospace, to mean 
providing evidence that a given component does what it was specified to do, while 
“certification” is used to mean demonstrating that a system is safe.  In this report the term 
“certification” is used with the former meaning, namely providing arguments and evidence 
that an operating system is fit for use in a safety related system, with suitable caveats and 
restrictions. 

The structure of this report is as follows.  The scope and context of the study are set out in 
section 2.  Section 3 discusses the concept of safety and integrity requirements for an 
operating system and establishes three criteria which must be satisfied if an operating system 
is to be deemed suitable for a given safety related system.  Section 4 gives a general 
description of Linux facilities for the benefit of readers who are not familiar with Linux or 
Unix, and section 5 then considers the general suitability of Linux for use in safety related 
work based upon the criteria established earlier.  Section 6 provides a framework for failure 
analysis of Linux or indeed any other operating system, and uses this framework for a further 
assessment of the suitability of Linux for safety related applications.  Section 7 describes 
Linux configurations, platforms and typical applications, while section 8 describes the Linux 
release and distribution mechanism.  Section 9 provides some details on the internal structure 
and workings of Linux, to support other sections of the report.  Section 10 discusses the 
currently available sources of evidence for the safety integrity of Linux.  Section 11 considers 
how a possible project for Linux safety certification could be carried out.  Finally, the overall 
conclusions of the report are given in section 12 and the recommendations in section 13. 
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Appendix A provides a list of the Application Programming Interface (API) functions 
provided by Linux. 

Appendix B provides supporting information for the failure analysis scheme described in 
section 6. 

Appendix C lists the results of some complexity measurements made on the Linux kernel. 

It should be noted that this study is based on Linux kernel version 2.4 from an “out of the 
box” Linux distribution (section 8), which will be the most attractive option for many projects 
which do not have the knowledge or budget to modify Linux at the source code level.  Special 
modifications of Linux are mentioned where relevant but have not been considered in detail. 

It should also be noted that Linux distributions typically provide large numbers of application 
programs and other ancillary software.  This study is only concerned with the Linux kernel 
and other operating system components, together with the necessary libraries to allow access 
to the operating system, and not with user-level applications. 
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2 CONTEXT AND SCOPE OF STUDY 

The work described in this report draws upon an earlier study of the requirements for 
operating systems in safety related applications carried out by CSE on behalf of SRG [Ref 1].  
It also uses an evidence-based assessment framework for safety related systems which is 
given in the SRG document CAP 670 section SW01 [Ref 2]. 

The study was carried out by means of literature and World Wide Web searches, study of 
textbooks on Linux facilities and structure, personal and company experience of using Linux, 
manual examination of samples of the Linux kernel code, and some static analysis of the 
Linux code. 

The term “Linux” strictly only applies to the Linux kernel, but is used in this report to refer to 
the operating system as a whole including device drivers and filestore support, together with 
the necessary API libraries. 

2.1 EXCLUSION OF THE X WINDOWS SYSTEM 

The X Windows system is commonly used with Linux to provide the user interface on high 
resolution graphical workstations, which include most PCs in common use.  The X Windows 
system as been excluded from detailed consideration in this study for several reasons: 

i) X Windows has been extensively used with Unix operating systems, in addition to 
Linux, for many years, and has accumulated an even greater amount of field service 
experience than Linux itself, including use in safety related systems; 

ii) X Windows runs as an application, which does not require the operating system to be 
modified and can thus be assessed separately from Linux; 

iii) it is not necessary to use X Windows to provide the user interface on a graphical 
workstation or PC, the “curses” package supplied with Linux, or other similar 
packages, can be used instead to provide a simpler user interface; and 

iv) a safety related application can protect itself against failures in X Windows, whereas 
it cannot protect itself from failures in Linux proper (without using hardware 
assistance). 

It can be argued that X Windows and Motif (a layer of software on top of X which provides a 
particular window manager and “look and feel” to the GUI) are mature items of software 
which are currently used in many safety related applications with SIL 1 and SIL 2 integrity 
requirements.  For example, one SIL 2 system with which CSE is familiar in detail has 
accumulated over 90,000 hours of operating experience without any failure attributable to X 
Windows or Motif.  A defect reporting system provides confidence that any failure would 
have been recorded and analysed. 

CSE therefore concluded that spending effort on further analysis of X Windows in this study 
would not be justified.  

Note that the remarks above about the reliability of X apply to the original implementations of 
X Windows and Motif.  Any implementations which provide the same facilities and look and 
feel but which do not use the same source code (with the exception of hardware dependent 
components) will not have this record of successful use. 
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3 SAFETY AND INTEGRITY REQUIREMENTS FOR AN 
OPERATING SYSTEM 

There are a number of practical problems with using an operating system in a safety related 
environment [Ref 3].  The first is that there is no accepted way of specifying or describing the 
complete safety related behaviour of an individual software component.   For this reason, 
defensive mechanisms need to be employed against relevant failures.  As noted in the SRG 
report [Ref 1], there is a major difference between an operating system and any other kind of 
pre-existing software component in that the operating system provides a layer between the 
application and the hardware.  Failure of the services provided by the operating system to the 
application program will therefore inevitably result in application software failure (note of 
course that the operating system could have internal fault containment and recovery 
behaviour) and the application software cannot therefore provide such defensive mechanisms.  
In some cases, hardware support may be required to implement suitable defensive 
mechanisms against operating system failure, and this is discussed further in section 6. 

It is argued, therefore, that for an operating system (or indeed any pre-existing software) to be 
suitable for use in safety related system, it must satisfy the following criteria: 

C1 the behaviour of the operating system must be known with sufficient exactness, in all 
relevant domains of behaviour, to provide adequate confidence that hazardous 
behaviour of the safety related application does not arise because of a mismatch 
between the belief of the application designer and the true behaviour of the operating 
system; 

C2 the behaviour of the operating system must be appropriate for the characteristics of 
the safety related application, in all relevant domains of behaviour; and 

C3 the operating system must be sufficiently reliable to allow the safety integrity 
requirements of the application to be met (when taken together with other system 
features).  In other words, the likelihood of failures of the operating system features 
and functions used by the application must be sufficiently low. 

While system testing would in general reveal many failures caused by a mismatch between 
designer understanding and the true behaviour of the operating system, it cannot guarantee to 
eliminate all such mismatches which could cause the safety related system to fail in operation.  
The higher the integrity requirements of the application, the more important C1 becomes. 

A corollary of criteria C1 and C2 above is that, where there are defects in the operating 
system or limitations that may make it unsuitable for certain safety related applications, these 
must be known to the application designer so that they can be taken into account in the choice 
of the operating system and the design of the application software. 

A safety case for the use of Linux in a given safety related application must address these 
three criteria, although the structure of such a safety case is beyond the scope of this study.  
Criteria C1 and C3 can be addressed by “certification” of the operating system, which is the 
subject of this report.  Criterion C2 is the responsibility of the application designer, who must 
show that the behaviour of the operating system is appropriate for the application in question.  
Section 6 provides more detail on how this can be achieved. 
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3.1 RELIABILITY AND SAFETY INTEGRITY (CRITERION C3) 

In IEC 61508 [Ref 4] and in some other standards, a number called the Safety Integrity Level 
(SIL) is defined for the functions of a safety related system on the basis of risk reduction 
requirements.  A mapping is provided between the tolerable hazard occurrence rate (for 
continuous or high demand systems) and the target SIL.  The safety related functions are 
allocated in the system design to system elements including hardware and software, and 
corresponding reliability requirements are apportioned to those same system elements.  
Depending on the system design, the failure rate target (and corresponding SIL) of a 
component may be higher or lower than the SIL of the overall safety function (this depends 
whether components are in a series or a parallel, redundant configuration). 

For a software component (either a complete software system running on one computer, or 
one element in a partitioned software system), the SIL of the software is determined by its 
apportioned failure rate using a mapping from target ranges of failure rate to SIL.  In some 
standards such as DO-178B [Ref 5] the equivalent of the SIL is derived from failure 
consequence rather than risk, but this makes little difference to the overall principle. 

Clearly any operating system used for an application of a given SIL must have a SIL which is 
at least as high as that of the application, and for the sake of confidence one higher would be 
desirable, from the argument given at the start of section 3 above. 

The shorthand term “A SIL N operating system” therefore means “an operating system whose 
failure rate is demonstrated by adequate evidence from appropriate sources to be at least as 
good as that required to support SIL N functions, having regard to system architectural and 
failure defence mechanisms”.   

Since this definition is cumbersome in use, the shorthand form “a SIL N operating system” 
may be used. 
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4 DESCRIPTION OF THE LINUX SYSTEM 

Linux is a general purpose operating system which is intended to support both program 
development and the execution of application software in a production environment.  This 
brief description of Linux background and facilities is intended as a guide to those who are 
not familiar with the Unix model of an operating system. 

4.1 LINUX: A BRIEF INTRODUCTION 

The Unix system was first described by Ken Thompson and Dennis Ritchie in 1974.  Unix 
development began in 1969 at Bell Labs.  After 30 years the Unix system and the concepts 
which it embodies, are now present and extended in the Linux operating system.  Unix has 
been widely used in Universities throughout the world where major modifications have lead 
to the divergence of the system functionality through the evolution of the design.  The 
University of California at Berkeley, USA was largely responsible for the introduction of 
networking capability through the addition of “sockets”.  Although Bell Labs (AT&T) 
retained the licensing rights to Unix and co-ordinated major revision and design changes, by 
the time these controls were instituted Unix had escaped into the academic community and 
proved difficult to control. 

Unix possesses a simplicity and clarity which has both facilitated a large developer 
community and allowed those developers to enhance it in their own way.  The Linux kernel 
was originally designed by Linus Torvalds whilst he was attending the University of Helsinki 
and later developed through the collaboration of many volunteers worldwide (through the use 
of the Internet).  Most versions of Linux cannot technically be referred to as a version of Unix 
as they have not been submitted for test and subsequent licensing. 

The great advantage that the implementation of Unix has retained from its early days is that a 
majority of the kernel is written in the relatively high level language C, with only the 
hardware specific interfaces written in the assembler (but see section 10.3 for notes on safe 
subsets of C).  This early design decision has provided a platform for the definition of a 
virtual machine interface, which has facilitated the porting of Unix from its original PDP-7 
and PDP-11 platforms to many other hardware architectures. 

As noted earlier, the term Linux as used in this report refers only to the operating system.  In 
common use the term Linux often refers to a distribution (see section 8), which contains the 
kernel, utilities, and in many cases a substantial number of applications, documentation and 
source code.  Linux offers all the common programming interfaces of standard Unix systems.  
The Linux utilities are provided through the GNU project run by the Free Software 
Foundation. These utilities are, in the main, text based and include development tools such as 
compilers and libraries.  The third major contribution to a Linux distribution came from the X 
Consortium, which developed the X Windows system, and the Xfree86 project which ported 
the X Windows system to standard PC hardware (graphics cards and devices). 

The Linux operating system has now been in existence for over 10 years.  Many Linux 
distributions are available from simple, feature-restricted, embedded systems to large 
distributed computing environments.  For the office environment an off-the-shelf Linux 
distribution for installation would present the user with a graphical user interface similar to 
most modern office computing environments. 
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The Linux kernel design, management and co-ordination are still undertaken by Linus 
Torvalds and an inner circle of developers who maintain the design intent.  The kernel source 
code is under the control of the CVS source code management system. 

4.2 LINUX FACILITIES 

A summary of the Linux application programming interface (API) functions is given in 
Appendix A.  The API provides an interface at the programming language level (C functions) 
to the system calls which invoke the Linux kernel.  Other behavioural characteristics of a 
Linux system are configured or read by standard text files and by means of a special “proc” 
file system. 

Processes  Application programs are run as processes under Linux.  Each process has its own 
virtual memory and processes are scheduled for execution on a time-sliced, priority based 
scheduling system which always provides some processor time to any process.  Processes are 
constructed in parent/child hierarchy; if one process starts another (by means of the well-
known “fork” system call) then the new process is the child of the original process (and the 
parent process is notified, by means of a signal, when the child terminates).  The first process 
in the system is started by Linux and this creates other processes by means of an initialisation 
script.  One process started in this way would typically be for user interaction via the 
keyboard and mouse. 

Linux now supports symmetrical multiprocessor configurations in which processes can be 
genuinely executing in parallel on multiple hardware processors. 

Threads  A recent addition to Linux (and to Unix systems in general) is the idea of a 
lightweight process or “thread”.  One process can be executing many threads, with differing 
priorities for each thread.  All threads share the same virtual memory space and code.  Internal 
thread synchronisation facilities are provided.  Being relatively new, threads are relatively 
little used by comparison with normal processes.  An Ada compiler will typically use threads 
to implement Ada tasks. 

Users  Unix was originally developed as an interactive timesharing system for multiple users.  
Linux therefore supports the concept of  “users” with user names (UIDs) and passwords for 
the purpose of protecting the resources (generally the files) of one user from access by other 
users.  Users can be collected into groups with a group name (GID).  Users can grant access to 
their files to other users in a user group or to any user.  There is a superuser concept (user 
name “root”) where the superuser can access or change any system resource.  Although users 
are frequently individuals who use the computer, the concept can be used in an abstract 
manner, for example to allow only programs of a particular class to access certain resources 
(an example is given in section 5).  Linux can therefore support some forms of partitioning. 
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Input/output services  A central concept in Unix and Linux is the filestore: a hierarchially 
named collection of files with defined user and group access permissions.  In Linux a “Virtual 
filestore” is implemented via the kernel, so that a variety of different filestore 
implementations can co-exist on the same system.  Files are logically named by paths starting 
at the root of the filestore “/ “, for example “/etc/fstab”.  Hardware devices are, as in Unix, 
addressed as special classes of file (/dev/…).  Files are treated as linearly addressable, hiding 
the specific organisation of discs, tapes and other peripheral devices.  An error is returned if a 
file operation is not applicable to the file being accessed.  Device or file I/O can be either 
synchronous (the process blocks until the I/O operation is complete) or asynchronous (the 
process continues while the operation is in progress).  Various means are provided to 
determine whether an asynchronous operation has completed.  The most useful is the “select” 
operation which enables the process to test whether one or more given I/O operations are 
complete.  The select call can also optionally cause the process to block until either an I/O 
operation is complete, or a signal of any kind is received.  

Input and output services also importantly include network access by means of the socket 
concept.  A socket is the means by which a user application sends and receives messages to 
other computers on a local or wide area network.  Sockets provide the interface to Internet 
protocols including TCP/IP, UDP/IP and raw IP.  Both sockets and files are accessed via a 
“file descriptor” which identifies the file, device or socket being accessed. 

Inter-process communication (IPC)  IPC is provided by a variety of means: 

i) signals (software interrupts to a process); 

ii) pipes (destructive read files), both named and anonymous; 

iii) semaphores (for processes); 

iv) shared memory; 

v) local sockets (a socket interface to process on the same processor); 

vi) mutexes (for mutual exclusion of threads from critical areas); and 

vii) condition variables (to allow threads to suspend themselves until the variable has a 
given value). 

Note: mutexes and condition variables provide semantics very similar to the protected object 
concept in Ada 95 [Ref 6]. 

Timer services  A process or thread may define several interval timers (expiry of the timer is 
indicated by a signal to the process).  There is also a facility for processes and threads to 
suspend themselves for a specific time period, and a facility to get the time of day. 

Command line interpreter (shell)  A command line interpreter or shell is available for basic 
user interaction.  Although in principle the shell is simply an application run on top of the 
Linux API, it has a special role in the Linux system, for example on system start-up.  A 
process can be made to run a shell script (as opposed to an executable binary program), and 
this is a facility which is frequently used in Unix and Linux systems.  The standard shell 
provided with Linux is “bash” which provides the functions and syntax of the Bourne shell in 
Unix.  
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5 PRELIMINARY ASSESSMENT OF LINUX AGAINST THE 
SAFETY CRITERIA 

This section provides a preliminary assessment of Linux against criteria C1 and C2.  Criterion 
C3 concerning safety integrity is discussed at greater length in section 10. 

5.1 WELL DEFINEDNESS OF LINUX BEHAVIOUR (CRITERION C1) 

The domains of behaviour for a software system in general are identified in SW01 [Ref 2] as 
follows: 

i) Functionality; 

ii) Timing and Performance; 

iii) Capacity; 

iv) Failure Behaviour (of the system itself/connected systems/user programs); 

v) Overload Tolerance; 

vi) Reliability (safety integrity, as in criterion C3 above); and 

vii) Accuracy (of numeric computation). 

There is, as far as this study has been able to determine, no single definitive work which 
describes the services provided by Linux under the headings of all the above SW01 attributes.  
Unix implementations normally provide machine readable “manual pages” which define 
various aspects of operating system calls, shell commands and standard utility functions or 
programs.  The manual pages for typical Unix systems often lack the precision that would be 
thought necessary for safety related systems, as the author of this report knows to his cost.  
For Linux, manual pages are being replaced by “info” pages. 

It should be noted that such manual pages generally only describe the parameters and 
immediate effect of calls to the operating system API rather than specifying the behaviour of 
the operating system in wider terms.  Operating systems are very “stateful” machines in the 
sense that the behaviour of the operating system and its responses to system calls is strongly 
influenced by the previous history of system calls made by the set of executing application 
processes.  This is one reason why operating system behaviour is difficult to define in detail.  
In addition, some aspects of operating system behaviour may be controlled by means other 
than API calls, for example by configuration data files. 

Linux claims to conform to the POSIX definition [Ref 7].  POSIX is a basic standard for 
Unix-like operating systems which specifies the syntax and semantics of system calls which a 
conforming operating system must provide to the user application program, and some other 
aspects of operating system behaviour.  It is regarded as the lowest common denominator of 
Unix systems and does not provide some commonly used functions such as the 
communications socket concept which is the means of providing network communication 
protocols (in particular, the Internet protocol IP and higher layers such as TCP and UDP). 



 12 

There are many textbooks describing the behaviour and administration of Unix and Linux 
systems and some 30 years of running Unix in various varieties; its general behaviour and 
interfaces are thus well understood by many developers.   There are also books which 
describe Linux internals (for example [Ref 8, Ref 9]) which can contribute to an 
understanding of aspects of behaviour which may not be clear from the POSIX or other 
definitions.   

A useful source of documentation for Linux is provided through the Linux Documentation 
Project (LDP) [Ref 10].  As well as providing references to textbooks, volunteers support 
Linux by providing a range of documents known as “howtos”, “mini-howtos” and FAQs.  
Howtos deal with specific administration or installation issues such as the configuration of a 
modem to provide access to the Internet by phone.  Mini-howtos are abbreviated howtos and 
summarise the larger documents for those who do not wish to be overwhelmed with detail.  
FAQs are “Frequently Asked Questions” and record the most popular questions asked, 
originally on bulletin boards or mailing lists. 

Finally, with an open source system an appeal can ultimately be made to the source code to 
discover some aspects of behaviour which are obscure, although this would be a difficult task 
for those not expert in operating system construction (but Linux textbooks and the LDP do 
provide assistance in this respect). 

The Linux Professional Institute [Ref 11] is concerned with the certification of Linux staff 
competence through an examination process.  Certification is further supported by the Linux 
Training Materials Project [Ref 12] which aims to provide a single source of training 
materials.  Competence of project engineers to understand and use Linux could be one part of 
a safety argument for the use of Linux in a safety related application.  

Differences in behaviour between different distributions of Linux can currently arise because 
of differences in the API application libraries supplied by different Linux distributors.  Some 
of these differences are minor but have an effect on portability of applications between 
different platforms.  The Linux Standard Base project (LSB) [Ref 13] is currently defining a 
standard of behaviour for Linux distributions.  If such a specification is agreed, it should be 
used for any certification project.   

Reported errors in Linux, fixes and “work arounds” are recorded and presented for inspection 
on web sites such as [Ref 14].  Clearly, any safety related project would have to take a view 
as to whether it was better to avoid known errors or adopt a new version of Linux in which 
those errors were corrected but which might have unknown new errors. 

Timing and performance are generally related to a particular computer configuration and are 
not therefore describable in general terms.   

Some aspects of failure behaviour are specified, in particular the responses made by Linux to 
incorrect system calls.  Other “non-functional” attributes of Linux behaviour are not in 
general defined. 

It can be concluded, therefore, that although the general behaviour of Linux is reasonably well 
described by a number of information sources, there is no single definition against which it 
can be validated, unless the Linux test or documentation projects provide such a definition in 
future. 
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Note also that specific device drivers will have specific behaviours in response to general 
Linux file manipulation commands, and these behaviours would need to be defined for a 
safety related system. 

A Linux certification project should therefore provide a single definition (which could 
probably be based on the POSIX standard with extensions) to clarify the behaviour of Linux 
under the SW01 attribute headings as applicable.  Although a mathematically formal 
definition of the Linux kernel behaviour is probably feasible, it is unclear what value would 
be gained from a fully formal definition.  However, the definition should be as formal as is 
useful and reasonably practicable.  The definition would both provide a basis for testing, and 
to form a baseline for users of the certified Linux.  It should also clearly state what is not 
known, for example device dependent behaviour, and provide the developer of a safety 
related application a framework in which such behaviour can be defined. 

5.2 SUITABILITY OF LINUX FOR SAFETY RELATED APPLICATIONS 
(CRITERION C2) 

This section considers the suitability of Linux for safety related applications, given that an 
adequate definition of its behaviour is available.  Any individual project using Linux for a 
safety related application should however carry out a detailed study into its suitability.  
Section 6 addresses the question of how a particular project can carry out such an analysis. 

5.2.1 Functionality 

Section 3 above provides a general description of the facilities offered by Linux. 

This section discusses some aspects of functionality which are of particular relevance for 
safety related systems. 

5.2.1.1 Partitioning  

The ability to provide mechanisms to manage resources safely when a number of programs 
are co-operating is crucial for an operating system used for safety related applications (unless 
the entire application is written as one process).  This is known as partitioning.  Rushby has 
written a lengthy paper [Ref 16] discussing partitioning based on the civil Integrated Modular 
Avionics (IMA) model.  Rushby describes partitioning as a mechanism to prevent fault 
propagation, but notes that this is only a protection mechanism from new hazards created by 
the sharing of resources.  Other hazards such as the incorrect calculation of an output value by 
an application are not covered.  He divides the partitioning problem into two aspects: 

i) Spatial Partitioning This prevents a partition altering another partition’s data or 
software, and also prevents command of another partition’s associated output devices; 
and 

ii) Temporal Partitioning This ensures a partition receives services, such as access to 
the processor or timely access to a physical device, which are unaffected by other 
software. 

Partitioning should ideally provide fault containment equivalent to a system in which each 
partition was running with its own dedicated hardware and resources.  The behaviour and 
performance of software in one partition must be unaffected by the software in other 
partitions. 
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In practice, on a uniprocessor system, the CPU usage of one partition must inevitably affect 
the time available to other partitions but need not affect other resources. 

Linux processes provide a useful spatial partitioning mechanism, by providing a separate 
virtual address space and resource protection mechanism for each user process.  Clearly this 
depends on the presence of a suitable memory management unit, but this is available on all 
the computers on which Linux is currently implemented with the exception of some 
embedded systems. This facility means that one process should not in principle be able to 
modify the program or data memory of another process.  The Linux shared memory facilities 
need co-operation between the processes using it. 

Device drivers could corrupt memory when writing data from kernel space to user space.  The 
integrity of these needs to be assured, since they are an integral part of the operating system.   

User processes can access real memory with the special file “/dev/mem”; however, this needs 
root privilege.   

Since one process cannot rely upon another not to interfere with its memory in this way, all 
processes need to be analysed (and in general only a supervisory process should be run as 
“root”).  In this sense Linux, in common with Unix in general, is often known as a “trust 
based” system. 

Spatial partitioning can be reinforced by the UID and GID concepts (section 3).  For example, 
the “Postgres” database requires that it and its associated data management applications and 
utilities be allocated a specific GID and UID to reduce the possibility of access and 
modification by other users.  This requirement is enforced by each utility testing for the UID 
of the Postgres user, at initialisation, and terminating with the appropriate error message if the 
application is run as any other user (including the superuser). 

Temporal partitioning is, to some extent, provided by the time slicing behaviour of Linux.  
This will not guarantee to give processes access to the processing resource at a defined time 
but will prevent any process from being completely starved of processing resource.  The 
process priority mechanism can be used to ensure that higher priority processes obtain more 
CPU time than lower priority processes.  Temporal partitioning is therefore rather weak in 
Linux. 

5.2.1.2 Autonomous behaviour 

Operating systems are capable of displaying autonomous behaviour (in other words, 
behaviour which is not directly commanded by the applications which are currently running).  
Such behaviour could include performing housekeeping functions at a particular time of day 
or when some internal limit is reached.  Provided that the autonomous behaviour does not fail, 
the impact of such behaviour will generally be to increase the response time for services 
requested by the application, perhaps by a large amount, thus causing “jitter” in response 
times to input demands, or variations in throughput.   

As will be noted later, Linux does not exhibit extensive autonomous behaviour and is quite 
suitable for soft real time systems.  One aspect of autonomous behaviour is the standard 
filestore mechanism of buffering files in memory to avoid writing back to disc on every write 
to the file.  A continually running buffer flush process is used to write buffered pages back to 
disc at intervals typically of a few seconds.  This behaviour can be disabled by changing the 
initialisation files but at the expense of considerable reduction in disc I/O performance.  
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The standard “cron” daemon which is used to carry out functions to a predefined schedule is 
under user control by means of a configuration file and need not be used if not required. 

5.2.1.3 Omission of unused functions 

In any safety related application it is desirable in principle to remove unused code so that 
there is no chance of it being invoked in unforeseen circumstances and perhaps causing 
unexpected behaviour.  Since Linux is supplied in source form, it is possible in principle at 
least to ensure that only relevant device drivers and filesystems are built into the kernel.  The 
“monolithic kernel” variant of Linux (section 7) is the most useful in this respect. 

5.2.2 Performance and timing 

Applications can be broadly classified as Hard Real Time (HRT), Soft Real Time or non real-
time. 

HRT applications are those where the system is required to meet absolute and very short 
timing deadlines (of the order of a few milliseconds) and where failure to meet a deadline 
would represent a system failure (and in a safety related system, a system hazard).  In a Soft 
Real Time system, a certain latitude is allowed in response times, although typically some 
maximum response time of the order of seconds might be required (see also under section 7).  
Non real-time applications are those which have no definite deadlines, and in safety related 
systems would generally be confined to off line data preparation tools. 

The timer resolution on PC-based Linux systems is 10ms, which is not adequate for many 
HRT applications.  This can be reduced by modifying the kernel, provided that the hardware 
timer resolution is suitable, but more frequent timer interrupts will reduce overall system 
performance. 

What cannot be specified by a standard is the actual performance that a given Linux 
implementation will provide, since this will depend on processor speed, bus speed and other 
factors.  For HRT operation, it is regarded as essential to provide predictable operating system 
overhead for kernel operations such as process switching, and for all system calls. The Ada 95 
language standard specifies one such set of kernel timing requirements [Ref 6 Annex H].  
Obviously disc I/O responses will depend on the current disc file size and organisation, and 
for this reason HRT systems typically do not use, or use very limited, disc I/O.   

Another source of timing and performance variation can arise from virtual memory and 
demand paging.  If the set of application process code is larger than the amount of RAM on 
the computer available (having regard for the operating system space and I/O buffers), pages 
may be swapped out and swapped in again later when accessed.  This can cause considerable 
response jitter in the process whose code is subject to swapping.  Programs can be marked as 
not to be swapped, and on modern computers the amount of RAM available is generally so 
large that demand paging is not likely to be encountered.  Demand paging is not likely 
therefore to be a particular source of timing problems but should be borne in mind as a 
potential source of response time variation.  HRT systems in particular should avoid any 
demand paging. 

I/O operations consume buffer space, and the kernel will invoke memory housekeeping 
functions (such as searching for a free buffer or merging freed buffers to make a larger 
buffer).  This can affect the time taken to respond to I/O operations and can also create 
response time jitter for other processes. 
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Dependable scheduling policies (such as deadline monotonic and rate monotonic) which will 
guarantee the meeting of timing deadlines depend on invariant process or thread priorities and 
on guaranteed operating system response times [Ref 17] and the standard Linux time sharing 
policy for processes does not meet these requirements. 

Linux was not intended to support HRT behaviour and there is some evidence, apart from the 
above considerations, that it is not intrinsically suitable for such work [Ref 18, Ref 19] 
because a large amount of the operating system code is non-preemptible (where interrupts are 
disabled).    

The conclusion reached is that Linux is not suitable for HRT work with very short deadlines, 
but would be suitable for Soft Real Time providing that the processor load is not excessive 
(15% loading under normal operations is a rule of thumb used by some system designers) and 
programs are not “too large” reliably to avoid demand paging. 

Part of any certification project could be to obtain performance benchmark figures for the 
specific system calls and kernel operations under a mixture of loading conditions. 

Most if not all SIL 4 applications have HRT behaviour defined (and generally do not run 
under any form of operating system or pre-existing kernel) and it is questionable whether 
Linux would be suitable for such applications, even if its reliability could be adequately 
demonstrated. 

5.2.3 Capacity 

Various resources are allocated within the kernel, for example the process table and the file 
descriptor table.  On modern PC hardware, limits on internal Linux table sizes are large and 
can be changed by a knowledgeable user (by means of a kernel rebuild and, in the most recent 
versions of the kernel, dynamically).  Capacity limitations are unlikely therefore to present 
any problems in safety related Linux applications. 

5.2.4 Robustness 

There are three aspects of robustness to be considered: robustness of the operating system to 
unexpected behaviour of user processes, robustness in the face of failures in peripheral 
devices, and robustness to failure of the hardware processing platform.  

System calls generally check their parameters, and the kernel is unlikely to crash due to 
illegally-formed systems calls, although it may not provide an error indication in all cases.  
Some information is given in [Ref 20] on the robustness of Linux to system calls with 
unexpected parameters.  

The kernel is protected by the virtual memory management system and kernel space is 
therefore not accessible to user processes. 

Exceptions arising in user processes are trapped by the kernel and reported back to the 
process by means of a signal.  



 17 

If the kernel itself raises an exception (such as accessing real memory outside limits, or 
arithmetic operation error) it generally does not recover and all application activity ceases.  
The kernel will attempt to output an error message. The kernel is not self-restarting 
(exceptions to this rule may appear on specific hardware types), and where rapid recovery is 
required the designer should therefore employ system measures such as watchdog timers. 

The method of dealing with failures in connected peripheral devices depends on the device 
driver.  In many cases a complete failure may be indicated by a timeout condition on an 
attempt to access the device, in which case an error message may be returned to the user 
program.  Other, more subtle disc errors can cause Linux to crash.  The study has not 
determined the detailed behaviour of Linux in these areas and this would be a useful aim of a 
certification project. 

It is expected that failures in the underlying hardware platform (memory or CPU for example) 
could not be tolerated by Linux but this aspect of robustness has not been examined by the 
study.  Obviously any hardware platform for use in a safety related system must be 
sufficiently reliable to meet the SIL requirements of the system. 

5.2.5 Overload tolerance 

If a large number of processes are running, this will result in longer times between the 
execution of each process but as noted above there is no hard limit, and no process will be 
completely starved of processing resource.    

There appears to be no defence against a peripheral system or device which is generating an 
excessive interrupt rate, which is the main way in which an operating system can be 
overloaded.   

5.2.6 Accuracy 

This domain of behaviour has no meaning in the context of an operating system. 
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6 FAILURE ANALYSIS OF LINUX FACILITIES 

In the SRG operating system requirements, as yet unpublished, there is a requirement to carry 
out a hazard analysis of the interaction between the application and the operating system, to 
provide assurance that use of an operating system does not present any new hazards at the 
application level. 

The headings, under which the SRG requirements are grouped, are as follows: 

i) Executive and Scheduling facilities; 

ii) Resource Management; 

iii) Internal Communications; 

iv) External Communications; 

v) Liveness; 

vi) Partitioning; 

vii) Real-time; 

viii) Security; 

ix) User interface; 

x) Robustness; and 

xi) Installation. 

In the aerospace industry the ARINC 653 standard [Ref 21] puts forward an API for the 
operating system to application layer for safety related avionics systems, especially those 
which support the Integrated Modular Avionics (IMA) concept.  It provides a good basis for 
assessment of the quality of an operating system for such systems.  Work at the University of 
York has shown that failure analysis of this API can be undertaken.  However, failure analysis 
of the system calls implied by the 653 API has shown that considering the failure of each call 
in isolation does not produce results in a form that is useful for assessing the failure 
characteristics of the overall system (consisting of a number of co-operating processes or 
partitions). 

What is required is a functional failure analysis (FFA) of the operating system, the results of 
which can be plugged into the analysis of the failure characteristics of each application that 
relies on the functions of the operating system.  For instance, a failure of the operating system 
may appear as a base event in the fault tree for a particular failure mode of an application.  
Thus it is necessary to determine a set of functions that the operating system must provide if 
an application is to provide the intended functionality, and then to undertake a failure analysis 
of these functions.  
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For the ARINC 653 API six generalised “functions” were determined for safety related 
applications.  These six generalised functions can also be used a basis for undertaking a 
failure analysis of Linux as part of a study into the suitability of Linux for any particular set of 
applications.  The functions can also be used to analyse other operating systems.  Note that 
the approach recommended here also implies that the results of this analysis must be available 
to each application developer and used as appropriate in their safety analyses. 

The six functions that need to be supported by an operating system for safety related systems 
are: 

i) provision of secure and timely data flow to and from applications and I/O devices; 

ii) controlled access to processing facilities. The access of applications to the 
underlying hardware processing resources must be managed so that, for example, any 
deadlines can be met; 

iii) provision of secure data storage and memory management. The aim here is to 
secure memory storage from corruption or interference by other applications or the 
actions the operating system takes on their behalf; 

iv) provision of consistent execution state. This concerns the consistency of data and is 
mostly concerned with the state of the system after initialisation; 

v) provision of health monitoring and failure management covers partial and 
controlled failures of the system (operating system, application, hardware); and 

vi) general provision of computing resources. This covers provision of any of the 
services of the O/S. A failure of this function would imply an uncontrolled failure of 
the O/S. 

This is a slightly higher level classification than that given by the SRG operating system 
study.   

At the higher end of the integrity level spectrum all of the six functions listed above will be 
required.  In lower integrity systems, and for some classes of application, it may be possible 
to “water down” some of the requirements implied by these six functions.  In this study, the 
system calls on the Linux API were considered and an attempt made to map them to the six 
functions listed above.  Any extra calls were put into an “other” category.  The study then 
investigated how well the system calls in Linux appear to support these functions. 

6.1 FUNCTIONS AND RELATED CALLS FOR ARINC 653 

System calls are used to provide the functions needed by the applications.  Analysing the calls 
for the ARINC 653 generic API led researchers to group together a number of system calls in 
the form of an operating system services classification.  These services can be used partly to 
provide more than one function.  In Figure 1 the set of six functions are mapped to services 
chosen for the ARINC 653 study [Ref 22].  For example, Figure 1 shows that in order to 
provide controlled access to processing, the services of scheduling, timing watchdog, 
initialisation, processing, configuration management and close-down are all required.  
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This classification of services is fairly similar to the taxonomy of operating system services 
included in the SRG study [Ref 1] and listed at the head of section 6 above, but includes 
specific items such as timing watchdogs.  The ARINC model, with its two levels of 
classification (functions and services) may be regarded as superseding the model in the SRG 
study.  However, the SRG study classification could be used by a project as a checklist to 
ensure that no aspects of operating system behaviour have been omitted from consideration. 

Controlled
access to

processing

General
Provision

of
computing

Secure and
timely data

flow

 Health
and failure
Manage-

ment

Consistent
execution

state

Secure
data

storage and
memory

Timing watchdog

Data-loading

Scheduling

Memory
management and

data storage

PartitioningClose-down

Module BITE/HM status

Processing

Initialisation

Intra-partition comms

Inter-partition communications

Configuration
management

All

All

All

All

 

Figure 1: Functions and related calls For ARINC 653 

This view of operating system services can be used for the analysis of the acceptability of 
Linux, or any other operating system, for use in safety related applications.  Clearly, if the 
services are not provided, or their provision is weak, the functionality required of the 
operating system by an application may not be available.  This view complements the analysis 
given in section 5 which is based upon the SW01 attributes. 

A safety study of a system for which a pre-existing operating system such as Linux is 
proposed should assess the services provided and how this affects the ability of the operating 
system to provide appropriate functionality to support a given application.   

The services in the ARINC 653 model are as follows: 

i) Data loading: allows data to be installed on the system and to be loaded for 
execution (and for restart after failure); 

ii) Initialisation: provides complete system, process, thread, semaphore etc 
initialisation.  Initialisation may be on start-up or error recovery; 
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iii) Timing watchdog: provides for processes to have real-time deadlines and can detect 
failures to meet these deadlines; 

iv) Partitioning: if data, spatial or timing partitioning of processes is to be employed (to 
allow multiple integrity level processes to be managed by the O/S for instance) then 
services to allocate resources to these partitions and police their usage is required; 

v) Intra-partition communication: if one or more processes / threads reside in the 
same partition then provision for passing data will be required. This could be via 
shared memory for instance. More than one method may be supported; 

vi) Inter-partition communication: allows data to be exchanged between a number of 
partitions and between partitions and external I/O devices. Note that services 5 and 6 
support inter process / thread communication; 

vii) Scheduling: service allows processes / threads to demand processing time based on 
their priority; 

viii) Processing: provision of data and instruction processing from the CPU; 

ix) BITE and Health monitoring: data logging, error detection and recovery activities; 

x) Close-down: shut down of processes, threads, partitions, hardware devices, mutexes, 
semaphores, files and other resources, and the complete system; 

xi) Memory management and data storage: preserve data, ensure consistency and 
coherency of data.  Note the overlap with the partitioning, initialisation and close-
down services; and 

xii) Configuration management: arrangement of processes and operating system support 
on the hardware architecture.  Also comprises the provision of information such as 
the available communication ports, I/O devices attached etc.  Any support for system 
reconfiguration will be placed in this service category. 

It may be that a particular system call contributes to a number of services (these could take 
the form of wrapper functions or language specific functions in Linux).  A failure of this 
system call will then constitute a common cause failure mode for a number of services.  
Similarly one service may contribute to a number of functions, as shown in Figure 1.  This 
must be taken into account in the failure analysis of the functions. 

Appendix B provides a mapping of Linux API functions to the services listed above, showing 
the degree to which the twelve operating system services, and by implication the six higher 
level operating system functions, are supported by Linux. 
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6.2 ASSESSMENT OF LINUX PROVISION 

It is reasonable to assume for the purposes of this study that the functions and services 
defined above are required, in general, of any operating system for safety related systems.  It 
should be noted, however, that the IMA concept has particularly stringent requirements for 
partitioning since the idea is to support applications from different suppliers in a single 
computer.  The IMA concept also requires very precise timing support to allow each 
application partition timely access to a time division multiplexed data bus.  Finally, built-in 
test and failure management are especially important for airborne applications. 

The analysis in Appendix B indicates that two services are not well supported by Linux, as 
follows: 

i) provision of secure and timely data flow – as already shown in section 5, the timing 
model inside Linux is weak.  In particular there is no direct provision of accurate 
watchdog timers which will take action if a process has not responded within a given 
deadline.  Although one process can use the Linux timer facilities to determine if 
another process has responded to it within a given time period, this is a less powerful 
feature than a true watchdog timer; and 

ii) health monitoring (including BIT) is poorly supported within Linux.  This is likely to 
be a significant omission as it provides input to two important functions for safety 
critical systems.  The mechanisms for failure management are also not clear from the 
Linux API, and in general device failure management is also weakly supported, as 
discussed in section 5.  However, disc health monitoring which is provided by some 
drives using the SMART technology is supported by a Linux application [Ref 23]. 

This brief examination of the required functions, services and system calls using the ARINC 
653 model indicates clearly the potential weaknesses of the Linux operating system for some 
classes of safety related application.  The systematic failure analysis framework given below 
can be used to draw these weaknesses out and put forward requirements to address these 
deficiencies in a particular system.  The severity of the weaknesses will vary with the 
application context, for example unmanned systems will in general have more stringent 
requirements for BIT, health monitoring and watchdog timer services than systems where 
human supervision is available. 

6.3 FAILURE ANALYSIS STRATEGY AND EXAMPLE 

Each of the six generalised functions identified above needs to be analysed to identify 
possible failure modes, to consider their causes and to identify derived requirements to deal 
with the failures.  Since the basis of this study is to assume that Linux will be acquired off the 
shelf, the derived requirements must be placed either on the hardware infrastructure, the 
applications software, or specialised software such as new or modified device drivers.  In any 
real safety related application, a detailed study would be required.  This section indicates the 
approach that should be taken and to give an example fragment of an analysis and the derived 
requirements that might flow from that analysis. 

A set of guidewords is used to prompt the consideration of possible failure modes.  The 
guidewords used could be the classical FFA guidewords; not provided when required, 
provided when not required and incorrect operation.  However, a better characterisation is the 
five guideword set put forward by Pumfrey in the SHARD method [Ref 24].  In this method, 
the guidewords are omission, commission, early, late and value failure.  
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As an example take the function provision of “secure and timely data flow” to and from an 
application process.  One possible failure mode prompted by the “omission” guideword could 
be that the data is not sent from the source.  There are a number of possible causes for this.  
First, the source partition (process) might not have been initialised within the system (this is a 
failure of the initialisation service).  Another possible cause is that the process could not be 
scheduled (a failure of the initialisation and/or scheduling services).  Yet a further cause could 
be that the source process may have terminated abnormally, which would be an application 
rather than an operating system failure.  

If the timely data flow is required from an I/O device, failure of the device itself or failure of 
the inter-partition communication service (at a lower level, failure of the device driver) would 
be possible failure modes. 

Once the possible failure modes and their causes have been identified in this way a set of 
derived requirements can be generated, and responsibility for carrying out each requirement 
assigned.  For instance, non-scheduling of a sending process could be caught by means of a 
watchdog timer.  As noted above, there is no direct provision in Linux for watchdog timers 
which are independent of the application processes.  As a result this would become the 
responsibility of the application designers or the extended system environment, for example 
by designing a hardware watchdog timer card which detects failures of processes to provide 
signals in the correct sequence and at the correct intervals.  Such a device is already used in a 
railway signalling application based upon a COTS operating system.  The response to 
detection of this failure mode could also be put forward as a derived requirement on the 
application or system designers.  For instance, backup functionality could be provided by 
means of a separate computer system.  

Some work on the failure modes and derived safety requirements for the ARINC 653 model 
has already been undertaken by Conmy [Ref 25].  Note this analysis mainly places derived 
requirements on the operating system builder as the work assumes that a bespoke operating 
system is to be built.  However, it shows that this approach to analysing the failure modes of 
an operating system is practical.  

6.4 SUMMARY 

This section has introduced a systematic method of classifying and analysing the 
characteristics of an operating system and deciding how well it will support the requirements 
of a safety related system. 

The classification of operating system characteristics has three levels: 

i) the highest level recognises six operating system FUNCTIONS which are in general 
required for a safety related system; 

ii) the second level recognises 12 operating system SERVICES, each of which 
contributes to more than one function; and 

iii) the third level is the API (or other means) by which the services are invoked by the 
application programs. 
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This classification scheme can be used for three purposes: 

i) to decide whether a given operating system is intrinsically suitable for use with a 
given safety related application (in other words, whether it satisfies criterion C2); 

ii) to compare the merits and disadvantages of a number of operating systems which are 
being considered for use in a safety related application; and 

iii) to facilitate a hazard analysis of the interaction between the application programs and 
the operating system, to ensure that no new hazards have been introduced by the use 
of the operating system, and where necessary to create derived requirements to 
mitigate operating system failures or weaknesses. 
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7 LINUX CONFIGURATIONS AND APPLICATION EXAMPLES 

In common with many general-purpose operating systems, Linux may be used in a number of 
configurations.  These configurations are outlined in the following sections to illustrate the 
flexibility of the Linux system.  

The hardware available to run a general-purpose operating system, such as Linux, ranges 
from the commonly available to the extremes of specialist interface cards.  The original IBM 
Personal Computer (PC) comprised a motherboard that contained the memory, CPU and a 
number of interface slots into which additional interface cards could be installed.  Typically 
these interface cards provided (colour or graphics) screen capabilities or interfaces to disk 
drives.  Although technology has taken great steps since the early days of the IBM PC, the 
general arrangement of the hardware remains constant, if more highly integrated today.  The 
motherboard with its interface slots is still the dominant form factor.  As noted previously, 
this report is mainly concerned with “vanilla” hardware.  The term “vanilla” is intended to 
describe commonly available interfaces, technologies and protocols in high volume use.  One 
such example would be 10MHz or 100MHz Ethernet cards, which are widely established and 
commonly available, often at surprisingly low prices. 

The more “flavoured” and unusual the hardware, technology, or protocol, the less likelihood 
there is of a substantial user base and hence the higher the probability of un-revealed errors in 
the hardware and software drivers.  A number of Linux distributions for example SuSe 
[Ref 26] publish compatible hardware lists, which are worth consulting before purchase of the 
intended operational hardware,  

Industrial environments are typically more demanding than the office desktop either due to 
environmental conditions, such as vibration, or EMC and EMI requirements.  A number of 
vendors offer rack mounted computers either where many computers are required to occupy a 
small space or where harsh operational conditions demand rugged enclosures.  

Linux systems will require the attention of a system administrator.  This administration may 
be either local via a physically connected keyboard and screen or, where the system safety 
requirements permit, via some remote connection.  At its most routine, system administration 
for a Linux system may consist of the inspection of the system log files, archiving and 
removal of old log information and the addition or replacement of hardware via planned 
maintenance.  Support for the system administration function is provided through a number of 
documents either created through the LDP or published through third parties.  

7.1 MODULAR KERNEL 

The Linux kernel has a dynamic kernel module load facility to load additional functionality 
into the kernel on demand (in other words, as application programs require it).  This facility is 
typically used to reduce the initial kernel size and to trade off the flexibility of the increased 
kernel functionality with speed.  It is the normal mode of operation for “out of the box” Linux 
distributions. 

Kernel modules are stored in a known reserved location on disk, and checked for availability 
as the kernel boots. Enabling the kernel checking of the module version number, before the 
module is loaded into the kernel, provides additional security. 
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7.2 MONOLITHIC KERNEL 

In the monolithic kernel case, all facilities which may be used to dynamically enhance the 
kernel features are disabled.  In the context of a safety related system a single monolithic 
kernel would be created (by means of the configuration mechanism supplied with the Linux 
distribution) which contained only that kernel functionality required to execute the 
applications required for the safety related system.   

Additional measures are required to disable some of the network-based features by editing of 
the text files that describe the network services provided by the Internet Daemon inetd 
(/etc/inetd.conf and /etc/services). 

Use of a monolithic kernel would provide a good argument that no unused code was loaded 
into the operating system. 

Monolithic kernels may also be used in applications where computational resources are low, 
such as embedded systems.  The embedded Linux kernel is available to run on platforms 
which do not use a Memory Management Unit (MMU) to implement virtual memory.  In 
these circumstances additional code is required in the kernel to ensure that programs do not 
corrupt each other’s memory, although the protection offered in such cases cannot be 
complete.  As with specialised real-time Linux modifications, embedded Linux is not 
considered further in this report, but further information can be found, for example from the  
Embedded Linux Kernel Subset (ELKS) Project [Ref 27]. 

7.3 NETWORKED SYSTEMS 

Networked systems share information across a network.  Linux kernels, which support one or 
more networks, may be either monolithic or modular as the network drivers may either be 
embedded in the kernel or available as loadable modules.  The most commonly used network 
protocol in the Unix and Linux world is the IP suite (including TCP/IP, UDP/IP, SNMP and 
ICMP), although Linux supports many other protocols. 

Networked systems may be classified as either open or closed systems.  Open systems are 
those systems that freely provide services to those who request the service (typically using the 
Internet).  Measures to reduce the potential for abuse of the system require some form of 
access controls.  A closed system should respond only to service requests from known 
sources.  Both open and closed systems will demonstrate significantly reduced performance 
when a persistent and repeated request for a service cannot be satisfied.  An example of such a 
repeated service request would be a denial of service security attack.  A common defence in 
such circumstances is to provide services from behind a firewall or other network traffic filter 
to increase the overall availability of the system. 

Common practice then, is to provide several layers of networked infrastructure to increase the 
dependability of the system.  Routers, gateways and firewalls may provide the first layer of 
defence and be implemented by Linux (or other) systems.  DNS, printing, mail and networked 
file system servers may be provided as the intermediate network infrastructure layer.  The 
application layer then provides services to the applications on each server.  
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For a safety related system, hazards arising from open networks must be identified and 
controlled.  Many safety related networked systems are electrically isolated from the outside 
world, or use dedicated links to outside equipment where interference from unauthorised 
persons and systems is not feasible.  In such systems, hazards from external interference 
simply cannot arise or are extremely implausible.  Increasingly, however, there are initiatives 
to connect safety related systems to the Internet and in such cases a suitable system 
architecture must be defined and analysed. 

Figure 2 below illustrates the division between infrastructure, services and application layer 
of network systems. 
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Figure 2  Typical network architecture for Linux systems 

7.4 DISTRIBUTED SYSTEM(S) 

Distributed systems may implement the safety related system as a suite of applications 
executed on a number of Linux servers.  Typically these servers would communicate over a 
network (see above).  Distributed systems need to manage the currency and timeliness of data 
passed between the computers involved. 
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Safety related distributed systems will require specific design elements to ensure the timely, 
error free and correct sequence delivery of data within the distributed system.  Linux, indeed 
any general-purpose operating system, does not provide such data delivery integrity functions 
as standard.  The role of the operating system in such safety related distributed systems is as a 
platform upon which the design elements could be based, together with the mitigations 
identified through safety analysis of the proposed safety related system. 

Many of the application examples given in section 7.8 below are networked, distributed 
systems. 

7.5 EMULATED (REPLACEMENT OR UPGRADED) SYSTEMS 

Many Linux distributions provide emulation for older operating systems to run under Linux, 
for example the operating system DOSEmu emulates the PC DOS operating system. 

When the original hardware platform for the safety related system becomes unreliable through 
the failing hardware, one possible solution might be to run the application (and its operating 
system) under Linux.  The benefit of this solution is that failure of the application under the 
emulator can be reported to the system supervisor using the Linux features.  At least one 
example of a safety related system using emulation in this way is known, running under a 
proprietary Unix.  

7.6 REAL TIME LINUX 

A number of suppliers offer so-called “real time Linux” systems.  These fall into two classes: 

i) systems where the standard Linux kernel is modified to provide behaviour more 
suitable for real time systems; and 

ii) systems where the Linux kernel and all its application processes run as the lowest 
priority process of another real time kernel. 

In the second case, the standard interrupt handling mechanism in the Linux kernel is modified 
to ensure that the underlying real time kernel can deal with interrupts properly.   

There are some disadvantages in using such systems for safety related applications, among 
which are the following: 

i) they are non-standard items and the amount of field service experience and other 
safety evidence available is likely to be substantially smaller than that of standard 
Linux distributions; and 

ii) in the second case, the real time kernel must be certified in addition to the Linux 
system itself. 

Like the embedded Linux variants, these real time Linux systems would not seem therefore to 
be suitable subjects for a certification project, although they may be of use in particular 
applications. 
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7.7 PLATFORMS 

Linux is available for a wide variety of platforms.  Originally developed for an Intel 80386 
based system, Linux has been ported an extensive series of platforms from embedded small-
resource system to large IBM mainframes.  

In terms of the number of installed systems the IBM PC Intel based architecture predominates 
and much greater field service experience is available for Linux on such systems. 

7.8 TYPICAL APPLICATIONS FOR WHICH LINUX MAY BE USEFUL 

The following is a list of some safety related application types, some of which are currently 
running on Unix systems, for which Linux might be proposed.   

i) ATC display systems (providing aircraft surveillance and flight plan data).  As a 
general rule, these provide SIL 2 functions. 

ii) railway control systems (provision of surveillance displays, automatic and manual 
route setting, control of individual devices, alarm handling, voice communication set-
up).  Railway control systems (as distinct from SIL 4 interlockings) are generally 
regarded as providing at most SIL 2 functions.  Linux is currently being considered as 
the platform for a future UK railway control system; 

iii) SCADA systems for railway electrification monitoring and control (SIL 1); and 

iv) process plant display and control systems for plants in the oil and gas, chemical and 
water supply industries, generally of SIL 1 and SIL 2. 

Note that none of these systems are embedded systems in the general sense of the word.  
Typical characteristics which these systems have in common are:  

i) relatively modest timing requirements (responses to inputs are required in a few 
hundred milliseconds to a few seconds, rather than in the order of 10 milliseconds); 

ii) the provision of high-resolution screen displays; and  

iii) the need for disc file support. 

Multi-screen colour displays supported either by a single or multiple graphics cards are also 
characteristic of these applications.  They are also typically networked, distributed systems. 

7.8.1 Case study of ATM system 

In practice, many Unix systems have been successfully used to provide safety related 
functions which have response time requirements of the order of 0.5s on modern high speed 
processors.   
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A case in point is a civil radar display system where each display console receives about 100 
radar track updates every second, and should update the corresponding objects on the screen 
with an ideal delay of no more than 250ms from receipt of the radar data from the network.  
This is not a hard real time safety requirement, however, as a longer delay of up to a second is 
acceptable on some occasions (perhaps due to user input requests) since each additional delay 
of 1s leads to a further discrepancy of around 0.1 nautical miles between the plotted position 
and true position of the aircraft, which is small by comparison with the standard horizontal 
separation of 5 nautical miles.  The system in question also monitors the system CPU load 
and disables some computationally intensive actions in high load situations.  Air traffic 
controllers using the system are also trained not to create input demands (such as repeated 
panning of the screen) which can result in consuming large amounts of processor time and 
causing the ATC situation display to lag behind reality to a dangerous degree. 

Provided that the CPU loading is not close to 100% on a routine basis there is no reason to 
doubt that Linux could be used for similar systems. 
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8 LINUX RELEASE AND CONFIGURATION MECHANISMS 

Linux Distributions are commonly packaged with a small amount of proprietary software.  
This proprietary software usually provides some added value to the user in the form a suite of 
applications to aid installation and system administration.   These system administration tools 
are particularly important if Linux is to reach out successfully to a large number of desktop-
based users, who typically will not be conversant with Linux and its command line utilities. 

A good example of such a utility is the tool provided by the Red Hat company originally 
intended for their distribution and now in common use by the wider Linux community known 
as Red Hat Package Management (RPM) tool. The RPM tool combines a file compression 
utility and database to allow the installation of a software package and establish a database of 
dependencies between the package and other packages. 

Linux distributions may be grouped as either horizontal or vertical.  A horizontal distribution 
takes a selection of applications, libraries and utilities from across the Linux community and 
presents them as a representative snapshot.  Examples of horizontal distributions are SuSe and 
Red Hat. A vertical distribution is a distribution that builds the entire selection of 
applications, libraries and utilities from scratch using the source code of the compiler as the 
starting point.  A vertical distribution is usually more limited in that only those applications, 
libraries and utilities, which are available as source code, are provided as part of the vertical 
distribution. 

The Linux kernel version is identified through a numbering system. Each kernel may be 
identified from the command-line via the command ‘uname –a’ which requests that the kernel 
version build data and version (along with other information) be displayed.  Numbers such as 
1.2 or 2.2 identify the major releases with a sub-numbering system to identify the minor 
releases (for example, 2.2.19).  If the last digit of the major release number is even, this 
identifies a general release which is considered to be stable enough for wider use.  Odd 
numbered digits in the second place (for example, 1.3, 2.1) are considered to be development 
releases and as such are relatively unstable and unsuitable for general release. 

Linux distributions continue to evolve.  The Linux kernel continues to be developed although 
the rate of addition of new features has begun to slow over the past two years. 
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9 STRUCTURE OF THE LINUX SYSTEM 

The Linux kernel is structured around a number of interfaces to the user and kernel services.  
The user is presented with an API that is embodied within user interfaces.  The simplest user 
interface takes the form of a character based command shell such as bash.  The bash shell is 
the re-implementation and improved version of the Unix Bourne Shell.  Graphical User 
Interfaces are provided through windows managers.  KDE is an example of a window 
manager provided with the SuSe Linux Distribution, and as noted in section 2 the X Windows 
system is available with Linux.   

The kernel has a number of abstract layers that represent the interfaces to system services.  
For example, IDE hard drives require a physical driver, which is then utilised by a filesystem 
interface and finally presented to the kernel through a virtual file system interface.  Other 
devices such as the interface to network cards are managed in the same way.  

Figure 3 is a much-simplified illustration of the Linux kernel. 

 

Figure 3  Simplified view of Linux system structure 
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The process management component is concerned with creating and switching user processes 
and with the management of internal kernel queues which are required to implement deferred 
operations, such as those which occur when the kernel has to wait for the completion of an 
I/O transfer or a timer expiry to fulfil a user service request. 

Care has been taken in the Linux kernel to use abstract interfaces for the sake of clarity and 
portability.  For example, there is a unified memory management model within the kernel 
which is used successfully to disguise the differences in memory management hardware 
between different processor architectures, such as Intel, Sparc and Compaq Alpha.  Similarly, 
the virtual filesystem concept allows a number of specific filesystems to coexist within one 
Linux system. 

The interface to the hardware is either by assembly code routines or assembly code embedded 
in C functions.   
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10   SOURCES OF EVIDENCE FOR SAFETY INTEGRITY 

This section addresses criterion C3 introduced in section 3 above, namely the safety integrity 
which can be claimed for Linux.  In SW01, three sources of evidence that software meets its 
safety requirement are recognised, namely: 

i) field service experience; 

ii) testing; and 

iii) analysis. 

As has been noted in section 3, specific safety requirements for an operating system cannot be 
derived, so the SW01 evidence requirements must be considered as requirements for evidence 
of integrity.  The following three sections consider each source of evidence in turn. 

It was hoped that the study would be able to obtain information from IBM on its use of Linux.  
Unfortunately, although IBM expressed a willingness to hold discussions on this matter, it 
was not possible to make suitable arrangements during the time period of the study, although 
a later project might be able to take advantage of cooperation with IBM.  The information that 
would have been sought from IBM would have been the following: 

i) arrangements for testing Linux on IBM platforms, including the extent and nature of 
the testing performed and an indication of the test results; 

ii) the specification of Linux behaviour used by IBM to drive the testing process, and in 
particular if any specification document has been created; 

iii) any inspections or other forms of analysis which IBM might have carried out on 
Linux; and 

iv) any statistics available within IBM for the reliability of installed Linux systems. 

10.1 FIELD SERVICE EXPERIENCE 

There are a very large number of Linux systems in service.  The Linux Counters project 
[Ref 28] is a collaborative project in which users register themselves with the project and their 
computers send usage statistics electronically.  The number of users registered with the 
Counters project is some 95,000 with 125,000 individual computers.  An estimate in [Ref 28] 
is that there may be 18 million users.  A more conservative estimate indicates that there may 
be 7 or 8 million Linux systems in current service.  

IBM, Sun Microsystems and other major hardware vendors offer Linux on their hardware.  
Many Internet Service Providers (ISPs) also use Linux, and a recent estimate gives Linux 
27% of the ISP server market.  Linux is also known to be used for the internal IT systems of 
some major organisations. 

An argument of widespread use could therefore be made to justify the use of Linux in a safety 
related application [Ref 30].  However, it is rather more difficult to obtain good evidence of 
the true reliability of Linux in a variety of applications.   
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The Linux Counters project records the maximum “up time” of registered computers, and 
[Ref 28] shows a figure of 712 days as the largest “up time” encountered, with an average up 
time of 35 days.  However, this “up time” figure is not a good estimate of MTBF for two 
reasons.  Firstly, the “up time” figures are computed using an internal Linux value which 
wraps round on Intel processors so that one year is the maximum that is usually recorded.  In 
addition, the reasons for “down time” are not recorded and many machines will be powered 
off for maintenance or kernel upgrades and the Linux systems on such machines will not have 
failed but will have been deliberately halted.  

Experience of using Linux available within CSE indicates an MTBF of better than 30,000 
hours and possibly approaching 50,000 hours.  

One ISP reports no failures in a Linux server over a 10 month period during which 
monitoring was carried out, whereas by comparison a Windows NT server running the same 
application software and workload demonstrated an MTBF of six weeks. 

The overall evidence of reliability from field service experience is therefore encouraging, but 
as a note of caution the following observations can be made: 

i) the acceptable failure rates for ISP servers and other commercial operations are 
generally much lower than even the than SIL 1 requirement in IEC 61508, which is 
for an MTBF of 100,000 hours or better; 

ii) reliability of the operating system has not traditionally been of great concern to 
hardware vendors, and 

iii) tests show that even in mature operating systems failures can still occur when rarely 
used features are exercised [Ref 31]. 

Since Linux has been used much more extensively on IBM PC architecture computers than on 
any others, the field service experience is largely with this architecture.  

10.1.1 Numeric reliability estimation 

There is good evidence from the change history of Linux releases [Ref 14] that reliability 
growth has occurred with Linux due to the large numbers of users reporting problems and the 
fact that problems where reported are generally fixed quickly (and the fixes do not seem to 
cause problems elsewhere).  The V2 series kernels are regarded generally as much more 
reliable than earlier V1 releases of the kernel.  
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The Adelard reliability prediction model in [Ref 30], which is based only upon the operating 
time to date and the number of errors remaining in the software under consideration, may give 
some indication of the expected reliability of Linux.  As with any such model, the problem is 
deciding how many errors exist without knowing where the errors are (if they were known 
then presumably they would be fixed).  The change records on the Linux HQ Web site 
[Ref 14] indicate that the various versions of the 2.4 kernel contain approximately 60 fixes for 
core operating system problems (this figure excludes corrections to a journalling filesystem, 
changes for new device drivers, or corrections to unusual device drivers).  This figure can be 
rounded up to 100 for ease of calculation and to account for latent defects.  On the 
assumptions that these defects existed in the Version 2.2 kernel and that this kernel was used 
for one year by 20,000 users on Intel (IBM PC) architecture computers, figures which are 
highly conservative, the Adelard reliability model predicts an MTBF well in excess of 1 
million hours for systems using “vanilla” hardware (see section 7).  Such a failure rate is in 
the SIL 2 range in IEC 61508. 

Although the above is a very approximate calculation, it does support other evidence given 
above that Linux is highly reliable, provided of course that application programs themselves 
do not make erroneous API calls.   

10.2 TESTING 

Testing an operating system, especially the kernel, is different from application testing for a 
number of reasons: 

i) there is no direct interaction with the user: problems have at least one level of 
indirection; 

ii) operating systems are extremely “stateful”, there being no “reset to known state” until 
reboot; 

iii) hardware-dependence and ambience-dependence of errors means that small physical 
differences may hide a problem temporarily; 

iv) high rate of changes; 

v) radically different usage patterns for different users, for example desktop compared to 
file server; and 

vi) automated testing tool support such as coverage analysis can be highly intrusive at the 
kernel level. 

All these factors make it difficult to find repeatable, single-problem test cases.  The 
alternative is to run an expected application workload against the kernel, with small variations 
(for example, different overload situations).  Together with the results of general stress-tests 
these workloads convey a general impression of the overall stability of the operating system.  
This is the approach taken by the CERN Linux user group [Ref 32] and would be suitable for 
an individual project which is testing new releases of Linux for a safety related application. 
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There are some specific Linux test initiatives, as described below. 

i) The Linux Test Project (LTP) [Ref 33], which is a consortium including major 
hardware vendors, delivers validation and robustness statements and verifies defect 
fixes through focus testing.  Tests include regression, sanity and stress tests, 
endurance and performance runs, network tests (including TCP/IP) and filesystem 
tests.  There are some 550 individual tests. Clearly, the work of the LTP provides 
some direct evidence that Linux has been subject to systematic testing and has passed 
the tests successfully.  The tests in the LTP suite could form the basis of a safety 
certification test suite. 

ii) The LSB team has also produced a suite to test against the LSB definition of Linux 
facilities.  This suite could also be used to augment the LTP tests, although the study 
has not determined the degree of duplication or the consistency of these two test 
suites.  

iii) The BALLISTA project at CMU has developed a robustness test suite for POSIX API 
calls, which has been used to check the robustness of Linux against calls with 
incorrect parameters or parameter values close to their extreme ranges.  The results of 
this test are given in [Ref 20].  A program entitled “crashme” has also been developed 
which generates random process numbers and determines how the operating system 
responds to them, and it is reported that Linux survives this test better than most 
proprietary Unix systems. 

One problem with the main LTP and LSB test suites is that they are not directly traceable to a 
specification of Linux behaviour, which would be desirable for a safety related certification 
project.  Another problem is that the testing carried out to date by the LTP and others 
generally is “black box” or requirements based rather than “white box” or structural testing.  
The extent of code coverage of the tests is therefore unknown. 

The Linux kernel has a diagnostic output facility used for debugging and for error reporting in 
case of a kernel panic (the Linux term for an error of inconsistency which causes the kernel to 
abort and dump memory).  It would therefore be feasible in principle to use this diagnostic 
output facility to carry out “dynamic analysis” of the Linux code.  The code could be 
instrumented using well known test tools such as LDRA TestBed or Logiscope, and 
appropriate test coverage measurements including statement and branch coverage could be 
collected.  Since the instrumentation would adversely affect performance, time critical 
sections of code such as interrupt handlers could not of course be instrumented.  Test 
coverage measurement is highly recommended for higher SILs in IEC 61508 and other 
standards and would be a useful technique for building confidence in the integrity of Linux.  
SW01 requires evidence of a “high degree of test coverage”.  

To summarise, a test suite for use in a Linux certification project could be generated relatively 
easily by: 

i) providing a written specification of Linux behaviour covering all the relevant SW01 
attributes; 

ii) reviewing and amalgamating existing test suites and supplementing them where 
required for untested areas and attributes; and 

iii) providing traceability of the tests to the specification. 
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It would be feasible to make test coverage measurements and extend the test suite to obtain a 
higher degree of test coverage where necessary.  Since instrumenting the code to obtain test 
coverage measurements could affect the behaviour of Linux, the tests should be repeated with 
both instrumented and non-instrumented code to ensure that the same results are obtained. 

It is important to note that the written specification of Linux would be created solely for the 
purpose of capturing the intended behaviour of the existing system, not to specify any 
different behaviour.  Any apparent defects would be communicated to the Linux maintainers 
for adjudication. 

10.3 ANALYSIS 

The term “analysis” in the software context means determining the properties of a software 
system, including behavioural properties, without actually executing it. 

Analysis covers a wide range of techniques including, but not limited to, the following: 

i) manual inspection of design and code for correctness and other qualities; 

ii) code complexity measurements; 

iii) checking conformance to coding standards for reliable software; 

iv) control and dataflow analysis (which aims to find anomalous code); 

v) semantic analysis (symbolic execution) which aims to state the behaviour of a 
software component by deriving expressions for the outputs in terms of the inputs; 

vi) exception detection, which aims to determine which parts of a program cannot, may 
or will raise run-time exceptions such as numeric overflow, divide by zero and illegal 
address conditions; 

vii) compliance analysis (formal proof of correctness against a specification); and 

viii) worst case execution time analysis of object code. 

The non-manual forms of analysis are often referred to a static analysis. 

During the study, samples of the source code of the Linux kernel were subject to a brief 
manual inspection, and complexity analysis was carried out on the complete source tree using 
a shareware tool.  Appendix C gives the output from the complexity analysis tool for the Intel 
version of the kernel (the complete results from the complexity analysis tool are available but 
are too bulky to include in this report).  The conclusion of these investigations is that the 
kernel code is reasonably well commented and laid out and is fairly low in structural 
complexity on average, although some individual routines show high complexity which 
would need to be investigated by means of manual inspection.  However, the code does not in 
any way conform to guidelines for C programming for safety related systems (such as the 
MISRA guidelines [Ref 34]).   
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Although some divergences from C coding rules are understandable, and others inevitable, in 
an operating system, most of them merely reflect the C style preferences of the originators for 
compactness over readability.  Since subtle errors can arise from a number of the C constructs 
used in the kernel and elsewhere, a coding standard analyser such as QA-C could be used to 
highlight difficult areas for manual examination. 

It is also clear that many of the more powerful forms of static analysis such as data flow 
analysis could not be attempted since existing tools such as MALPAS would not accept the 
Linux C code.  The PolySpace tool, which performs exception detection, should be able to 
analyse the code since the suppliers claim that it accepts any ANSI C code.   

It has been recommended in various places that Linux should be analysed for security defects, 
but the study was not able to find any evidence that this has been attempted.  Moreover, 
security defects may not imply safety defects. 

A project to certify Linux for safety related systems could therefore target manual inspection 
on: 

i) any areas of high complexity as shown by code metrics; 

ii) statements which do not conform to the MISRA C guidelines; 

iii) code which may raise exceptions as shown by the PolySpace analyser; and 

iv) hazard analysis, for example focusing on ill defined areas of behaviour or device 
drivers which might damage user space. 

Inspection as described above would give further confidence that Linux is suitable for safety 
related applications.  Inspection is highly recommended for SIL 3. 
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11   METHODOLOGY FOR LINUX CERTIFICATION 

This section considers how Linux could be certified for use with safety related applications, in 
the event that this is perceived to be desirable by the project sponsors.  A certification 
exercise would be most useful if it is expected that Linux would be used for SIL 3 
applications.  Even for lower integrity applications, certification would provide application 
developers and regulators with additional confidence in the integrity of Linux. 

Since Linux runs on many platforms and is rapidly evolving, it would be desirable to have a 
repeatable certification process which could be used by regulators and others on new 
platforms and new releases.   

Any certification materials and results should be made freely available in keeping with the 
open source philosophy. 

Based on the material from previous sections, the certification project would in outline 
proceed as follows: 

i) creation of a single specification of expected operating system behaviour, in as formal 
a notation as reasonably practicable given that a wide audience is expected.  The 
specification should address all the SW01 behavioural attributes and would be 
intended to systematise and clarify existing definitions of Linux behaviour.  It would 
be based on existing definitions such as POSIX with extensions where necessary; 

ii) creation of a set of consolidated tests traceable to the specification; 

iii) initial running of the test set to validate it and make corrections where necessary; 

iv) inspection and analysis of the code as described in section 10; and 

v) running of the test set with code instrumented to collect coverage measurements, and 
extension of the tests as required to increase coverage to the maximum extent which 
is reasonably practicable.  As noted previously, the final test set should be run on both 
instrumented and non-instrumented versions of the code and the results compared. 

The output of the initial certification project would be as follows: 

i) a certification manual or handbook describing the process and materials used; 

ii) the operating system specification document; 

iii) the test suite; 

iv) test results and test summary reports; 

v) analysis and inspection reports, including recommendations for code changes where 
defects have been discovered; and 

vi) a certification report identifying the hardware and software configuration being 
subjected to certification and summarising the conclusions of the certification 
exercise. 
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An important part of the certification report would be a list of known defects and anomalies to 
inform users of the system what should be avoided in use.  If apparent software errors are 
found, these should also be listed in the report and made known to the Linux developers. 

Clearly the first certification project would be the most costly since the certification process 
would have to be defined and the supporting materials produced.  In addition, the analysis 
part of the certification would be largely one-off because, following initial certification, it 
would subsequently only be necessary to subject new or changed code to analysis. 

Incremental certification of subsequent operating system releases could be achieved by 
analysing the changes and repeating inspections and tests of the changed features, together 
with overall validation testing. 

New device drivers could be certified without a complete re-certification of the complete 
operating system. 

The first certification exercise should be conducted on a platform which is likely to be widely 
used, such as an Intel Pentium based processor with standard peripherals such as serial and 
parallel interfaces, Ethernet LAN cards, two hard discs, CD-ROM, floppy disc and a graphics 
card capable of supporting more than one display screen.  This configuration is suggested 
since, as argued in section 7, many proposed applications of Linux would be likely to use 
such a configuration. 

The Linux components to be included in the initial certification project would be as follows: 

i) the kernel in its monolithic variant; 

ii) at least one disc based file system; and 

iii) device drivers (including network support) for the hardware devices in the initial 
certification platform. 

The “bash” command line interpreter should also be included but this could be omitted from 
the initial certification project if cost savings are desired. 

11.1 EFFORT ESTIMATES 

A very rough estimate of the effort required to carry out the initial certification project as 
proposed above is some six to eight person-years, not including the effort needed to test and 
analyse “bash”.   

Testing and analysis activities could largely be carried out in parallel. 

A team of around four or five engineers could be deployed, giving a project timescale of 18 
months to two years. 

11.2 CERTIFICATION OF OTHER OPERATING SYSTEMS 

The process outlined above could be used to certify any operating system.  It must be 
recognised however that differences would be inevitable with other operating systems.  Some 
obvious differences might be as follows: 
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i) another operating system may have a detailed specification already in existence, so 
that creation of a specification may not be necessary; 

ii) another operating system may have a GUI as an integral part of the system, so that 
this would in practice have to be included in the certification process; and 

iii) if the source code of the operating system is not publicly available, manual 
inspection, and collection of test coverage measurements by instrumenting the code, 
would not be feasible without the co-operation of the operating system supplier. 

Testing of a GUI could be a complex and time consuming task, which has been avoided in the 
plan for Linux given above since a GUI is built on top of Linux as an application and is not 
integral to the operating system.  This should be borne in mind if any certification project is 
planned. 
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12   CONCLUSIONS 

On the basis of evidence from widespread use, some numeric reliability data, observed 
reliability growth, the existence of test projects and the limited analysis carried out by this 
study, it is concluded that “vanilla” Linux would be broadly acceptable for use in safety 
related applications of SIL 1 and SIL 2 integrity.  This statement must of course be qualified 
by stating that the hardware must be of suitable integrity and that the application requirements 
were matched by the facilities of Linux. 

It may also be feasible to certify Linux for use in SIL 3 applications by the provision of some 
further evidence from testing and analysis.  Certification in this way would also increase 
confidence in the use of Linux in appropriate SIL 1 and 2 applications. 

It is unlikely that Linux would be useful for SIL 4 applications and it would not be reasonably 
practicable to provide evidence that it meets a SIL 4 integrity requirement.  

Any safety justification for using Linux in a given application should include evidence that an 
analysis has been carried out to show that Linux is suitable for that application, and that 
suitable mitigation is in place for any hazards arising from operating system failure.  The 
framework given in section 6 would form a good basis for such an analysis. 

It would be useful to provide a single definition of the behaviour of Linux which is as precise 
as reasonably practicable.  Such a specification would facilitate hazard analysis, form a 
traceable basis for a certification test suite, and act as a baseline for the specification of the 
behaviour of modified versions of Linux including specialised device drivers and kernel 
scheduling modifications. 



 48

 

 

 



 49 

13    RECOMMENDATIONS 

On the basis of the conclusions above, it is recommended that the project sponsors should 
consider the funding of a project to certify Linux to SIL 3 using the approach described in 
section 11 of this report. 

It is also recommended that HSE and other regulators should look favourably on the use of 
Linux in SIL 1 and SIL 2 applications which are offered for safety approval, provided that 
appropriate safety cases are submitted covering all the issues raised in this report, for example 
criteria C1 and C2 and the issues of hazard analysis and derived requirements covered in 
section 6. 
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A1 KERNEL SYSTEM CALLS 

When a user process invokes a system call, the CPU switches to Kernel Mode and starts the 
execution of a kernel function.  For example, on an Intel x86 architecture the system call is 
invoked by executing the “int $0x80” assembly language instruction, with a system call 
number in the eax register, and other parameters in the remaining registers.  These other 
parameters may include addresses of memory blocks, which allows passing of data and 
further parameters.  The v2.4 kernel contains just over 200 system calls; the i386 assembly 
language structure defining them is given in section A3 (the sys_ni_syscall entries are 
dummy entries for system calls that are not implemented). 

Application programs rarely invoke system calls directly.  Programming languages with low-
level interfaces will typically provide “wrapper” functions, which appear to the programmer 
as normal functions in the language and which in turn invoke the system call. 

In addition to (or in some cases instead of) the system call wrappers, a programming language 
will usually provide functions that relate to typical programming tasks, and which are 
implemented using one or many system calls.  So, for example, a C function  

int open(const char *path, int oflag, ...) 

which opens a file for reading, writing, or both, may need to execute system calls to 
determine whether the file exists, to determine whether the application program is permitted 
the requested access, to make the file available to the application program, and so on.  This is 
the level of specification of the POSIX standard, and is the level considered in this report.  
The POSIX standard defines functions using the C programming language, but equivalents 
are likely to be available in most, if not all, programming languages available for Linux.  For 
example, in Ada the equivalent to the C open function is the standard Ada95 Sequential_IO 
library procedure  

Open(File : in out File_Type; Mode : in File_Mode;  
     Name : in String; Form : in String := "").   

Some calls at the POSIX API level are serviced without the use of any system calls. 
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A2 THE POSIX API 

Linux has claimed POSIX compliance since version 2.2.  To some extent this is dependent on 
the C libraries supplied with the kernel.  These libraries are typically those from the GNU gcc 
compiler.  Compliance with the POSIX standard provides a degree of portability of 
applications between platforms. 

The POSIX API specifies language specific services for the C programming language.  These 
are not discussed in this report, as any services that relate to the kernel are likely to be 
supported by services that are not specific to the C language. 

The POSIX API also specifies data interchange formats and message queue management 
routines, which are outside the scope of the kernel. 

A2.1 INTERRUPT HANDLING 

The Linux operating system handling of interrupts is platform dependent.  On an i386 
platform IRQ lines 0, 2 and 13 are dedicated to the timer, the slave 8259A PIC and the 
mathematics coprocessor respectively.  The other IRQs can be allocated dynamically; when a 
device driver requires an interrupt it issues a request_irq() call, and issues a 
free_irq() call when it no longer requires the IRQ.  Other interrupts are handled by 
redirecting via an interrupt table which is initialised at start-up and which may be 
subsequently changed (for example, if a driver is dynamically loaded). 

A2.2 PRIMARY MEMORY MANAGEMENT (ALLOCATION AND PROTECTION) 

The primary memory management takes place internally to the kernel, and is transparent to 
the user. 

A2.3 VIRTUAL MEMORY SERVICES INCLUDING SWAPPING AND PAGING 

The kernel assigns a virtual address space to each process, and manages the mapping of that 
address space to primary and secondary memory in a way that is generally transparent to the 
application.  The application has some limited control over this, described in Table A1  
Virtual memory management services.  See also mmap, described under Peripheral device 
handling. 

Table A1  Virtual memory management services 

mlock   Disable swapping of a portion of a process’s address space.  The POSIX 
standard specifies an implementation-optional restriction on the 
addresses that can be locked, but Linux 2.4 does not impose this 
restriction. 

mlockall Disable and enable swapping of a process’s memory space.  This can 
optionally lock all future memory allocated by the process.  If this 
eventually causes the locked memory to exceed the available memory 
then the behaviour is implementation defined.  At Linux v2.4, if this is 
due to a system call then the call will fail with the result ENOMEM; if it is 
due to growing stack then the stack growth will be denied and a 
SIGSEGV signal will be raised. 
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mprotect Change the access protection for a portion of the address space. 

msync Write any modified data in a portion of memory to the permanent 
storage associated with that memory, if any. 

munlock Enable swapping of a portion of a process’s memory space, however 
many times it has been locked. 

munlockall Enable swapping of a processes memory space. 
 

A2.4 PROGRAM LOADING 

At startup, the kernel executes the program sbin/init, which is centrally configured via 
the etc/inittab file.  This will typically start a login program.  The login program will 
examine the password file to determine the default command shell for the user, and execute 
that shell as a user process.  The shell will typically execute its own startup script, which may 
be used to automatically start an application program, or the user can start application 
programs from the shell command line.  The shell starts the application programs using the 
process creation and scheduling facilities described below. 

A2.5 PROCESS CREATION AND SCHEDULING 

Process creation follows the usual Unix model, shown in Table A2 Process creation and 
execution. 

Table A2  Process creation and execution 

exec family The exec family of functions replaces one process with another.  For 
example: 

int execl(const char *path, const char *arg, ...) 

replaces the current process with the executable program pointed to by 
path, with the arguments arg.  On success, the exec family of functions do 
not return (because the calling process no longer exists).  On failure they 
return -1. 

fork Create a new process that is an exact copy of the calling process, with a 
new (unique) process ID.  On success, the function returns 0 to the 
original process, and the new process ID to the new process.  On failure, -
1 is returned.  A call to fork is typically followed by a conditional call to 
one of the exec family to replace one of the processes with a different 
process. 

 
There is a family of functions available for determining the status of processes, shown in 
Table A3 Process status.  Terminated processes are retained in the process list (as “zombie” 
processes) until one of these functions is called.  Linux has a permanent background task 
interrogating the status of orphaned processes, which allows them to be removed from the 
task list. 
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Table A3  Process status 

wait family Return the status of child processes, for example: 

pid_t waitpid(pid_t pid, int *stat_loc, int options) 

returns (in stat_loc) the status of one or more child processes, depending on 
the pid and the options. 

Table A4  Threads 

nanosleep Suspend execution of a thread for a specified 
time interval (or until the sleep is interrupted by 
an appropriate signal). 

pause Suspend thread indefinitely, pending a signal.  

pthread_atfork Register fork handlers for execution before and 
after a fork. 

pthread_attr_destroy Destroy the thread attributes object, possibly by 
setting it to an invalid value. 

pthread_attr_getdetachedstate Get the thread detached state defined in a thread 
attribute object.  If a thread is detached it is an 
error to use the thread ID and its storage can be 
reclaimed when it terminates. 

pthread_attr_getinheritsched Get the schedule inheritance policy, which 
determines whether a thread inherits its 
scheduling policy from the creating thread or 
whether it uses a fixed policy. 

pthread_attr_getschedparam Get the schedparam attribute of a 
pthread_attr_t argument.  The only 
standardised member of the result, and the only 
member defined under Linux 2.4, is the 
scheduling priority. 

pthread_attr_getschedpolicy Get individual attributes of the pthread 
scheduling policy. 

pthread_attr_getscope Get the pthread contention scope. 

pthread_attr_getstacksize Get the minimum stacksize for a thread. 

pthread_attr_init Initialise a thread attributes object to 
implementation-defined default values. 

pthread_attr_setdetachedstate Set the thread detached state defined in a thread 
attribute object.  If a thread is detached it is an 
error to use the thread ID and its storage can be 
reclaimed when it terminates. 

pthread_attr_setinheritsched Set the schedule inheritance policy, which 
determines whether a thread inherits its 
scheduling policy from the creating thread or 
whether it uses a fixed policy. 
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pthread_attr_setschedparam Set the schedparam attribute of a 
pthread_attr_t argument.  The only 
standardised member of the result, and the only 
member defined under Linux 2.4, is the 
scheduling priority. 

pthread_attr_setschedpolicy Set individual attributes of the pthread 
scheduling policy. 

pthread_attr_setscope Set the pthread contention scope. 

pthread_attr_setstacksize Set the minimum stacksize for a thread. 

pthread_cancel Request that a thread be cancelled. 

pthread_create Create a new thread. 

pthread_detach Detach a thread. 

pthread_equal Compare the IDs of two pthreads for equality. 

pthread_exit Terminate the calling thread. 

pthread_getschedparam Get the scheduling policy and parameters of an 
individual thread. 

pthread_getspecific Get the content of a thread-specific data block. 

pthread_getstackaddr Set the address of the stack for a thread. 

pthread_join Suspend the calling thread until the target thread 
terminates. 

pthread_key_create Create a thread-specific data block.  The key 
(returned as a parameter) used to access the data 
block will be available to all threads of a 
process, but the values associated with the key 
will be thread specific. 

pthread_key_delete Delete a thread-specific data block. 

pthread_mutex_getpriorityceiling Get the mutex priority ceiling. 

pthread_mutex_setpriorityceiling Set the mutex priority ceiling. 

pthread_mutexattr family Manipulate mutex attribute objects.  This allows 
the priority of a thread to me modified according 
to the priority of threads waiting on the mutex.   

pthread_once The first call within a thread calls a specified 
function.  Subsequent calls within the thread do 
not call the function. 

pthread_self Return the thread ID of the calling thread. 

pthread_setcancelstate Set the cancelability state of the calling thread. 

pthread_setcanceltype Set the cancelability type of the calling thread. 

pthread_setschedparam Set the scheduling policy and parameters of an 
individual thread. 

pthread_setspecific Set the content of a thread-specific data block. 

pthread_setstackaddr Set the address of the stack for a thread. 

pthread_testcancel Set a cancellation point in the calling thread. 

sleep Suspend thread for a specific period of time  
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Table A5  Scheduling 

_exit Terminate the calling process. 

sched_get_priority_max  Get the maximum priority available under a 
scheduling policy. 

sched_get_priority_min Get the minimum priority available under a 
scheduling policy. 

sched_getparam  Get the scheduling parameters of a process. 

sched_getscheduler  Get the scheduling policy of a process. 

sched_rr_get_interval  Get the current execution time limit for a process. 

sched_setparam Set the scheduling parameters of a process. 

sched_setscheduler Set the scheduling policy and parameters of a process. 

sched_yield  Force the running thread to relinquish the processor 
until it again becomes head of the thread list. 

 
A number of scheduling operations are described under Signals in Inter-process 
communication. 

A2.6 SECONDARY STORAGE MANAGEMENT 

The Linux kernel can manage a variety of different file systems simultaneously.  The kernel 
API provides a Virtual File System (VFS) to make the differences in file system transparent 
to application programs.  The VFS provides functionality intended both for application 
programs and for the interfaces to the actual file systems. 

A Linux file can be one of the following types: 

i) Regular file; 

ii) Directory; 

iii) Symbolic Link; 

iv) Block-oriented device file; 

v) Character-oriented device file; 

vi) Pipe and named pipe; and 

vii) Socket. 

Types iv) and v) are means of peripheral device management, and are managed by device 
drivers.  Types vi) and vii) are means of interprocess communication, and are discussed under 
that heading. 
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The VFS uses inode structures in a similar way to Unix.  The inode is a structure defining a 
file (except for the filename which is stored in the directory entry).  The VFS also uses 
Directory Entry (dentry) structure, an in-core structure defining a file's details: inode, parent 
dentry and so on. 

See also mmap under Peripheral device handling. 

Table A6  Directory operations 

chdir Change the current working directory. 

closedir  Close the directory stream. 

getcwd  Get the current working directory. 

mkdir  Create a new directory. 

opendir  Open a directory stream, initialised to the first file in the directory.   

readdir family Return a pointer to the current directory entry and advances to the next 
entry.  It returns NULL if there are no more entries.   

rewinddir  Reset the position to the first entry.   

rmdir  Removes a link to a directory and decrements its reference count.  
When the reference count reaches zero the space occupied by the 
directory is freed for reuse. 

 

Table A7  File operations 

access  Identifies whether a particular file is accessible in a particular mode, 
optionally for a particular set of permissions. 

chmod family Change the file permissions. 

chown  Changes the owner and group of a file. 

close Deallocates the file descriptor, making the file no longer available to 
the process through that descriptor. 

creat  Create a new file (possibly overwriting an existing one); it is 
equivalent to open(path, O_WRONLY | O_CREAT | 
O_TRUNC, mode). 

dup family Duplicate open file descriptors.  They provide an alternative interface 
to the fcntl function. 

fcntl  Provide a variety of interrogation and control functions for open files. 

fsync family Synchronise the internal representation of the state of a file with the 
representation on the storage medium. 

ftruncate  Truncate a file to a specified length. 

link  Create a hard link to an existing file. 

lseek  Reposition the read/write file offset. 
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open  Make a file available for reading, writing or both. 

pathconf 
family 

Determines the value of a configurable limit or option associated with 
a file or directory.  The POSIX standard identifies 12 such variables. 

read  Attempt to read a number of bytes from a file into a buffer. 

rename  Change the name of a file. 

stat family Return the status of a file. 

umask  Set the file mode creation mask of the calling process, which has the 
effect of limiting the file permissions of the process. 

unlink  Remove a link to a file and decrements the files reference count.  
When the reference count reaches zero the space occupied by the file 
is freed for reuse. 

utime  Set the access and modification times of a file. 

write  Attempt to write a number of bytes from a buffer to a file. 
 

Table A8  Asynchronous file operations 

aio_cancel Attempt to cancel an asynchronous I/O operation. 

aio_error Interrogate the error status of a queued asynchronous file operation. 

aio_fsync Request an fsync operation and return immediately, whether or not 
the fsync operation has completed. 

aio_read Request a read operation and return immediately, whether or not the 
read operation has completed. 

aio_return Interrogate the return status of a queued asynchronous file operation. 

aio_suspend Suspend the calling thread until at least one of a list of asynchronous 
I/O operations completes. 

aio_write Request a write operation and return immediately, whether or not the 
write operation has completed. 

lio_listio Request a list of I/O operations with a single function call. 
 

A2.7 INTER-PROCESS COMMUNICATION 

A2.7.1 Signals 

Signals are messages that can be sent to processes.  Each process has a default response to 
each possible signal, which can be overridden.  POSIX defines 20 signals. 
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Table A9  Signals 

alarm Generate a signal at a particular time. 

kill Send a message to a process, requesting that the process 
terminate. 

pthread_kill Send a message to a thread, requesting that the thread terminate. 

pthread_sigmask Examine and change blocked threads. 

sigaction Examines or specifies the response to signals. 

sigpending Examine pending signals. 

sigprocmask Examine and change blocked processes. 

sigqueue Queue a signal to a process. 

sigsetops family Manipulate sets of signals. 

sigsuspend Wait for a signal. 

sigwait family Synchronously accept signals. 
 
A2.7.2 Pipes 

A pipe is a pseudo-file that can be used to pass data between applications.  A pipe is created 
with the function: 

int pipe(int fildes[2]) 

The function inserts file descriptors into fildes[0] and fildes[1].  Data can be written to 
fildes[1] and read from fildes[0] on a first-in, first-out basis, using normal file operations. 

A2.7.3 Named Pipes 

Named pipes, or FIFOs, are pseudo-files, which can be written to and read from by any 
process.  They are always written to at the end and read from at the beginning, so they work 
as First-In, First-Out queues. 

FIFOs are created with the mkfifo function.  Once created, they can be manipulated using 
the file open, read, write and close functions. 

A2.7.4 Semaphores 

Semaphores are counters associated with data blocks or resources.  Semaphores can be shared 
between processes, and so communicate the availability of a data block or resource. 

Table A10  Semaphores 

sem_close Close a named semaphore. 

sem_destroy Destroy an unnamed semaphore. 

sem_getvalue Get the value of a semaphore. 
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sem_init Initialise an unnamed semaphore. 

sem_open Initialise/open a named semaphore. 

sem_post Unlock a semaphore. 

sem_trywait Lock semaphore.  If the semaphore is already locked, sem_trywait does 
not block. 

sem_unlink Remove a named semaphore. 

sem_wait Lock semaphore.  If the semaphore is already locked, sem_wait blocks 
until it is unlocked or the call is interrupted by a signal. 

 

A2.7.5 Mutexes 

A mutex provides a thread with exclusive access to a resource. 

Table A11  Mutexes 

pthread_mutex_lock Lock a mutex.  If the mutex is already locked, this 
blocks until it becomes available. 

pthread_mutex_trylock Lock a mutex.  If the mutex is already locked, return 
failure. 

pthread_mutex_unlock Unlock a mutex. 

pthread_mutexattr_destroy  Destroy a mutex attributes object. 

pthread_mutexattr_getpshared Get the behaviour of mutexes shared between 
processes. 

pthread_mutexattr_init  Initialise a mutex attributes object with a set of default 
values. 

pthread_mutexattr_setpshared  Set the behaviour of mutexes shared between 
processes. 

 

A2.7.6 Conditions 

Conditions (short for condition variables) are a synchronisation mechanism that allows 
threads to suspend execution until some predicate on shared data is satisfied.  Conditions 
should be associated with mutexes, to avoid race conditions. 

The Linux threads implementation, as at v2.4, does not support attributes on conditions.  The 
relevant POSIX functions are implemented for POSIX compliance only and have no effect. 
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Table A12  Conditions 

pthread_cond_destroy Destroy a condition. 

pthread_cond_init Create a condition. 

pthread_cond_timedwait  Block on a condition with timeout. 

 pthread_cond_timedwait  Raise an error if a specified time passes in the wait condition. 

pthread_cond_wait  Block on a condition. 
 

A2.7.7 Memory maps 

A memory map is a mapping between a part of a process’s address space and a memory 
object.  This can optionally be shared between processes, and so allows a means of 
communication.  It can also map a file to memory. 

Table A13  Memory maps 

mmap Establish a memory map. 

munmap Removes a mapping. 

shm_open Associate a shared memory object and a file descriptor that can 
be used to access that shared memory object. 

shm_unlink Remove a shared memory object. 
 

A2.8 PROVISION OF FILESTORE 

The Linux kernel manages a virtual filestore described under Secondary Storage 
Management.  Actual filestores are managed by device drivers external to the kernel. 

A2.9 PERIPHERAL DEVICE HANDLING 

Most peripheral device handling is done by means of device drivers that are added to the 
kernel.  These drivers are beyond the scope of this report. 

A2.9.1 Terminal interface 

The terminal interface is supported on any asynchronous communications ports provided by 
the implementation.  It is implementation defined whether it is supported for network 
connections or synchronous ports. 

Terminal input can operate in one of two modes: canonical and non-canonical.  Essentially, 
canonical mode is line-oriented and non-canonical is character oriented. This also affects the 
blocking behaviour of read operations. 

For most purposes, a terminal interface appears to application software as a file, but it has 
some extra functions. 
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Table A14  Terminal interfaces 

cfspeed family Set and read the Baud rate of the terminal. 

tcsetattr Set the attributes in a termios structure based on the 
attributes associated with an open file descriptor. 

tcgetattr Get the attributes in a termios structure based on the 
attributes associated with an open file descriptor. 

tcsendbreak Cause transmission of a continuous stream of zero-
valued bits for a period of time defined by a parameter. 

tcdrain Wait until all output associated with a terminal has 
been written. 

tcflush Discard all data received but not read, all data written 
but not sent, or both. 

tcflow Suspend or restart input or output flow on a terminal 
device. 

tcsetgrp Set the foreground process group ID. 

tcgetgrp Get the foreground process group ID. 
 

A2.9.2 Sockets 

Sockets are handled as a special type of character-oriented file device.  They do not have 
inodes, and so are accessed through their own set of system calls.  Sockets are identified but 
not specified by POSIX. 

Table A15  Sockets 

socket Create a socket. 

bind Associate a socket with an address. 

listen Set the maximum number of incoming requests that will be 
queued before requests are denied. 

accept Accept a connection on a socket. 

connect Try to connect to a listening socket. 
 

Once a connection is established, the normal file read, write and close functions are 
used to manage it. 

A2.9.3 Memory maps 

Memory maps, described under Peripheral Device Handling, can be used to interface with 
memory-mapped devices. 
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A2.10 OPERATOR AND USER INTERFACE HANDLING (character or graphical) 

The operator and user interface handling is done either as a terminal interface as described 
under Peripheral Device Handling, or through device drivers supplemental to the kernel. 

A2.11 NETWORK COMMUNICATIONS AND DISTRIBUTED FACILITIES 

Network communications and distributed facilities is done either as a terminal interface as 
described under Peripheral Device Handling, or through device drivers supplemental to the 
kernel. 

A2.12 ACCESS CONTROL 

Table 16  Access control 

getegid Get the effective group ID. 

geteuid Get the effective user ID. 

getgid Get the group ID. 

getgroups Get supplementary group IDs. 

getlogin family  Get the user name. 

getpgrp  Get the process group ID. 

getuid Get the user ID. 

setgid Set the group ID. 

setpgid  Set the process group ID for job control. 

setsid  Create a session and sets the process group ID. 

setuid Set the user ID. 
 

A2.13 ENVIRONMENT 

The POSIX API makes available an array of strings, called “environ” (short for 
“environment”: 

extern char **environ; 

The use of these strings is generally application dependent, but there are standard entries 
defined to identify such things as standard file locations and internationalisation options.  
Specific entries in the environment can be retrieved using the getenv function. 

The POSIX standard also specifies the presence of 36 constants in limits.h, which 
identify the most restrictive maximum and minimum values of standard types, and identifies a 
further 23 optional values and 16 specified by the C standard. 

The POSIX standard specifies 24 compile-time and 6 execution-time symbolic constants that 
specify the system capabilities. 



 68

Table A17  Environment operations 

ctermid Identify the current controlling terminal for the current 
process. 

getgrgid Return a pointer to the gid group structure. 

getgrnam Return a pointer to the name group structure. 

getpw family Return information from the password table relating to a 
particular user ID or name.  This information does not 
include the password itself. 

sysconf Get the current value of a configurable system limit or 
option.  The POSIX standard identifies 52 such variables. 

time Get the system time in seconds since 1970-01-01 
00:00:00+00. 

times Return time accounting information for the session. 

ttyname Identify the terminal associated with a particular file 
designator. 

uname Get the system name. 
 

A2.14 CLOCKS AND TIMERS 

Table A18  Clocks and timers 

clock_settime Set the time of a specified clock. 

clock_gettime Get the time of a specified clock. 

clock_getres Get the resolution of a specified clock. 

timer_create Create a per-process timers. 

timer_delete Delete a per-process timers. 

timer_settime Set the time until the next expiration of a timer. 

timer_gettime Get the time until the next expiration of a timer. 

timer_getoverrun When a timer expires it sends a signal to the process.  Only 
one such signal can be pending for a process from each timer 
at any time.  This function returns the number of subsequent 
expirations.  This function is optional in POSIX, and not 
included in the “info” Linux documentation with Linux 2.4, 
but is defined in the C headers supplied with the SuSE 7.1 
Linux 2.4 distribution. 
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A3 LIST OF SYSTEM CALLS 

ENTRY(sys_call_table) 

 .long SYMBOL_NAME(sys_ni_syscall) /* 0-old "setup()" system call*/ 

 .long SYMBOL_NAME(sys_exit) 

 .long SYMBOL_NAME(sys_fork) 

 .long SYMBOL_NAME(sys_read) 

 .long SYMBOL_NAME(sys_write) 

 .long SYMBOL_NAME(sys_open) /* 5 */ 

 .long SYMBOL_NAME(sys_close) 

 .long SYMBOL_NAME(sys_waitpid) 

 .long SYMBOL_NAME(sys_creat) 

 .long SYMBOL_NAME(sys_link) 

 .long SYMBOL_NAME(sys_unlink) /* 10 */ 

 .long SYMBOL_NAME(sys_execve) 

 .long SYMBOL_NAME(sys_chdir) 

 .long SYMBOL_NAME(sys_time) 

 .long SYMBOL_NAME(sys_mknod) 

 .long SYMBOL_NAME(sys_chmod) /* 15 */ 

 .long SYMBOL_NAME(sys_lchown16) 

 .long SYMBOL_NAME(sys_ni_syscall) /* old break syscall holder */ 

 .long SYMBOL_NAME(sys_stat) 

 .long SYMBOL_NAME(sys_lseek) 

 .long SYMBOL_NAME(sys_getpid) /* 20 */ 

 .long SYMBOL_NAME(sys_mount) 

 .long SYMBOL_NAME(sys_oldumount) 

 .long SYMBOL_NAME(sys_setuid16) 

 .long SYMBOL_NAME(sys_getuid16) 

 .long SYMBOL_NAME(sys_stime) /* 25 */ 

 .long SYMBOL_NAME(sys_ptrace) 

 .long SYMBOL_NAME(sys_alarm) 

 .long SYMBOL_NAME(sys_fstat) 

 .long SYMBOL_NAME(sys_pause) 

 .long SYMBOL_NAME(sys_utime) /* 30 */ 

 .long SYMBOL_NAME(sys_ni_syscall) /* old stty syscall holder */ 

 .long SYMBOL_NAME(sys_ni_syscall) /* old gtty syscall holder */ 

 .long SYMBOL_NAME(sys_access) 

 .long SYMBOL_NAME(sys_nice) 

 .long SYMBOL_NAME(sys_ni_syscall) /* 35 */  

 .long SYMBOL_NAME(sys_sync) 

 .long SYMBOL_NAME(sys_kill) 

 .long SYMBOL_NAME(sys_rename) 

 .long SYMBOL_NAME(sys_mkdir) 

 .long SYMBOL_NAME(sys_rmdir) /* 40 */ 

 .long SYMBOL_NAME(sys_dup) 

 .long SYMBOL_NAME(sys_pipe) 

 .long SYMBOL_NAME(sys_times) 

 .long SYMBOL_NAME(sys_ni_syscall) /* old prof syscall holder */ 

 .long SYMBOL_NAME(sys_brk) /* 45 */ 

 .long SYMBOL_NAME(sys_setgid16) 
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 .long SYMBOL_NAME(sys_getgid16) 

 .long SYMBOL_NAME(sys_signal) 

 .long SYMBOL_NAME(sys_geteuid16) 

 .long SYMBOL_NAME(sys_getegid16) /* 50 */ 

 .long SYMBOL_NAME(sys_acct) 

 .long SYMBOL_NAME(sys_umount) /* recycled never used phys() */ 

 .long SYMBOL_NAME(sys_ni_syscall) /* old lock syscall holder */ 

 .long SYMBOL_NAME(sys_ioctl) 

 .long SYMBOL_NAME(sys_fcntl) /* 55 */ 

 .long SYMBOL_NAME(sys_ni_syscall) /* old mpx syscall holder */ 

 .long SYMBOL_NAME(sys_setpgid) 

 .long SYMBOL_NAME(sys_ni_syscall) /* old ulimit syscall holder */ 

 .long SYMBOL_NAME(sys_olduname) 

 .long SYMBOL_NAME(sys_umask) /* 60 */ 

 .long SYMBOL_NAME(sys_chroot) 

 .long SYMBOL_NAME(sys_ustat) 

 .long SYMBOL_NAME(sys_dup2) 

 .long SYMBOL_NAME(sys_getppid) 

 .long SYMBOL_NAME(sys_getpgrp) /* 65 */ 

 .long SYMBOL_NAME(sys_setsid) 

 .long SYMBOL_NAME(sys_sigaction) 

 .long SYMBOL_NAME(sys_sgetmask) 

 .long SYMBOL_NAME(sys_ssetmask) 

 .long SYMBOL_NAME(sys_setreuid16) /* 70 */ 

 .long SYMBOL_NAME(sys_setregid16) 

 .long SYMBOL_NAME(sys_sigsuspend) 

 .long SYMBOL_NAME(sys_sigpending) 

 .long SYMBOL_NAME(sys_sethostname) 

 .long SYMBOL_NAME(sys_setrlimit) /* 75 */ 

 .long SYMBOL_NAME(sys_old_getrlimit) 

 .long SYMBOL_NAME(sys_getrusage) 

 .long SYMBOL_NAME(sys_gettimeofday) 

 .long SYMBOL_NAME(sys_settimeofday) 

 .long SYMBOL_NAME(sys_getgroups16) /* 80 */ 

 .long SYMBOL_NAME(sys_setgroups16) 

 .long SYMBOL_NAME(old_select) 

 .long SYMBOL_NAME(sys_symlink) 

 .long SYMBOL_NAME(sys_lstat) 

 .long SYMBOL_NAME(sys_readlink) /* 85 */ 

 .long SYMBOL_NAME(sys_uselib) 

 .long SYMBOL_NAME(sys_swapon) 

 .long SYMBOL_NAME(sys_reboot) 

 .long SYMBOL_NAME(old_readdir) 

 .long SYMBOL_NAME(old_mmap) /* 90 */ 

 .long SYMBOL_NAME(sys_munmap) 

 .long SYMBOL_NAME(sys_truncate) 

 .long SYMBOL_NAME(sys_ftruncate) 

 .long SYMBOL_NAME(sys_fchmod) 

 .long SYMBOL_NAME(sys_fchown16) /* 95 */ 

 .long SYMBOL_NAME(sys_getpriority) 
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 .long SYMBOL_NAME(sys_setpriority) 

 .long SYMBOL_NAME(sys_ni_syscall) /* old profil syscall holder */ 

 .long SYMBOL_NAME(sys_statfs) 

 .long SYMBOL_NAME(sys_fstatfs) /* 100 */ 

 .long SYMBOL_NAME(sys_ioperm) 

 .long SYMBOL_NAME(sys_socketcall) 

 .long SYMBOL_NAME(sys_syslog) 

 .long SYMBOL_NAME(sys_setitimer) 

 .long SYMBOL_NAME(sys_getitimer) /* 105 */ 

 .long SYMBOL_NAME(sys_newstat) 

 .long SYMBOL_NAME(sys_newlstat) 

 .long SYMBOL_NAME(sys_newfstat) 

 .long SYMBOL_NAME(sys_uname) 

 .long SYMBOL_NAME(sys_iopl) /* 110 */ 

 .long SYMBOL_NAME(sys_vhangup) 

 .long SYMBOL_NAME(sys_ni_syscall) /* old "idle" system call */ 

 .long SYMBOL_NAME(sys_vm86old) 

 .long SYMBOL_NAME(sys_wait4) 

 .long SYMBOL_NAME(sys_swapoff) /* 115 */ 

 .long SYMBOL_NAME(sys_sysinfo) 

 .long SYMBOL_NAME(sys_ipc) 

 .long SYMBOL_NAME(sys_fsync) 

 .long SYMBOL_NAME(sys_sigreturn) 

 .long SYMBOL_NAME(sys_clone) /* 120 */ 

 .long SYMBOL_NAME(sys_setdomainname) 

 .long SYMBOL_NAME(sys_newuname) 

 .long SYMBOL_NAME(sys_modify_ldt) 

 .long SYMBOL_NAME(sys_adjtimex) 

 .long SYMBOL_NAME(sys_mprotect) /* 125 */ 

 .long SYMBOL_NAME(sys_sigprocmask) 

 .long SYMBOL_NAME(sys_create_module) 

 .long SYMBOL_NAME(sys_init_module) 

 .long SYMBOL_NAME(sys_delete_module) 

 .long SYMBOL_NAME(sys_get_kernel_syms) /* 130 */ 

 .long SYMBOL_NAME(sys_quotactl) 

 .long SYMBOL_NAME(sys_getpgid) 

 .long SYMBOL_NAME(sys_fchdir) 

 .long SYMBOL_NAME(sys_bdflush) 

 .long SYMBOL_NAME(sys_sysfs) /* 135 */ 

 .long SYMBOL_NAME(sys_personality) 

 .long SYMBOL_NAME(sys_ni_syscall) /* for afs_syscall */ 

 .long SYMBOL_NAME(sys_setfsuid16) 

 .long SYMBOL_NAME(sys_setfsgid16) 

 .long SYMBOL_NAME(sys_llseek) /* 140 */ 

 .long SYMBOL_NAME(sys_getdents) 

 .long SYMBOL_NAME(sys_select) 

 .long SYMBOL_NAME(sys_flock) 

 .long SYMBOL_NAME(sys_msync) 

 .long SYMBOL_NAME(sys_readv) /* 145 */ 

 .long SYMBOL_NAME(sys_writev) 
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 .long SYMBOL_NAME(sys_getsid) 

 .long SYMBOL_NAME(sys_fdatasync) 

 .long SYMBOL_NAME(sys_sysctl) 

 .long SYMBOL_NAME(sys_mlock) /* 150 */ 

 .long SYMBOL_NAME(sys_munlock) 

 .long SYMBOL_NAME(sys_mlockall) 

 .long SYMBOL_NAME(sys_munlockall) 

 .long SYMBOL_NAME(sys_sched_setparam) 

 .long SYMBOL_NAME(sys_sched_getparam) /* 155 */ 

 .long SYMBOL_NAME(sys_sched_setscheduler)  

 .long SYMBOL_NAME(sys_sched_getscheduler)  

 .long SYMBOL_NAME(sys_sched_yield) 

 .long SYMBOL_NAME(sys_sched_get_priority_max) 

 .long SYMBOL_NAME(sys_sched_get_priority_min) /* 160 */ 

 .long SYMBOL_NAME(sys_sched_rr_get_interval) 

 .long SYMBOL_NAME(sys_nanosleep) 

 .long SYMBOL_NAME(sys_mremap) 

 .long SYMBOL_NAME(sys_setresuid16) 

 .long SYMBOL_NAME(sys_getresuid16) /* 165 */ 

 .long SYMBOL_NAME(sys_vm86) 

 .long SYMBOL_NAME(sys_query_module) 

 .long SYMBOL_NAME(sys_poll) 

 .long SYMBOL_NAME(sys_nfsservctl) 

 .long SYMBOL_NAME(sys_setresgid16) /* 170 */ 

 .long SYMBOL_NAME(sys_getresgid16) 

 .long SYMBOL_NAME(sys_prctl) 

 .long SYMBOL_NAME(sys_rt_sigreturn) 

 .long SYMBOL_NAME(sys_rt_sigaction) 

 .long SYMBOL_NAME(sys_rt_sigprocmask) /* 175 */ 

 .long SYMBOL_NAME(sys_rt_sigpending) 

 .long SYMBOL_NAME(sys_rt_sigtimedwait) 

 .long SYMBOL_NAME(sys_rt_sigqueueinfo) 

 .long SYMBOL_NAME(sys_rt_sigsuspend) 

 .long SYMBOL_NAME(sys_pread) /* 180 */ 

 .long SYMBOL_NAME(sys_pwrite) 

 .long SYMBOL_NAME(sys_chown16) 

 .long SYMBOL_NAME(sys_getcwd) 

 .long SYMBOL_NAME(sys_capget) 

 .long SYMBOL_NAME(sys_capset) /* 185 */ 

 .long SYMBOL_NAME(sys_sigaltstack) 

 .long SYMBOL_NAME(sys_sendfile) 

 .long SYMBOL_NAME(sys_ni_syscall) /* streams1 */ 

 .long SYMBOL_NAME(sys_ni_syscall) /* streams2 */ 

 .long SYMBOL_NAME(sys_vfork) /* 190 */ 

 .long SYMBOL_NAME(sys_getrlimit) 

 .long SYMBOL_NAME(sys_mmap2) 

 .long SYMBOL_NAME(sys_truncate64) 

 .long SYMBOL_NAME(sys_ftruncate64) 

 .long SYMBOL_NAME(sys_stat64) /* 195 */ 

 .long SYMBOL_NAME(sys_lstat64) 
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 .long SYMBOL_NAME(sys_fstat64) 

 .long SYMBOL_NAME(sys_lchown) 

 .long SYMBOL_NAME(sys_getuid) 

 .long SYMBOL_NAME(sys_getgid) /* 200 */ 

 .long SYMBOL_NAME(sys_geteuid) 

 .long SYMBOL_NAME(sys_getegid) 

 .long SYMBOL_NAME(sys_setreuid) 

 .long SYMBOL_NAME(sys_setregid) 

 .long SYMBOL_NAME(sys_getgroups) /* 205 */ 

 .long SYMBOL_NAME(sys_setgroups) 

 .long SYMBOL_NAME(sys_fchown) 

 .long SYMBOL_NAME(sys_setresuid) 

 .long SYMBOL_NAME(sys_getresuid) 

 .long SYMBOL_NAME(sys_setresgid) /* 210 */ 

 .long SYMBOL_NAME(sys_getresgid) 

 .long SYMBOL_NAME(sys_chown) 

 .long SYMBOL_NAME(sys_setuid) 

 .long SYMBOL_NAME(sys_setgid) 

 .long SYMBOL_NAME(sys_setfsuid) /* 215 */ 

 .long SYMBOL_NAME(sys_setfsgid) 

 .long SYMBOL_NAME(sys_pivot_root) 

 .long SYMBOL_NAME(sys_mincore) 

 .long SYMBOL_NAME(sys_madvise) 

 .long SYMBOL_NAME(sys_getdents64) /* 220 */ 

 .long SYMBOL_NAME(sys_fcntl64) 

 .long SYMBOL_NAME(sys_ni_syscall) /* reserved for TUX */ 
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APPENDIX B 

MAPPING OF THE OPERATING SYSTEM SERVICE MODEL TO 
LINUX SYSTEM CALLS 
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This appendix provides a mapping between the classification of operating system services 
given in section 6 of the main report to the Linux V2.4 API as presented in Appendix A. Note 
that threads cannot be regarded as a partitioning mechanism, but can be seen as providing 
support for scheduling and intra-partition communication.  

Linux: data loading:  

Linux systems are started (after booting) by executing the sbin/init script. 

Linux: initialisation:  

Process creation system calls including attribute calls.  Also included under this heading are 
initialisation and set up calls for threads and their attributes, semaphores and other resources.  

Calls are:  

fork bind 
sem_init sched_setparam 
sem_open sched_setscheduler 
timer_create set gid 
cfspeed family setpgid 
tcsettar setsid 
tcsetgrp Setuid 
socket  
 

pthread_atfork pthread_attr_setscope 
pthread_attr_init pthread_attr_setstacksize 
pthread_attr_setdetachedstate pthread_create 
pthread_mutexattr_init pthread_setcancelstate 
pthread_attr_setinheritsched pthread_setspecific 
pthread_attr_setschedparam pthread_setcanceltype 
pthread_setschedparam pthread_setstackaddr 
pthread_mutexattr_setpshared pthread_keycreate 
pthread_attr_setschedpolicy pthread_mutex_setpriorityceiling 

Linux: timing watchdog:  

Clocks and timers in Linux are relatively Spartan, as described elsewhere in this report.  
However, the following provision exists. 

clock_settime timer_delete 
clock_gettime timer_settime 
clock_getres timer_gettime 
timer_create timer_getoverrun 

Linux: partitioning:  

There are no specific Linux calls which deal with partitions, since the concept is not 
recognised.  Process initialisation and user/group identifier facilities may be used to support 
partitioning as described in the main body of the report.  
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Linux: intra-partition communication:  

Since Linux does not recognise the partition concept there are no specific facilities to support 
intra-partition communication.  Since all threads share one address space, intra-partition 
communication can simply be achieved by use of memory addresses, but to provide 
appropriate synchronisation between threads and avoid race conditions, thread 
communication facilities in the form of mutex and condition variable operations would fall 
into this classification.   

Calls are: 

pthread_mutex_lock pthread_mutex_unlock 
pthread_mutex_trylock pthread_mutexattr_getpshared  

I/O facilities may also be used for intra-partition communication but this would be unusual. 

Calls are: 

read aio_read 
write aio_write 

Linux: inter-partition communication:  

This is a specific version of inter-process communication.  A number of mechanisms are 
possible, as noted elsewhere. 

Calls are:  

signals  
alarm sigprocmask 
kill sigqueue 
pthread_kill sigstop family 
pthread_sigmask sigsuspend 
sigaction sigwait family 
sigpending  

 
pipes sem_trywait 
named pipes sem_wait) 
semaphores mmap 
sem_getvalue shm_open 
sem_post  

sockets (listen, accept, connect, read, write, close) 

Linux: scheduling:  

Scheduling includes explicit scheduling calls and thread scheduling (mutexes and condition 
variables) which can also be viewed as intra-partition communication facilities.  
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Calls are:  

exec family sleep 
wait family select 

 

nanosleep sched_getschedule 
pause sched_rr_get_interval 
pthread_attr_getinheritedsched sched_yield 
pthread_attr_getschedparam pthread_mutex_setpriorityceiling 
pthread_getschedparam pthread_mutex_getpriorityceiling 
sched_getparam pthread_getspecific, pthread_once 
pthread_attr_getschedpolicy pthread_self, pthread_mutexattr family 
pthread_attr_getscope pthread_attr_getdetachedpolicy 
pthread_attr_getstacksize pthread_attr_getdetached 
pthread_getstackaddr sched_get_priority_max 
pthread_join sched_get_priority_min 
pthread_testcancel mutexes 

See also inter-process communications. 

Linux: processing: 

This category relates to the calls to the underlying processing hardware.  Failure of processing 
implies a complete failure of the O/S. 

Linux: BIT and Health monitoring:  

Linux provides little in the way of these facilities. 

Possible calls in this category are: 

pthread_attr_getdetachedstate aio_error 

Linux: Close-down:  

exit  
pthread_attr_destroy sem_destroy 
pthread_key_delete pthread_mutexattr_destroy 
pthread_detach sem_unlink 
pthread_exit munmap 
sem_close shm_unlink 

Linux: Memory management and data storage:  

These services comprise virtual memory management services, file (including device) and 
directory operations. 
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Calls are: 

mlock msync 
mlockall munlock 
mprotect munlockall 

 

chdir opendir 
closedir readdir family 
getcwd rewinddir 
mkdir rmdir 

File operations  

access open 
chmod family pathconf family 
chown read 
close rename 
create dup family stat family 
fcntl umask 
fsync family unlink 
ftruncate utime 
link write 
lseek  

Terminal interface  

tcgetattr tcsendbreak 
tcdrain tcflush 
tcflow tcgetgrp 

Asynchronous file operations 

aio_cancel aio_fsync 
aio_return aio_suspend 
aio_listio  

Access control  

getgid geteuid 
getgid getgroups 
getlogin family getpgrp 
getuid  

Linux: configuration management:  

There are no specific configuration management facilities provided by Linux. 

Calls not placeable in the services model.  

A number of calls do not fit well into the above classification. They are: ctermid, getgrgid, 
getgrnam, getpw family, sysconf, time, times, ttyname, uname. 
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APPENDIX C 

LINUX KERNEL SIZE AND COMPLEXITY METRICS 
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The following table gives results from the C-Metrics tool when run against the Linux kernel 
components.  The metrics do not include those for software items from the following source 
directories: 

i) all architectures other than i386; 

ii) the i386 boot directory; 

iii) the i386 lib directory; 

iv) the i386 maths emulation routines; 

v) the drivers directory; 

vi) the fs (file system) directory; 

vii) the init directory (concerned with getting the kernel started); 

viii) the lib directory; 

ix) the net library containing network services, which have the same status as device 
drivers; and 

x) the scripts directory. 

The columns in the table are mostly self-explanatory.  The columns labelled with “CC” refer 
to the McCabe’s cyclomatic complexity metric V(G).  This is the most frequently used metric 
for assessing software complexity, and essentially measures the number of decision points in 
a procedure or function.  A value of 20 or less is often regarded as indicating acceptable 
complexity.  Each branch of a “case” statement will add 1 to the cyclomatic complexity value 
so that very high values can be sometimes be reported for software which is in fact quite 
simple in structure.  The reason why some modules show a high maximum cyclomatic 
complexity has not been investigated by the study.  

The software tool used to collect these measurements ignores C pre-processor directives and 
assembly language inserts, so the results are indicative only. 

The following table gives results from the C-Metrics tool when run against the Linux kernel 
components. The metrics do not include those for software items from the following source 
directories: 

i) all architectures other than i386; 

ii) the i386 boot directory; 

iii) the i386 lib directory; 

iv) the i386 maths emulation routines; 

v) the drivers directory; 

vi) the fs (file system) directory; 
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vii) the init directory (concerned with getting the kernel started);  

viii) the lib directory; 

ix) the net library containing network services, which have the same status as device 
drivers; and 

x) the scripts directory. 

The columns in the table are mostly self-explanatory.  The columns labelled with “CC” refer 
to the McCabe’s cyclomatic complexity metric V(G).  This is the most frequently used metric 
for assessing software complexity, and essentially measures the number of decision points in 
a procedure or function.  A value of 20 or less is often regarded as indicating acceptable 
complexity.  Each branch of a “case” statement will add 1 to the cyclomatic complexity value 
so that very high values can be sometimes be reported for software which is in fact quite 
simple in structure.  The reason why some modules show a high maximum cyclomatic 
complexity has not been investigated by the study.  

The software tool used to collect these measurements ignores C pre-processor directives and 
assembly language inserts, so the results are indicative only. 
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File name Lines Effect. E% Comment C% Blank B% Func. avg CC min CC max CC class struct
vm86.c       677 450 66 85 12 84 12 22 4 1 17 0 1
visws_apic.c  410 186 45 122 29 64 15 12 2 1 11 0 4
traps.c       1035 604 58 224 21 136 13 38 2 1 10 0 1
time.c       706 281 39 295 41 110 15 10 4 1 10 0 1
sys_i386.c    256 165 64 29 11 36 14 9 4 1 20 0 2
smpboot.c     1024 454 44 353 34 160 15 17 5 1 26 0 0
smp.c         542 172 31 254 46 68 12 21 2 1 9 0 2
signal.c      715 463 64 81 11 111 15 14 7 1 40 0 2
setup.c       2539 1414 55 611 24 364 14 35 8 1 40 0 11
semaphore.c   243 73 30 87 35 67 27 4 2 1 4 0 0
ptrace.c      470 321 68 73 15 45 9 6 16 1 67 0 0
process.c    775 359 46 244 31 118 15 27 2 1 12 0 1
pci-visws.c   141 83 58 8 5 23 16 12 1 1 4 0 2
pci-pc.c      1089 666 61 155 14 158 14 43 3 1 16 0 8
pci-irq.c    750 413 55 146 19 83 11 32 4 1 27 0 3
pci-i386.c    384 159 41 159 41 31 8 9 5 1 12 0 0
pci-dma.c     37 19 51 8 21 5 13 2 2 1 4 0 0
mtrr.c       2277 1095 48 739 32 232 10 40 8 1 43 0 8
msr.c        273 141 51 35 12 68 24 14 2 1 5 0 2
mpparse.c    651 391 60 119 18 77 11 15 6 1 26 0 0
microcode.c   374 219 58 69 18 52 13 8 5 1 16 0 3
mca.c        980 371 37 332 33 211 21 22 5 1 12 0 3
ldt.c         148 102 68 18 12 17 11 3 9 4 19 0 0
irq.c         1183 556 46 385 32 154 13 32 4 1 12 0 1
ioport.c      116 58 50 35 30 12 10 3 5 4 7 0 0
io_apic.c     1623 848 52 380 23 234 14 50 4 1 29 0 4
init_task.c  34 15 44 14 41 5 14 0 0 0 0 0 1
i8259.c       506 239 47 186 36 73 14 12 2 1 5 0 3
i387.c        522 307 58 54 10 70 13 35 2 1 10 0 0
i386_ksyms.c 167 137 82 5 2 25 14 0 0 0 0 0 0
dmi_scan.c    467 256 54 89 19 55 11 15 3 1 10 0 4
cpuid.c       165 88 53 32 19 29 17 8 2 1 4 0 2
bluesmoke.c   241 122 50 46 19 42 17 9 3 1 10 0 0
apm.c         1791 1033 57 424 23 173 9 42 6 1 30 0 5
apic.c        792 312 39 318 40 114 14 20 3 1 11 0 0

 



 

 

GLOSSARY 

ATC Air Traffic Control 
API Application Programming Interface 
BIT Built In Test 
COTS Commercial Off the Shelf 
CPU Central Processing Unit 
CSE CSE International Ltd 
DRACAS Defect Reporting, Analysis and Corrective Action System 
EMC Electromagnetic Compatibility 
EMI Electromagnetic Interference 
FFA Functional Failure Analysis 
GID Group Identifier 
GNU Symbol of the Free Software Foundation 
HRT Hard Real Time 
HSE UK Health and Safety Executive 
ICMP Internet Control Message Protocol 
IMA Integrated Modular Avionics 
I/O Input/Output 
IP Internet Protocol 
IPC Inter-Process Communication 
ISP Internet Service Provider 
LDP Linux Documentation Project 
LTP Linux Test Project 
LSB Linux Standard Base 
MoD United Kingdom Ministry of Defence 
MTBF Mean Time Between Failures 
PC Personal Computer 
RAM Random Access Memory 
SCADA System Control and Data Acquisition 
SIL Safety Integrity Level 
SMART Self-Monitoring Analysis and Reporting Technology 
SNMP Simple Network Management Protocol 
SRG Safety Regulation Group (UK Civil Aviation Authority) 
TCP Transmission Control Protocol 
UDP User Datagram Protocol 
UID User Identifier 
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