
Dumping gcov data at runtime - a simple example

Der Herr Hofrat
OpenTech EDV Research GmbH, Austria
< der.herr@hofr.at >

Revision History

Revision 0.1 2011-07-27

First release

Table of Contents

1. Introduction
2. Preparatory work

2.1. Check for a possible version mismatch
2.2. Get rid of annoying warnings

3. Example hello.c
3.1. Compiling, linking and running the example application
3.2. Dumping and analyzing the coverage data
3.3. Conclusion
3.4. Example code

4. Listing

1. Introduction
The gnu code coverage tool gcov is generally used to dump the coverage data when the program exits - for
some embedded systems or for server processes you need a means to dump coverage data of particular
situations, i.e. when a client connects. To achieve this, one might need to dump the coverage data
triggered by a runtime condition in the code or by an external signal. In this HOWTO, we briefly describe
how to kick gcov at runtime. It seems that this is not quite the intended use and maybe the gcov maintainer
would consider making gcov_flush available in a more direct way for such use cases. Nevertheless, it is
not really that wild a business to get access to the data in a clean way - which we demonstrate here based
on a trivial infinite loop example. What this is good for is to get the coverage data of a specific portion of
the code at execution time, for debugging purposes, for analysis (test coverage) or to optimize for a
particular case by feeding the relevant part back to the compiler with -fbranch-probabilities .

This example was running on a stock Debian squeeze 6.0.2 with the default toolchain.

2. Preparatory work

2.1. Check for a possible version mismatch

In a first step, make sure that you will be using the proper libgcov that fits your compiler - check with gcc
--version if unsure.

hofrat@debian:~/gcov$ gcc --version
gcc (Debian 4.3.2-1.1) 4.3.2
Copyright (C) 2008 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

hofrat@debian:~/gcov$ ls /usr/lib/gcc/x86_64-linux-gnu/4.3/libgcov.a
/usr/lib/gcc/x86_64-linux-gnu/4.3/libgcov.a

2.2. Get rid of annoying warnings

Note that even if you link with -lgcov, gcc will fuss at you about:

hello.c: In function ’my_handler’:
hello.c:17: warning: implicit declaration of function ’__gcov_flush’

To get around this, check the prototype of __gcov_flush in the gcc sources in gcc/gcov-io.h and add a
proper declaration to your source file.

3. Example hello.c

3.1. Compiling, linking and running the example application

The -fprofile-arcs is the flag to instrument the code, basically adding a 64-bit counter in each basic-block,
-ftest-coverage tells gcc to dump the notes file for each source file as SOURCE.gcno. For details check
man 1 gcov.

hofrat@debian:~/gcov$ gcc -Wall -fprofile-arcs -ftest-coverage hello.c -o hello

hofrat@debian:~/gcov$ ls
hello hello.c hello.gcno

The process is started as background process so that we can examplify how to inspect it using our signal
handler and gcov at runtime.

hofrat@debian:~/gcov$./hello &
[1] 5164

3.2. Dumping and analyzing the coverage data

Sending the SIGUSR1 signal to the hello process dumps the gcov data, and we can generate the coverage
with gcov using the intermediate data. The runtime data are dumped into hello.gcda (hello.gcno was
generated during compilation - for details see the gcov man page).

hofrat@debian:~/gcov$ killall -USR1 hello
received signal
2514147346

Use gcov for analysis:

hofrat@debian:~/gcov$ gcov hello
File ’hello.c’
Lines executed:100.00% of 14
hello.c:creating ’hello.c.gcov’

hofrat@debian:~/gcov$ tail hello.c.gcov
 1: 34: new_action.sa_flags = 0;
 -: 35:
 1: 36: sigaction(SIGUSR1, NULL, &old_action);
 1: 37: if (old_action.sa_handler != SIG_IGN)
 1: 38: sigaction (SIGUSR1, &new_action, NULL);
 -: 39:
 -: 40: /* infinite loop - to exemplify dumping coverage data while program runs */
2514147346: 41: for(n = 0; ; n++)
5028294692: 42: i++;
 -: 43:}

As only the runtime loop is of interest in this trivial example we simply use tail on the generated
hello.c.gcov file to show that the runtime data is updated. Note that there is of course no strict
synchronization, and the runtime data in this case roughly reflect the state of affairs at the time the signal
was received.

The next sequence is just a repetition showing that the data at runtime can be updated effectively without
terminating the process. Note though that reading the counters in this state is in no way synchronized, so
be careful with interpretation of the data.

hofrat@debian:~/gcov$ killall -USR1 hello
received signal
186275468151

hofrat@debian:~/gcov$ gcov hello
File ’hello.c’
Lines executed:100.00% of 15
hello.c:creating ’hello.c.gcov’

hofrat@debian:~/gcov$ tail hello.c.gcov
 1: 34: new_action.sa_flags = 0;
 -: 35:
 1: 36: sigaction(SIGUSR1, NULL, &old_action);
 1: 37: if (old_action.sa_handler != SIG_IGN)
 1: 38: sigaction (SIGUSR1, &new_action, NULL);
 -: 39:
 -: 40: /* infinite loop - to exemplify dumping coverage data while program runs */
186275468151: 41: for(n = 0; ; n++)
372550936302: 42: i++;
 -: 43:}

3.3. Conclusion

So now you can query the gcov data at runtime with a simple SIGUSR1 signal and then convert it with
gcov or lcov as you like. No need to invent anything new. Code example below. This might not be the
most elegant solution but I guess it should solve the problem of not wanting to wait until the end of the
program to inspect coverage as well as getting specific coverage data for a code section of interest. You of
course could also dump the coverage data from your program by simply calling __gcov_flush(); if some
condition occurs.

3.4. Example code

The wild and daring code example is as found below - note that the __gcov_flush() function is not
documented in a man page or the like - if you want to know details, download the gcc sources and check
the files in gcc/gcov_*.c for details.

The symbol __gcov_flush is available as a global symbol in libgcov.a as can be seen by inspection with
nm:

hofrat@debian:~/gcov$ nm --print-armap libgcov.a | grep gcov_flush
__gcov_flush in _gcov.o
00000000000013c0 T __gcov_flush
...

This might not be the most elegant way to do it - but it seems like this problem is not really described
anywhere - at least I did not find a description of this solution in a reasonable time. It also may well be gcc
version dependent so you might need to adjust the actual routine to be called in the signal handler
depending on the gcc version in use.

4. Listing
/* dumping gcov data at runtime - note: no error handling to keep it simple */
/* Compile: gcc -Wall -fprofile-arcs -ftest-coverage hello.c -o hello
 * Run: ./hello &
 * kill -s SIGUSR1 ‘pidof hello‘
 *
 * Author: Der Herr Hofr.at
 * Copyright: OpenTech EDV Research GmbH 2011
 * License: GPL V2
 */
#include <stdio.h>

#include <signal.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>

static unsigned long long i = 0;
void __gcov_flush(void); /* check in gcc sources gcc/gcov-io.h for the prototype */

void my_handler(int signum)
{
 printf("received signal\n");
 printf("%llu\n", i);
 __gcov_flush(); /* dump coverage data on receiving SIGUSR1 */
}

int main(int argc, char **argv)
{
 struct sigaction new_action, old_action;
 int n;

 /* setup signal hander */
 new_action.sa_handler = my_handler;
 sigemptyset(&new_action.sa_mask);
 new_action.sa_flags = 0;

 sigaction(SIGUSR1, NULL, &old_action);
 if (old_action.sa_handler != SIG_IGN)
 sigaction (SIGUSR1, &new_action, NULL);

 /* infinite loop - to exemplify dumping coverage data while program runs */
 for(n = 0; ; n++)
 i++;
}

	
	 Dumping gcov data at runtime - a simple example
	Der Herr Hofrat

	1. Introduction
	2. Preparatory work
	2.1. Check for a possible version mismatch
	2.2. Get rid of annoying warnings

	3. Example hello.c
	3.1. Compiling, linking and running the example application
	3.2. Dumping and analyzing the coverage data
	3.3. Conclusion
	3.4. Example code

	4. Listing

