
Enable real-time capabilities of the mainline kernel

Carsten Emde
< C.Emde@osadl.org >

Revision History

Revision 0.1 2006-12-07

First release

Revision 0.2 2006-12-13

CONFIG_DEBUG_PREEMPT must be set to obtain /proc/latency_trace

Revision 0.3 2006-12-26

Omitted to initialize /proc/sys/kernel/preeempt_max_latency

Revision 0.4 2007-03-19

Added paragraph on Ubuntu, thanks to Alessio Igor Bogani

Revision 0.5 2007-04-25

Removed .config settings, provided menuconfig description, added latency histogram

Revision 0.6 2007-05-10

Introduced latency fighting

Revision 0.7 2007-05-31

Added latency trace example

Revision 0.8 2007-10-09

Adapted to the download directory at kernel.org, removed dead links to Fedora prebuilt kernels

Revision 0.9 2008-08-29

Adapted to 2.6.24.7-rt17, added a section on ketchup, added debug fs, mentioned stress tools

Revision 0.10 2008-12-10

Adapted to 2.6.24.7-rt23, updated kernel CONFIGs

Revision 0.11 2009-11-07

Adapted to 2.6.31.5-rt17, updated kernel CONFIGs, dirs and files

Table of Contents

1. Introduction
2. Installation

2.1. Ubuntu Feisty (7.04)
2.2. Other 2.6 systems

3. Testing and using the realtime-preempt patch
3.1. Built-in tools
3.2. External testing tool
3.3. Latency fighting

1. Introduction
In August 2006, a large part of the realtime-preempt kernel patch that is maintained by Ingo Molnar,
Thmomas Gleixner and Steven Rostedt was merged into the mainline kernel and is now immediately
available. A number of functions, however, still is only available, if the realtime-preempt patch is applied.
It is planned to merge the vast majority of these functions into the mainline kernel before the end of 2008.

In addition to the traditional installation method that requires download, patch and recompilation of the
kernel, an apt repository is now provided that greatly facilitates the installation of the realtime-preempt
patch. This mechanism, however, is currently only available when the Ubuntu Feisty distribution is used.
It is expected that Redhat Enterprise Linux and Fedora will contain prepatched realtime-preempt kernels
in the near future.

This HOWTO explains how to install, configure, test and use the realtime- preempt kernel patch in
Ubuntu Feisty (7.04) and other 2.6 systems.

2. Installation

2.1. Ubuntu Feisty (7.04)

Add, as root, to your /etc/apt/sources.list (remember to do a backup of this file) the following line:

deb http://www.texware.it/ubuntu feisty/

Then execute:

wget -q http://www.texware.it/ubuntu/feisty/BBA3222D.gpg -O- | sudo apt-key add -
sudo apt-get update
sudo apt-get install linux-realtime

The provided packages include realtime-enabled kernels as well as the cyclictest utility (see below).

Thanks to Alessio Igor Bogani for making these kernels available. Additional information is given here.

https://wiki.ubuntu.com/RealTime

2.2. Other 2.6 systems

2.2.1. Download and patch the kernel manually

Download the mainstream kernel sources and the corresponding realtime-preempt patch, for example
linux-2.6.31.5 and patch-2.6.31.5-rt17:

cd /usr/src/kernels
wget http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.31.5.tar.bz2
wget http://www.kernel.org/pub/linux/kernel/projects/rt/patch-2.6.31.5-rt17.bz2

Unpack the kernel:

tar -jxvf linux-2.6.31.5.tar.bz2

Rename the kernel directory:

mv linux-2.6.31.5 linux-2.6.31.5-rt17

Apply the patch:

bunzip2 patch-2.6.31.5-rt17.bz2
cd linux-2.6.31.5-rt17
patch -p1 <../patch-2.6.31.5-rt17

2.2.2. Download and patch the kernel using ketchup

Alternatively, you can let ketchup do the above work for you automatically:

cd /usr/src/kernels
mkdir tmp
cd tmp
ketchup -r -G 2.6.31.5-rt17

Matt Mackall’s and Steven Rostedt’s ketchup is available at
http://people.redhat.com/srostedt/rt/tools/ketchup-0.9.8-rt3. To install it, type

wget -O /usr/local/bin/ketchup http://people.redhat.com/srostedt/rt/tools/ketchup-0.9.8-rt3
chmod +x /usr/local/bin/ketchup

2.2.3. Configure and build the kernel

After the patched kernel is available on your system, copy the configuration file as provided by your
distribution to the file .config:

cp /boot/config-‘uname -r‘ .config

Invoke the text based kernel configuration menu:

http://people.redhat.com/srostedt/rt/tools/ketchup-0.9.8-rt3

make menuconfig

The preemption model is selected along with the processor type and features:

Processor type and features --->
 Preemption Mode (Complete Preemption (Real-Time)) --->

Debug, trace and diagnostic tools are part of the "kernel hacking" settings, for example:

Kernel hacking --->
 [*] Tracers --->
 --- Tracers
 [*] Kernel Function Tracer
 [*] Interrupts-off Latency Tracer
 [*] Interrupts-off Latency Histogram
 [*] Preemption-off Latency Traver
 [*] Preemption-off Latency Histogram
 [*] Scheduling Latency Tracer
 [*] Scheduling Latency Histogram
 [*] Missed timer offsets histogram

These settings, however, are only useful during development and evaluation. Some of them are better
disabled when the system goes into production. The scheduling latency and the missed timer offsets
histograms, however, only slightly interfere with the system and may, thus, be used to continuously
register the wakeup latency under production conditions. In any case, make sure that stack overflow
checking is disabled, since this may produce additional latencies when enabled:

Kernel hacking --->
 [] Check for stack overflows

The new kernel is then compiled, linked and installed as usual.

make
make modules_install install

When the system is rebooted, the newly provided kernel becomes part of the boot menu and can be
selected.

Should you happen to be the proud owner of a multi-core processor, be sure to specify the -j <jobs>
option of make where <jobs> is twice the number of cores your processor has, as this will speed up
kernel compilation considerably.

3. Testing and using the realtime-preempt patch

3.1. Built-in tools

The kernel version must now contain the tags PREEMPT and RT such as

uname -v
#42 SMP PREEMPT RT Fri Nov 6 18:55:29 CET 2009

or something went completely wrong, otherwise.

In order to access the built-in diagnostic tools, the debug file system must be mounted. This is either done
manually by entering

mount -t sysfs nodev /sys
mount -t debugfs nodev /sys/kernel/debug

or by appending the lines

nodev /sys sysfs defaults 0 0
nodev /sys/kernel/debug debugfs defaults 0 0

to the file /etc/fstab to have the debug file system mounted automatically at boot time.

Note

In earlier kernels, the built-in diagnostic tools were immediately available in the proc file system that is
normally mounted by default.

The histograms of the wakeup latencies (one per CPU) are available here:

ls /sys/kernel/debug/tracing/latency_hist/wakeup_latency/CPU?

From 2.6.2.31 onwards, the files are in:

ls /sys/kernel/debug/tracing/latency_hist/wakeup/CPU?

This configuration feature is always available in the prebuilt Ubuntu kernels; in the locally created kernels
it is only available, if configured as shown above. The granularity of the histograms amounts to one
microsecond:

grep -v " 0$" /sys/kernel/debug/tracing/latency_hist/wakeup*/CPU0
#Minimum latency: 0 microseconds.
#Average latency: 7 microseconds.
#Maximum latency: 39 microseconds.
#Total samples: 7069336
#There are 0 samples greater or equal than 10240 microseconds
#usecs samples
 0 249884
 1 120023
 2 338781
 3 197834
 4 210872
 5 150366
 6 45870
 7 1053204
 8 564637
 9 273756
 10 190432
 11 483611
 12 328509
 13 44716

 14 72925
 15 59304
 16 28927
 17 10836
 18 2821
 19 543
 20 110
 21 82
 22 63
 23 61
 24 32
 25 21
 26 9
 27 4
 28 3
 29 1
 30 3
 31 2
 32 4
 33 2
 39 1

By default, all histograms, kernel function tracing etc. are disabled. To enable, for example, the wakeup
latency histograms, type

echo 1 >/sys/kernel/debug/tracing/latency_hist/enable/wakeup

To reset the histogram counters, the following script may be used

#!/bin/sh
TRACINGDIR=/sys/kernel/debug/tracing
HISTDIR=$TRACINGDIR/latency_hist

if test -d $HISTDIR
then
 cd $HISTDIR
 for i in ‘find . | grep /reset$‘
 do
 echo 1 >$i
 done
fi

Some more documentation is available in the kernel source directory
Documentation/trace/histograms.txt.

3.2. External testing tool

In addition, Thomas Gleixner made available the test tool cyclictest, that allows to better and more
spcifically determine the realtime capabilities of a given system. The sources can be downloaded from
here. If you installed the Ubuntu apt packages (see above), the cyclictest tool is available immediately.
The git repository contains other useful test programs for real-time systems.

http://git.kernel.org/?p=linux/kernel/git/clrkwllms/rt-tests.git;a=tree;f=cyclictest
http://git.kernel.org/?p=linux/kernel/git/clrkwllms/rt-tests.git;a=summary

Download, unpack and compile the tool

git clone git://git.kernel.org/pub/scm/linux/kernel/git/clrkwllms/rt-tests.git
cd rt-tests
make

To run one test thread per CPU or per CPU core, each thread on a separate processor, type

./cyclictest -a -t -n -p99

On a non-realtime system, you may see something like

T: 0 (3431) P:99 I:1000 C: 100000 Min: 5 Act: 10 Avg: 14 Max: 39242
T: 1 (3432) P:98 I:1500 C: 66934 Min: 4 Act: 10 Avg: 17 Max: 39661

The rightmost column contains the most important result, i.e. the worst-case latency of 39.242
milliseconds. On a realtime-enabled system, the result may look like

T: 0 (3407) P:99 I:1000 C: 100000 Min: 7 Act: 10 Avg: 10 Max: 18
T: 1 (3408) P:98 I:1500 C: 67043 Min: 7 Act: 8 Avg: 10 Max: 22

and, thus, indicate an apparent short-term worst-case latency of 18 microseconds.

Running cyclictest only over a short period of time and without creating appropriate real-time stress
conditions is rather meaningless, since the execution of an asynchronous event from idle state is normally
always quite fast, and every - even non-RT system - can do that. The challenge is to minimize the latency
when reacting to an asynchronuous event, irrespective of what code path is executed at the time when the
external event arrives. Therefore, specific stress conditions must be present while cyclictest is running to
reliably determine the worst-case latency of a given system.

3.3. Latency fighting

If - as in the above example - a low worst-case latency is measured, and this is the case even under a
system load that is equivalent to the load expected under production conditions, everything is alright. Of
course, the measurement must last suffciently long, preferably 24 hours or more to run several hundred
million test threads. If possible, the -i command line option (thread interval) should be used to increase the
number of test threads over time. As a role of thumb, the thread interval should be set to a value twice as
long as the expected worst-case latency. If at the end of such a test period the worst-cae latency still did
not exceed the value that is assumed critical for a given system, the particular kernel in combination with
the hardware in use can then probably be regarded as real-time capable.

What, however, if the latency is higher than acceptable? Then, the famous "latency fighting" begins. For
this purpose, the cyclictest tool provides the -b option that causes a function tracing to be written to
/sys/kernel/debug/tracing/trace, if a specified latency threshold was exceeded, for example:

./cyclictest -a -t -n -p99 -f -b100

This causes the program to abort execution, if the latency value exceeds 100 microseconds; the culprit can
then be found in the trace output at /sys/kernel/debug/tracing/trace. The kernel function that was
executed just before a latency of more than 100 microseconds was detected is marked with an exclamation

mark such as

qemu-30047 2D.h3 742805us : __activate_task+0x42/0x68 <cyclicte-426> (199 1)
qemu-30047 2D.h3 742806us : __trace_start_sched_wakeup+0x40/0x161 <cyclicte-426> (0 -1)
qemu-30047 2DNh3 742806us!: try_to_wake_up+0x422/0x460 <cyclicte-426> (199 -5)
qemu-30047 2DN.1 742939us : __sched_text_start+0xf3/0xdcd (c064e442 0)

The first column indicates the calling process responsible for triggering the latency.

If the trace output is not obvious, it can be submitted to the OSADL Latency Fight Support Service at
<latency-fighters@osadl.org> In addition to the output of cat
/sys/kernel/debug/tracing/trace, the output of lspci and the .config file that was used to build the kernel
in question must be submitted. We are sure you understand that OSADL members will be served first, but
we promise to do our best to help everybody to successfully fight against kernel and driver latencies.

	 Enable real-time capabilities of the mainline kernel
	
	Carsten Emde

	1. Introduction
	2. Installation
	2.1. Ubuntu Feisty (7.04)
	2.2. Other 2.6 systems
	2.2.1. Download and patch the kernel manually
	2.2.2. Download and patch the kernel using ketchup
	2.2.3. Configure and build the kernel

	3. Testing and using the realtime-preempt patch
	3.1. Built-in tools
	Note
	3.2. External testing tool
	3.3. Latency fighting

