Linux for Safety Critical Systems in IEC
61508 Context

Nicholas Mc Guire

Distributed and Embedded Systems Lab, Lanzou University
Safety Coordinator OSADL <safety@osadl.org>
October 20, 2007

Contents

Contents
1. Introduction

2. Proven-in-use
2.1. GNU/Linux evolution
2.2. 61508 Criteria
2.3. Non technical issues
2.4. Available evidence

3. Strategy for Justification
3.1. Relation of Standards

4. Arguing OSS GNU/Linux
4.1. Possible approaches Lo
4.2. further options
4.3. Noteonsafety case L

Evolution of standards
Conclusion

List of Acronyms

ii

16
17

18

Contents

Version Author Date Comment

0.1 Nicholas Mc | 12 Aug 2007 initial draft
Guire

0.2 Nicholas Mc | 3 Sep 2007 release
Guire

0.3 Nicholas Mc | 9 Sep 2007 RFC to OSADL
Guire

1.0 Nicholas Mc | 15 Sep 2007 final
Guire

iii

1. Introduction

Abstract

”If computers systems technology is to be effectively and safely exploited, it is essential
that those responsible for making decisions have sufficient guidance on the safety aspects
on which to make these decisions” [IEC 61508-1 Introduction)]

Is there enough guidance on COTS/OSS ?

The simple answer is no - but IEC 61508 is designed in a relatively open way - con-
sidering when it was written and that the authors were aware of a standard needing to
be flexible enough to accommodate emerging technologies without breaking the funda-
mental concepts. ”...has been conceived with a rapidly developing technology in mind...”
[IEC 61508-1 Introduction]

So are the fundamental concepts of IEC 61508 applicable in COTS/OSS based systems
?

There is no simple answer to this one - but we believe it is yes.

In this article we will point out some main issues of using COTS/OSS software in the
context of 61508 (and derivative) compliant safety-related systems. We will sketch what
basic arguments are available, what the shortcomings of GNU/Linux and specifically
of the Linux kernel are and what is available to address these shortcomings. Then we
follow 61508s criteria and see what fits and what could be problematic followed by a
brief outline of a general strategy in developing of COTS/OSS based safety cases based
on the concept of cross-mapping application sector specific standards, concluded by a
somewhat speculative view of in what direction we believe standards are developing and
why this is good for COTS/OSS.

1. Introduction

The issue of using COTS software component is of quite general interest for the past 10
years at least. One can see not only in articles [7] [0], reports, i.e. by HSE [¢] [9] as well
as recent publications on use of COTS/Linux [5] [4], but also in standards that evolved
around IEC 61508, that there is a continuous growing interest in finding safe strategies
to integrate COTS software into safety critical systems. Open-Source is a special case
of COTS software, in some respect better suited for validation and verification in some
respect skeptically observed because of the lack of a formal vendor and the typically
associated information available for products.

In this article we outline 61508 and its related standards in a very brief way, the relevance
of this relation for efforts to integrate OSS components - specifically GNU/Linux - in
61508 context, and try to outline possible paths to guide such activities through 61508.

1. Introduction

61508-4 61508-1 FUNCTIONAL SAFETY OF SAFETY RELATED PES
DEFINITION

CLAUSE 5 DOCUMENTATION
CLAUSE 6 FUNC. SAFETY MANAGEMENT

N SAFETY REQ.DEVEL
61508-5
SIL DETERMINATION (SYSTEM-LEVEL)

I/ 17.1-7.5

-

ALLOCATION OF SAFETY FUNCTIONS

s

61508-6 N
GUIDELINES ON IMPLEMENTATION 7.10
INTERPRETATION |
61508-3 61508-2
61508-7 SW HW/SYSTEM
METHODS

Figure 1: 61508 big-picture (SW only)

It should be noted that this paper is neither claiming that a particular OSS component
can under all circumstances be included nor are we claiming that OSS is "the better
solution” by any principal - it has its potentials and it has its shortcomings - in a safety
context this means managing it just like any other component and adjusting strategies
to select the right components for a give system.

As we are only interested in software in 61508 context we give a very rough overview of
61508 here to set the context for the discussion following:

2. Proven-in-use

2. Proven-in-use

While many people have a gut feeling that GNU/Linux is maturing and has a de-
facto test-coverage that is superior to commercial counterparts - there obviously are
problems quantifying this reliability. In this section we will first look at factors we
consider supporting GNU/Linux in safety critical applications and then look into the
problem areas that could be show-stoppers in some cases. Before we do that we would
like to point out the safety related development in GNU/Linux that happened basically
due to many of the needs of safety related systems matching with general needs of
complex systems and high-availability in specific.

Although this should be clear, we will explicitly state here that proven-in-use for Linux,
only based on ”operational evidence” will not suffice to argue SIL1 or higher. The
proven-in-use argument based only on operational hours and 10 use-cases (61508-2) are,
in our opinion, quite clearly aimed at low-complexity hardware and not at a highly
configurable and variable software as versatile as the Linux kernel.

2.1. GNU/Linux evolution

[?] published a study on Linux for safety critical systems identifying a number of problem
areas and giving a carefully positive conclusion on using GNU/Linux in SIL1 and SIL2,
with SIL3 being at least problematic. Many of the questions raised in the study, related
to the 2.4.X series of kernels, have been addressed in 2.6.X - not due to the requirements
of safety systems though. The main shortcomings identified by Piercen were:

e Tractability of the source code, documents and specifications
e There is no single specification
e Lack of hard real-time capability (temporal predictability)

e There is only limited overload tolerance

One of the main conclusion: Linux is not suitable for SIL4.

Aside from the problem that SIL3/SIL4 in this publication is not really clearly defined
(multiple standards are listed - some of which don’t specify SIL4 level (i.e. 61511/62661)
- the criticism is not only well established but also quite clearly attributable to Linux
2.4.X 7 qualities” or rather the lack of these. The evolution of Linux in the 2.6.X kernel
series, especially since the introduction of git [2] and a well defined kernel development
life-cycle along with the technological advances in the area of real-time and improvement

2. Proven-in-use

of robustness relativate much of the criticism expressed. The issue of the non-existing
single specification is of course still valid - but that is an inherent property of many
aggregated safety critical systems that utilize COTS components (i.e. IEC 62861 Clause
6.5). It should be noted though that Linux is targeting POSIX:

What is Linux?

Linux is a clone of the operating system Unix, written from scratch by
Linus Torvalds with assistance from a loosely-knit team of hackers
across the Net. It aims towards POSIX and Single UNIX Specification
compliance.

This does not mean that Linux is well specified (at least not in 61508s sense of well specified)
- but it is highly questionable if COTS OS, based on UNIX, used in safety-related systems
had much more of a specification that Single Unix Specification - and with the availability
of test-suits and regression tests focused on the single-unix specification [3] we believe this
provides a acceptable mitigation to this problem - provided of course restricted use is applied
in application context. Note especially that susV is an accepted IEC standard [ISO/IEC
9945-2003] that actually includes a rational....

2.2. 61508 Criteria

61508 and its derived standards are a bit obsessed with:

e - system size

system complexity
e - novelty of design
e - novelty of technology

These for items are cited over and over though all of 61508 and derived standards as " de-
pending on....". If we look at Linux with these criteria we would make the following claim:

e - Linux as a system component is large , by 61508 standards huge (note annex E of
61508-6 refers to a COTS kernel with 30000 LoC...off by two orders of magnitude.
Though the size of the Linux kernel core is actually not that large:

2. Proven-in-use

arch 350813 arch/i386 27638
block 4412 4412
crypto 7134 7134
fs 242437 fs/ext3 5708
include 152609 include/linux 44714
include/asm-i386 | 4780
init 1228 1228
ipc 2821 2821
kernel 25096 25096
lib 7397 7397
mm 14716 14716
net 168204 net/ipv4 29015
sound 150673 not used
crypto 7134 not used
drivers 1271636 not used
security 9283 not used
total 2408459 X86 estimate 174659

Though still large - this conservative estimation indicates that Linux source is not any
where near the bmillion lines of code that can be found as claims on the Internet.
Linux is currently 24 main CPU families with hundreds of CPUs supported - de facto
even the above estimation of all LoC in arch/i386 being included in the kernel binary
is unrealistic even with an excessive configuration. The real size of Linux comes quite
close to the COTS kernel mentioned in 61508-6 sample safety-case for SIL3 (appendix-
E).

e - Linux kernel is complex - | doubt anybody will dispute this even if we give no evidence

here. But depending on the software architecture the internal complexity may not be
that relevant in some cases. |IEC 62061 allows subsystem-elements (software compo-
nents) of high internal complexity to be treated as low-complexity systems provided it
complies with IEC 61508-2/3 and "...its relevant failure modes, behavior on detection
of a fault, its failure rate and other safety-related informations are known..” [IEC 62061
Clause 6.7.4.2.3].

e - The design is conservative and has a long history - it hardly qualifies as revolutionary

when it comes to design - monolithic kernel model is roughly 1970, primary design
decisions follow the needs of the guiding standards like POSIX (which also does not
qualify as revolutionary).

e - Linux developers are conservative with respect to technologies used - much of the

concepts moving into the kernel now have been published before Linux 0.1 was released

2. Proven-in-use

in 1991 ! The actual implementations are of course not simply ports of old implemen-
tations - but the technologies that do go in are well tested and well understood (though
there surely are exceptions).

So we believe that the focus of supportive evidence will need to be rested on justifying
why the complexity and sheer size can be accepted - this is non-trivial and should not be
underestimated. Mitigation of the first two clearly are:

e Level of documentation - there hardly is any kernel around that is documented as
rigorously as the Linux kernel, both at the general level as well as the detailed imple-
mentation level.

e Tractability of the Linux kernel - especially in 2.6.X has been improved to a level that
makes the size manageable - but companies must be well aware of the need to invest
in there engineers.

2.3. Non technical issues

A issue, to our knowledge typically underestimated or plainly ignored is listed in Appendix B
of 61508-1 in detail - the issue of " ..the training, experience and qualification of all persons
involved...” - OSS is a paradigm change mandating an appropriate response. | personally
would claim that the probability of a OSS/COTS based safety-related system failing is at
least equally probable due to the lack of understanding of the nature and specifics of OSS
as it is with respect to standards and regulatory issues.

The move towards OSS in safety-related systems must be managed just like the introduction
of any fundamentally new technology - underestimating the specifics of OSS, or assuming
that experience in overall safety-related systems is sufficient is one of the critical points in
the process of introducing OSS.

Critical issues we will briefly note here are:

e adhering to the rules of the community to actually get access to the claimed benefit
of OSS - i.e. peer review nature of the community.

e the issue of highly asynchronous development - OSS systems like GNU/Linux are built
of a large number of packages developed independent, at different speeds and not
"bundled” like classical proprietary vendor provided environments.

2. Proven-in-use

e fundamental change of tooling in OSS - there is no point in trying to run a OSS
based development if the management refuses to accept current technologies like git.
Such refusals can put a tremendous burden on the project management and reduce
accessibility to safety related information in a critical way.

e OSS selection "..selection based on prior use..” [61511] or " Requirements for selection
of existing (pre-designed) subsystems” [62061 6.7.3] must be investigated - typically
these sections were not consulted in bespoke software life-cycles and there is insufficient
established practice - these processes must thus be expected to be relatively slow during
the first projects.

e In general one should expect that there is a certain shift in the SW life-cycle, if OSS
is to be utilized, towards the investigation phase or teams will suffer the classical
"reinvented wheel trauma” - typically resulting in triangular wheels.

e Community interaction - commercial entities need policies to interact with the com-
munity - it is absurd to utilize OSS and prohibit employees from joining the respective
community mailing lists - this is though not that uncommon !

e The inherent danger of de-coupling from the community effort "because there work
did not fit our needs” - well thats no how it works and trying to go that path will easily
cause a fork, resulting in loss of arguments for proven-in-use

Without claiming completeness here - this is just a short rant to call to your attention
that OSS is not simply a pool of freely available code but that it is much more - it is a
fundamental decision that is needed early in the project life-cycle if a OSS based project
should be successful.

2.4. Available evidence

The specifics of the development cycle of GNU/Linux mandate a certain set of tools so that
development does not fall apart. By all standards of company practice | would claim that
the development of Linux kernel by now has a level or rigor that is quite hard to find in
industrial projects - this is not only due to the sheer size and complexity, but also to the
very wide platform support and the large number of independently operating individuals and
groups. We see some developments in Linux that facilitate high-quality evidence - some of
these developments are:

e advances in the kernel software life-cycle:

— introduction of subsystem maintainers

2. Proven-in-use

developer branches and arch branches for early testing of features (i.e.
arm.linux.org.uk)

well defined experimental tree (-mm) and the introduction of the merge-window

— early testing in the release candidates (rcX)

and long term road-maps for feature introduction (i.e. RT-preempt is being
merged in steps since early 2.6.X)

e high-level management elements introduced in 2.6 - beyond LKML

Annual kernel summit for strategic decisions

— domain specific groups (i.e. CELinuxForum Architecture Group for consumer
electronics)

— Auditing introduced for critical API (i.e. raw_spin_lock usage)

change-log management

— improved maintenance of kernel specific information (i.e. lwn.net, kerneltrap.org
changelogs)

e Testing and validation

— critical resources include built-in-tests (i.e. RCU torture test, lock-dependency
validator), especially in 2.6.X the development of built-in-tests have resulted in
detection of a large number of bugs without that these ever struck in the field.

— Linux Test Project (LTP) providing a high-level test-coverage of the Linux kernel
[1] providing roughly 3000 tests for the Linux OS (ltp-20070831)

— crackerjack - kernel code coverage test-suit

— http://test.kernel.org - Autotest is a framework for fully automated testing
of the latest linux kernel releases - published on-line and available to the public.

— POSIX test-suit

Along with this we see the tendency to actually enforce long standing policies like kernel
coding rules, in-source documentation (i.e. which commercial kernel can compete with " make
psdocs” 7). These developments are not targeting safety critical systems, but are rather the
consequence of the way the development is organized, the "loose gang” of developers only
can succeed in a project of this complexity by adhering to a very strict set of rules regarding
source management and software modification.

3. Strategy for Justification

3. Strategy for Justification

61508 does not fit OSS/COTS that well - in part because it is a high-level approach towards
functional safety that is not based on constraints like " fail-safe” or " low demand mode” only
- thus many of the requirements will not be found in the application sector specific standards
while the overall justification methodology does continue to adhere to 61508.

Application domain specific standards like 50128/62061/61511/etc. are based on consen-
sus of industrial users of these standards and anticipate covering the "mainstream” of the
respective domain. While this strategy is quite obviously sensible, to prevent special case
overload in standards, it does raise the question how to handle cases that are not explicitly,
or worse, not even implicitly, covered by the standard. In this case we propose the following
strategy:

e select one of the other domain specific standards that better fits your application
context (reactive/composite safety, level of complexity, mode of failure (i.e. fail-safe),
etc.)

e derive the justification according to this domains standard model, of course adjusting
it to the specifics of the domain under consideration where needed.

e argue ("justify”) the non-standards compliance of the safety case based on the proce-
dure being derived from the same top-level standard (61508) and the respective SIL
claims of the standards (which basically are in sync with minor variations).

This proposal only makes sense if we also provide guidance of what could be the suitable
" cross-selection”. This is work-in-progress and definitely not completed, but we do believe
that we can give some guidance that is of help.

It should also be noted that Linux has be certified in projects that conform to other standards
(i.e. ATC systems guided by CAP 670), and this, though based on a completely different
standard, does constitute a strong indication of the maturity and the available evidence base
(CAP 670 is a evidence based safety case).

3.1. Relation of Standards

To show the relation of application sector standards we of course need to show the relation
to the top level first - the top level is not 61508 (which is limited to functional safety), rather
it is overall safety in the context of social, economic and regulatory constraints.

The three main influences on any overall safety concept will be social, economic and regula-
tory issues. | guess regulatory and economic issues are quite self explanatory - the issues of

3. Strategy for Justification

social influence is at the core of risk-assessment, fundamentally tolerable risk is the guiding
term that is deeply routed in the societies acceptance of risk, thus changes - and we have
seen fundamental changes in the past 10 years - in the acceptance of risk in society will
influence the directions of safety standards and the interpretation.

61508 it self is covering one part of overall safety " functional safety”. As a procedural safety
standard it starts out with rules on documentation and management of functional safety
which are the foundation of a procedural safety approach. The actual core of 61508 then
starts in section 7 of 61508-1 that outlines the safety life-cycle. Following the basic pattern
of the initial part of the safety life-cycle:

e Develop safety requirements (Clause 7.1-7.5)
e Allocate safety functions to systems (Clause 7.6)

e implement systems (Clause 7.10)

As 61508-1 is not concerned with the specifics of safe implementations but rather with the
global strategy of safety life-cycle, clause 7.10 simple refers to 61508-2 (HW/System) and
61508-3 (Software). The other parts of 61508-1 provide guidance and definitions as well
as a description of accepted methods. From this very generic development cycle (note that
we only followed up to the actual development, the safety life-cycle of course continues on
parallel to development with assessment activities and post-development with commissioning
maintenance and disposal. Those issues are de-facto unchanged for COTS/OSS in safety
critical systems, thus we will not discuss them too much here. As 61508 is a generic approach
it is relatively strict in its approach, and for different classes of systems further constraints
can be added allowing to simplify methods and requirements - this simplified, or adjusted
versions are the application sector standards for Machinery, Rail, Processing etc.

The relation ship between the application sector standards we are trying to establish here is
not a hard-relation in the sense that standard X is "only” for a particular case, but what we
are pointing out is the main focus of individual standards and there suitability for a more
abstract property of the device to be certified. The intention of these tables is to point out
the focus of specific application sector standards to aid in locating helpful concepts - it is not
to claim that a specific standards is i.e. only concerned with reactive systems or composite
safety - read it as "carrying a focus of".

Not too surprising security is ignored in the older standards and addressed in the newer ones
(62061 was published in 2005) likewise this coincides with the coverage (and acceptance) of
COTS. It also should be noted that the definition of COTS (preexisting software, prior use,
etc.) has evolved over time. While the early definitions clearly are considering products, later
definitions (i.e. "embedded software” [62061]) is not so much concerned with the origin of
the components rather focuses on the qualities of components.

10

3. Strategy for Justification

security failure mode 0OSS/COTS
61508 nope fail-operational Apvery clear
61511
50128
62061 mentioned fail-safe relatively clear
Figure 2: relatsions of standards

complexity operational mode safety case
50128 high continuous composite
61513
62061
61511 low low-demand reactive

Figure 3: relatsions of standards

Note that though some application sector standards simply don’t define low-demand mode
- de facto almost no safety critical application of even only moderate complexity will be
able to provide continuous mode only - thus a certain amount of cross-selection regarding
justification strategies is more or less inadvertable any way.

" The life cycle model of EN 50126-1 does not take into account the iterative process necessary
to make it applicable to reality [EN 50126-2 9.5]. We assume that this statement though
pertaining to 50126-1 (50128) can be applied to all of the 61508 derived standards.

This comparison is incomplete - not too surprising - but what we hope to point out with this
glimpse at specific aspects is that there are possibilities to get more-to-the-point information
for a specific component if one considers related standards. Again this is not suggesting that
a machine tool can simply use the standard from a nuclear power plant - but if the complexity
of the problem fits a related standard well then the approach and especially the guidance

11

4. Arguing OSS GNU/Linux

role of COTS SW cycle deployment
61513 legacy man- | waterfall dedicated systems
agement /
retrofitting
50128 existing legacy
systems = COTS
61511 market driven
COTS compo-
nents
62061 integrated con- | iterative mass market
cept of modular-
ity

offered for the "application sector constraint implementation of 61508" may provided vital
help on how to approach the safety life-cycle details.

4. Arguing OSS GNU/Linux

If these elements are applied to GNU/Linux now then one can see that different standards
show a quite different suitability in arguing OSS in there context. While 50128 explicitly
addresses COTS, 62061 explicitly discusses "embedded software”, 61511 referees to " prior
use” though with a focus on hardware (references to 61508-1 and -2 NOT -3). None of the
standards directly addresses OSS (obviously) but they do address categories of software that
fit certain aspects of OSS and GNU/Linux in particular. in the following list we provide our
view of this association:

61508 - preexisting software, standard software, proven-in-use

61511 - prior use, selection based on prior use

50128 - COTS, proven-in-use

62061 - embedded software , proven-in-use, selection of pre-design SRECS

The Linux kernel most obviously would be described as " preexisting software” and "selected
based on prior use” - it should be noted though that these terms are most of the time not
precisely defined in the standards (62061 does define embedded software though) - making
the actual interpretation of statements non-trivial. Fundamentally this is a question of
providing a convincing argument and concise justification - it will hardly be possible to prove
strict adherence to an accepted procedure for GNU/Linux.

12

4. Arguing OSS GNU/Linux

4.1. Possible approaches

Fundamentally we see two posible approaches to utilizing GNU/Linux and OSS capabilities.

e GNU/Linux mainstream:
i.e. Unmodified GNU/Linux "as-is" justified by evidence and argued by advances of
community monitoring and bug tracking - applications constraint to well established
standard compliant subsets (i.e. POSIX threads)

e Linux virtualization technologies:
i.e. Paravirtualized GNU/Linux on top of diverse RTOS core systems based heavaly on
diversity of the RTOS/HW layer and supported by community peer review capabilities.

Of course there are variations of these two options - we will list some scenarios and detail
only one here du to space constraints.

This section is rough and obviously incomplete - its intention is to give a rough idea of what
directions are possible - and show that there are a number of possible ways to approach the
problem.

One obviously available path is to follow 61508-6 Appendix E, and focus on diversity of the
OS layer - thus in theory eliminating specification and design related common cause failures
- this mapped to Linux could be based on a system outlined below:

Resulting in " maximum-diversity" :

X86 / PowerPC - hardware diversity

GRUB / GNU/Linux boot-system - initialization diversity

L4 Fiasco / XtratuM nanokernel - resource manager, runtime diversity
L4Linux / GNU/Linux intercepted - GPOS diversity with respect to IPC
L4-domain / RTLinux/GPL - divers safety domains

While this is a fairly complex approach it is quite straight forward to map it into 61508s
requirements and provides the full benefit of GNU/Linux as GPOS for maintenance and
non-safety related tasks (monitoring, upload, etc.). This is a rough proposal for a very
conservative view of Linux in 61508 context.

13

4. Arguing OSS GNU/Linux

safety application IPC safety application IPC
in seperate domain in seperate domain
l4Linux as Linux as
GPOS domain GPOS domain
L4/Fiasco microkernel XtratuM nanokernel
. eth0 .
peripheral <::> XM device
server driver
X86 HW platform PowerPC HW platform

Figure 4: OSS based maximum-diversity

4.2. further options

Space does not allow to detail all others - but we would like to list some options that we see
as possibilities:

e Build a 61508 compliant COTS argument, which would be heavily based on proven-
in-use (refer to clause 3.4 - definition of COTS, which clearly points towards Proven-
in-Use), and section 9.4.5 sub-clause ii and iii for requirements.

Build a evidence based safety case which is clearly non-61508 compliant and argue the
divergence from 61508 which is entirely procedure based. Fundamentally 61508 allows
divergence at almost all places provided justification is given.

Build a 61508 compliant procedural safety case for a nano-kernel that runs GNU/Linux
as one of its (user-space) tasks running safety critical apps (or at least the safety
responsible components) under direct control of the nano-kernel. GNU/Linux is then
ideally only a SILO component in the overall system with no safety responsibility.

put the safety responsibility completely into the application and argue the OS as a gray-
channel based on diversity of the safety critical application (diverse OS usage, diverse
languages, N-version programming). Within GNU/Linux it is also possible to select

14

4. Arguing OSS GNU/Linux

two functionally equivalent OSS components that are implemented independently (i.e.
arguing diversity between apache2 and boa http servers should be doable).

e Document the Linux development life cycle (the kernel that is) in a suitable way and
argue that it provides comparable if not superior quality even though it does not follow
the procedural requirements. In fact the stability of Linux-2.6 can in our opinion be
argued in this way - the main issue really is if this is acceptable to the safeties.

One essential point of all of these options though is that naive proven-in-use as "there is
so much Linux in use” will not due, uptimes of even years of some Linux 2.2.X and 2.0.X
systems are nice - but not a usable source of evidence for arguing a 2.6.22 kernel on Debian
4.0 ! We believe field experience will help, but basing a safety case on field data only -
especially with none from safety-related systems - will be futile.

Detailing these options and investigating the limitations and certification strategies will be
one of the goals of the Safety Critical Linux Working Group of OSADL.

4.3. Note on safety case

While this paper is not the place to detail a safety case for the Linux kernel one should
consider a layered safety case:

e Generic Product Safety Case
e Generic Application Safety Case

e Specific Application Safety Case

safety case structures i.e. in 50126/50129

Building a monolithic safety case for a specific version of the Linux kernel with a specified
configuration would be more or less unmaintainable and an effort that would be lost at the
first upgrade. The specifics of OSS "release early - release often” mandate a somewhat
different approach to the safety case than would be suitable with "bundled” commercial
software.

Taking the safety case layering from above we would see this as

e provide a constraint OS definition - i.e. "pure-POSIX" and a set of kernel functions
satisfying these based on a well defined standard (i.e. open-group specification).

15

5. Evolution of standards

e from this generic POSIX layer introduce further constraints (minimum POSIX real-
time profile - PSE 51) and map this to a particular implementation of the Linux kernel
i.e. Linux with real-time preemption extension.

e finally justify a specific configuration selection (kernel config) in the context of the
"generic application safety case Linux-RT PSE 51" as a basis for a well defined safety
application running on top of this kernel.

Justification of these safety cases - as noted above - will hardly rest on field history only -
not only does 61508 not clearly define what field history data would need to look like, the
concept of field data, at least for the specific application safety case, but it simply will not
be arguable due to lack of data fitting the specific configuration.

Rather justification will need to build on black-box testing and analytical methods outlined
in 61508-7 and referenced in 61508-3 (i.e. table A3 software development and table A9
and A10) Note that especially here the application sector standards have a lot to offer on
guidance of methods and in fact on additional methods considered appropriate.

5. Evolution of standards

A tendency towards evidence based approaches can be seen. Standards like MOD 00-55
(procedural) were replaced with evidence based counterparts MOD 00-56. Even within
61508s derived standards, evolution of domain specific standards can be seen. 62061 is
almost modular [i.e. 62061 Clause 6.7.5] compared to 61508 - allowing subsystem-elements
to be integrated as components (either developed or COTS). 61508 of course stays a system
level safety case - but while 61508 is directly concerned with design and specification, 62061
(released in 2005) is more of a safety strategy. We believe this development will continue
and of course it is up to industry to promote development in the direction best suited for
its needs - if development continues in the direction visible now we expect OSS and COTS
components to be much easier to integrate in the future than they are now.

Our expectation is that standards will evolve in the next decade in the direction of higher
level of acceptance of evidence. This is not only due to the fact that increasing system
complexity (both software and hardware) in safety-related systems impact the applicability
of a strict procedural approach more and more, but also to the fact that there is growing
evidence and theoretical works that indicate that COTS/OSS development may well be as
good if not better than bespoke software development.

Of course it is up to industry to move the standards in a direction suitable for the use of
COTS/O0SS in safety critical systems. This is not suggesting that standards should be less
rigorous in any way - quite the contrary - they need to be much more precise in defining COTS

16

6. Conclusion

especially with respect to software, and provide better guidance on the use of COTS especially
with respect to the types and quality of evidence as well as the use of risk assessment and
validation methods (i.e. FMEA, HAZOP) in relation to COTS products.

Again this is one of the issues the Safety Critical Linux Working Group of OSADL will
be focusing on. Never the less it is clearly up to industry to recognize the potential in
COTS/OSS and especially in GNU/Linux and support efforts in standardization bodies to
tweak standards to supply the means needed for its use.

6. Conclusion

Even though the material outlined here is far too general to make any claims that OSS and
specifically Linux is usable in 61508 context, we do think that there is sufficient evidence that
it is not excluded from 61508 compliant systems and that if the effort to achieve acceptance of
Linux and other OSS components in safety-related systems is coordinated at a suitable level,
that it well could constitute a sound basis for building safety-related systems in the future.
There is plenty of work to be done and there are efforts under way to make it happen,
both the advances in standardization and the formation of organizations like OSADL are
encouraging indicators that there is not only a wide need for OSS in safety-related systems
but that there is a certain acceptance in industry.

17

7. List of Acronyms

7. List of Acronyms

ATC - Air Trafic Control

CAP - CAA Publications

COTS - Comercial Off The Shelf

FDL - Free Documentation License

GDB - GNU DeBugger

GNU - GNU Not UNIX (recursive accronym)

GPL - General Public License

HSE - Health and Safety Executive

IPC - Inter Process Communication

KFI - Kernel Function Instrumentation

KGDB - Kernel GDB

LTT - Linux Trace Toolkit

0SADL - Open Source Automation Development Lab
POSIX - Portable Operating System Interface (for UNIX)
0SS - OpenSource Software

RT - Real Time

LTP - Linux Test Project

SIL - Safety Integrity Level

18

References

References

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[LTP] Linux Test Project, Kenrel Code Coverage,
http://Itp.sourceforge.net/documentation /how-to/UsingCodeCoverage.pdf

[git] git (variable - undefined acronym that sounds good) and cogito
http://www.kernel.org/pub/software/scm/git/

[susV3] IEC 9945, Single Unix Specificationhttp://www.unix.org/, 2003

[Don Car RTLWS9] DONALD WAYNE CARR, RUBA.N RUELAS, COTS and
Free Software Components for Safety Critical Systems in Developing Countries,
Universidad de Guadalajara, Guadalajara, Mexico RAA.L AQUINO SANTOS,
APOLINAR GONZALEZ POTES Universidad de Colima, Colima, MACxico.

[Fan Ye] Fan Ye,Justifying the use of COTS Components within safety critical
applications, Thesis, University of York, 2005

[Weining Gu] Weining Gu, Zbigniew Kalbarcyk, Ravishankar K. lyer, Zhenyu
Yang, Characterization of Linux Kernel Behavior under Errors, University of
illinois at Urbana-champaign, 2002 (?)

[arlat] J-C Fabre, F. Salls, M. Rodriguez-Moreno, J. Arlat, Assessment of
COTS microkernels by Fault Injection, LAAS-CNRS, Toulouse, 1998 (?)

[HSE1337] C. Jones, R.E. Bloomfield, P.K.D. Froome, P.G. Bishop, Methods
for assessing the safety integrity of safet-related software ofuncertain pedigree
(SOUP, HSE 337,/2001

[HSE1336] R.E. Bloomfield, P.K.D. Froome, P.G. Bishop,Justifying the use
of software of uncertain pedigree (SOUP) in safety-related applications, HSE
336/2001

19

	Introduction
	Proven-in-use
	GNU/Linux evolution
	61508 Criteria
	Non technical issues
	Available evidence

	Strategy for Justification
	Relation of Standards

	Arguing OSS GNU/Linux
	Possible approaches
	further options
	Note on safety case

	Evolution of standards
	Conclusion
	List of Acronyms

