
New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

New and established tools for software scanning:

Overview of available
compliance tools

Caren Kresse
Open Source Automation Development Lab (OSADL) eG

Compliance toolchain:
Requirements

Analyzing:
What

software is
used and

how?

Scanning:
Which licenses?

Extract
information.

Clearing:
Are the identified

licenses acceptable for
the intended use and

the applicable use
case?

Component
catalog:

Storing software
and compliance
information in a
(company-wide)

repository for
reuse.

Security:
Identifying known

vulnerabilities.

Snippet matching (forensic scanning):
Identifying unmarked / unlicensed code

snippets.

External Input:
What information is

provided by suppliers?

Contribution:
Compliance information
is contributed to public

projects (e.g.
ClearlyDefined)

BOM:
Creating a

BOM for the
applicable
use case.

Alphabetical listing of tool selection
● AboutCode

– AboutCode Toolkit
– DeltaCode (not maintained)
– Scancode
– Scancode Workbench
– ScanCode.io
– TraceCode Toolkit
– VulnerableCode

● BANG
● Barista
● Blackduck Protex /

Blackduck Hub
● Callgraph
● CLA Assistant

● ClearlyDefined
● CVE hound (only Linux kernel)
● DeltaScan
● FOSSID / snyk
● FOSSLight
● FOSSology
● License Compatibility Checker
● Licensee.js
● nex/B Container inspector
● nex/B: neues Matching tool
● Ninka (not maintained)
● Opossum-Tool
● OSS Discovery by OpenLogic (no

longer maintained)

● OSS Review Toolkit
● Revenera / Flexera
● Pivotal / LicenseFinder
● Quartermaster (no longer active)
● Reuse
● ScanOSS
● SPDX Tools
● SW360
● SW360antenna (no longer

active)
● Tern
● vinland-technology/flict
● Whitesource

Tooling categories
● Analyzing
● Informational scanning
● Clearing
● Component catalog
● Software BOM, File formats
● Security
● Snippet matching (forensic scanning)

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

Analyzing
● Which packages?
● What additional / own software?
● Which dependencies?
● How are they integrated?
● Most information from package management system or

build tools.
● Supplemented by manual information on additional

components and architecture.

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

Digression: “Root of trust”

4.12 5.0 5.14 5.15
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

number of files
files with licensing information
SPDX-License-Identifier

Linux

Fi
le

s

● The Linux Kernel (and some other
projects) are already in “good shape”
when it comes to licensing information.

● A company may decide to trust this
information and only look at the delta
(e.g. custom BSP changes).

● Root of trust is also relevant for sharing
compliance information/material, e.g.
via ClearlyDefined.

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

Deltascan
https://github.com/armijnhemel/compliance-scripts/tree/master/osadl
-audit/
● Command line tool to identify such Linux kernel source code

files that deviate from the “official” Linux kernel release files
provided by kernel.org

● Optionally perform a license scan (with ScanCode and
Nomos) on these files.

● Based on comparing hash codes of all files.
● Requires to create a database of kernel.org files (part of the

provided scripts).

https://github.com/armijnhemel/compliance-scripts/tree/master/osadl-audit/
https://github.com/armijnhemel/compliance-scripts/tree/master/osadl-audit/

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

Deltascan: General information
● Assumption: Files from an official kernel release are

licensed correctly (“Root of trust”), only modified or new
files must be checked individually.

● Easy to install and run, but initial database creation takes a
lot of time and disk space.

● Input: Linux kernel source code
● Output: Text

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

Deltascan: Example

$ python3 osadlaudit.py -s mytarball/linux-5.10.41-rt42 -c audit.config

SCANNING 56454 files

2 FILES NOT FOUND IN DATABASE

NOT FOUND mytarball/linux-5.10.41-rt42/arch/arm/boot/dts/am335x-wega-bw.dts

NOT FOUND mytarball/linux-5.10.41-rt42/drivers/misc/weather.c

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

Callgraph

https://www.osadl.org/Callgraph
● Command line tool creating linking graphs for ELF files to

discover software components connected via function call
(i.e. forming derivative works).

● Only works for files with ELF headers (not for interpreter
languages).

● Input: Root filesystem and binary programs to be evaluated.
● Output: linking information in various formats (text, gv,

cypher, gexf).

https://www.osadl.org/Callgraph

LIN
KS
WITH

LINKSWITH

LIN
K
S
W
IT
H

LI
N
KS
W
IT
H

rain

libgcc_s.so.1

ld-2.3.1.so

libc-2.31.so

LINKS WITH

Callgraph example: Linking graph for "rain"

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

Callgraph example: Text
/opt/rain/bin/rain LINKSWITH /lib/libc-2.31.so

/opt/rain/bin/rain LINKSWITH /lib/libgcc_s.so.1

/lib/libgcc_s.so.1 LINKSWITH /lib/libc-2.31.so

/lib/libc-2.31.so LINKSWITH /lib/ld-2.31.so

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

nexB container-inspector

https://github.com/nexB/container-inspector
● Command line tool to inspect Docker images, Dockerfiles,

root filesystems, and virtual machine images.
● Extracts meta data and content of each layer to represent

the runtime rootfs.
● Easy to install.
● Input: Docker images
● Output: JSON, CSV, rootfs content

https://github.com/nexB/container-inspector

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

container-inspector: Example
./venv/bin/container_inspector --help
Usage: container_inspector [OPTIONS] IMAGE_PATH

Find Docker images and their layers in IMAGE_PATH. Print
information as JSON by default or as CSV with --csv.
Optionally extract images with extract-to. Output is printed
to stdout. Use a ">" redirect to save in a file.

Options:
 --extract-to PATH
 --csv Print information as CSV instead of JSON.

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

container-inspector: Extracted layers
● Dockerfile

● Running container-inspector on the container image
created from this Dockerfile exports:
– Layer 1: complete rootfs of the base image.
– Layer 2: only files that have changed, in the same directory

structure.

FROM osadl/ubuntu-docker-base-image:focal-amd64-211215-bin

RUN apt-get update \
 && apt-get upgrade --yes

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

Informational scanning

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

ScanCode
● Standalone comand line tool

https://github.com/nexB/scancode-toolkit/
● Part of the AboutCode project

https://aboutcode.readthedocs.io/en/latest/aboutcode-project-o
verview.html

● Simple and fast installation
● Easy integration into CI / CT environment
● Input: Source code
● Output: Extracted compliance information in many different file

formats, e.g. JSON, HTML, SPDX, yaml, Debian copyright, CSV

https://github.com/nexB/scancode-toolkit/
https://aboutcode.readthedocs.io/en/latest/aboutcode-project-overview.html
https://aboutcode.readthedocs.io/en/latest/aboutcode-project-overview.html

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

ScanCode: HTML

ScanCode: JSON
{
 "path": "busybox-1.34.1/archival/ar.c",
 "type": "file",
 [...]
 "licenses": [
 {
 "key": "gpl-2.0-plus",
 "score": 100.0,
 "name": "GNU General Public License 2.0 or later",
 "short_name": "GPL 2.0 or later",
 "category": "Copyleft",
 "is_exception": false,
 [...]
 "spdx_license_key": "GPL-2.0-or-later",
 "spdx_url": "https://spdx.org/licenses/GPL-2.0-or-
later",
 "start_line": 9,
 "end_line": 9,
 [...]
 "matched_text": " * Licensed under GPLv2 or later,
see file LICENSE in this source tree."
 }

 [...]
 "copyrights": [
 {
 "value": "Copyright (c) 2000 by Glenn McGrath",
 "start_line": 5,
 "end_line": 5
 },
 {
 "value": "Copyright (c) 2010 Nokia Corporation",
 "start_line": 12,
 "end_line": 12
 }
],
 [...]
 "authors": [
 {
 "value": "Alexander Shishkin",
 "start_line": 13,
 "end_line": 13
 }
],
 [...]
 },

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

Clearing

FOSSology
https://github.com/fossology/fossology/
● Web-based multi-user tool for license scanning and clearing.
● Comes with integrated scanners Nomos, Monk and Ojo.
● Some effort to install and use but extensive functionality.
● See OSADL workshops (2019: https://www.osadl.org/?id=3250,

2021: https://www.osadl.org/?id=3613, Member login required)
● Input: Source code and expertise
● Output: Extracted compliance information as text, Debian

Copyright file, SPDX

https://github.com/fossology/fossology/
https://www.osadl.org/?id=3250
https://www.osadl.org/?id=3613

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

Opossum
https://github.com/opossum-tool/opossumUI
User guide:
https://github.com/opossum-tool/OpossumUI/blob/main/USER_G
UIDE.md
● Graphical tool to manually visualize, review and edit

compliance data created by external tools and to create a BOM.
● Lightweight app and uncluttered interface but workflow is not

straightforward.
● Very small degree of automation.

https://github.com/opossum-tool/opossumUI
https://github.com/opossum-tool/OpossumUI/blob/main/USER_GUIDE.md
https://github.com/opossum-tool/OpossumUI/blob/main/USER_GUIDE.md

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

Opossum: General information
● Standalone app, no installation required.
● Input: JSON, YAML (among others from ORT, ScanCode,

SPDX-2.2, SCANOSS); must be converted with additional
Opossum tool that is still in development and currently not
documented very well (
https://github.com/opossum-tool/opossum.lib.hs)

● Output: JSON, SPDX-2.2, CSV

https://github.com/opossum-tool/opossum.lib.hs

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

Opossum: Workflow

Scan result (e.g.
Scancode, ORT,

ScanOSS)

Opossum
input file

converter lib

Clearing process:
- Assigning attributions

to files, e.g. name,
version, URL, license,
copyright notice.

- Mark to be excluded or
reviewed.

Create report

Save attributions file

Opossum: ScanCode JSON file imported

Opossum: Clearing process

Opossum: Report

Open Source Review Toolkit (ORT)
● Builds a “pipeline” of tools:

– Analyzing dependencies (Analyzer)
– Downloading dependencies (Downloader)
– (informational) Scanning: generic API for different scanning tools,

currently supports ScanCode and FOSSID (Scanner)
– Retrieving Security Advisories (Advisor)
– Evaluating license information and apply policy rules (Evaluator)
– Creating a Bill of Material (Reporter)
– Sending notifications (Notifier)

● Storage Backends to save and re-use scanning results
(Local File, HTTP, PostgreSQL, ClearlyDefined)

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

ORT: Workflow

Analyzer

Downloader

Scanner

Advisor

Evaluator Reporter

Notifier

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

ORT: General information
● Nice getting started guide, but documentation quite limited
● Installation not straightforward
● Input: Source code
● (Intermediate) output: JSON, YAML in separate directories

for each step together with input file

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

flict (FOSS License Compatibility Tool)
https://github.com/vinland-technology/flict
● Command line tool to verify license compatibility based on data

provided externally (e.g. from the OSADL compatibility matrix).
● Can also suggest suitable leading license for a list of different

licenses.
● Currently working on commit 5d17b262b3a74e35f854685cddfdbad224ee6027 as

afterwards the OSADL matrix is imported via module and there is no documentation on
how to do so.

● Input: list of licenses SPDX-ID or "common non SPDX ways to write
licenses (e.g GPLv2)"

● Output: JSON, markdown, text, dot (graphical)

https://github.com/vinland-technology/flict

flict: Example JSON

{
 "compatibilities": [
 {"license": "MIT",
 "licenses": [
 { "license": "GPL-2.0-only",
 "compatible_right": "true",
 "compatible_left": "false" },
 { "license": "BSD-3-Clause",
 "compatible_right": "true",
 "compatible_left": "true" }] },

 {"license": "GPL-2.0-only",
 "licenses": [
 { "license": "MIT",
 "compatible_right": "false",
 "compatible_left": "true"},
 { "license": "BSD-3-Clause",
 "compatible_right": "false",
 "compatible_left": "true" }] },
 {"license": "BSD-3-Clause",
 "licenses": [
 { "license": "MIT",
 "compatible_right": "true",
 "compatible_left": "true" },
 { "license": "GPL-2.0-only",
 "compatible_right": "true",
 "compatible_left": "false" }] }] }

flict display-compatibility BSD-3-Clause MIT GPL-2.0-only \

> compatibility.json

flict: Example graphical
flict -of dot display-compatibility BSD-3-Clause MIT GPL-2.0-only \

> compatibility.dot

GPL-2.0-only

BSD-3-Clause

MIT

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

Component catalog

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

“Homebrew“
● For small to medium sized projects, it might be sufficient to

collect information manually, e.g.
– Create hashes of already scanned and cleared source code files.
– Store these in a database together with compliance information /

material and optionally additional information (e.g. vulnerabilities).
– If there are new files, also create hashes and compare with

database to reuse the information.
– Also use proximity hashes (see following bonus talk by Armijn

Hemel).

SW360
https://github.com/eclipse/sw360, https://www.eclipse.org/sw360/
Wiki: https://github.com/eclipse/sw360/wiki
● Extensive multi-user software component management tool and

database for various aspects of software clearing:
– Collect information from external tools like license scanner, clearing tools

(in particular FOSSology), code quality checker, security vulnerability
scanner, forensic scanner and the source code itself.

– Group components by release to produce material required for particular
use cases.

– Organize clearing workflows, enforce policies and create and maintain
project BOM.

– Assign attributes to releases and tasks to different types of users.

https://github.com/eclipse/sw360
https://www.eclipse.org/sw360/
https://github.com/eclipse/sw360/wiki

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

SW360: General information
● Server application; the GUI can be accessed via browser.
● Ongoing work on integrating OSADL License Obligation

Checklists.
● Difficult to set up!
● Screenshots:

https://www.eclipse.org/sw360/screenshots/

https://www.eclipse.org/sw360/screenshots/

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

Software BOM
● Various tools can output the compliance information as a

software BOM, e.g.
– Opossum
– ORT
– SW360

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

Security
● Workflow and processes are similar for managing known

security vulnerabilities and managing license compliance.
● A lot of ongoing work on combining both aspects, e.g.

https://www.openchainproject.org/security-guide
● ORT and SW360 enable integration of external information

on vulnerabilities.

https://www.openchainproject.org/security-guide

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

CVEhound

https://github.com/evdenis/cvehound
● Command line tool to find unfixed (fix not available or not

applied) known CVEs in Linux kernel source code.
● Includes patterns to find known CVEs; regularly updated.
● Easy to install and use but some difficulties with version

compatibility (Python, coccinelle).
● Input: Linux kernel source code and CVE patterns
● Output: Text, JSON report with info on CVEs

https://github.com/evdenis/cvehound

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

CVEhound: Example
$ cvehound -k /usr/src/kernels/linux-5.4.1
Found: CVE-2020-9391
Found: CVE-2020-14331
Found: CVE-2021-27363
Found: CVE-2021-3715
Found: CVE-2020-27830
Found: CVE-2019-19332
Found: CVE-2020-10732
[...]

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

Snippet matching
(Forensic scanning)

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

General information
● Mainly proprietary, commercial tools.
● Do NOT use forensic scanners for informational scanning!
● Be aware that the interpretation of scan results is very

time consuming: Can result in a significant budget
overhead for a project.

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

ScanOSS
https://www.scanoss.com/ (two informative Whitepapers available
on the website)
https://github.com/scanoss
● Software Composition Analysis tool for creating and maintaining

a BOM during the development process.
● Performs component, file and snippet analysis of source code

(third-party and own development) and compares to the project’s
Open Source Knowledge Base (https://osskb.org/).

● Lists actual licenses of matched files/snippets and licenses that
are incompatible with these.

https://www.scanoss.com/
https://github.com/scanoss

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

ScanOSS: General information
● Only fingerprints of local source code are sent online.
● Connection to OSSKB via RESTful API from client app (ScanOSS

Audit Workbench), webhook or command line interface for
automation or integration into CI/CD.

● Workbench is available as standalone binary image, no
installation needed.

● Input: Source code
● Output: CSV, SPDX-light, raw JSON

ScanOSS Audit Workbench Example: callgraph

ScanOSS Audit Workbench: Detected

ScanOSS Audit Workbench: Matched file

ScanOSS Audit Workbench: Matched snipped

ScanOSS Audit Workbench: Identify match

ScanOSS Audit Workbench: Identified matches

Compliance toolchain:
Requirements

Analyzing:
What

software is
used and

how?

Scanning:
Which

licenses?
Extract

information.

Clearing:
Are the identified

licenses acceptable for
the intended use and

the applicable use
case?

Component
catalog:

Storing software
and compliance
information in a
(company-wide)

repository for
reuse.

Security:
Identifying known

vulnerabilities.

Forensic scanning (matching):
Identifying unmarked / unlicensed

code snippets.

External Input:
What information is

provided by suppliers?

Contribution:
Compliance information
is contributed to public

projects (e.g.
ClearlyDefined)

BOM:
Creating a

BOM for the
applicable
use case.

General notes
● Compliance is an iterative process!
● Results of the clearing step might influence the original

architecture or choice of software.
● The compliance process must start together with the

project. As soon as the general architecture is decided on,
a first round of the compliance toolchain should be
undergone.

● Additional components are cleared as they come along.
● Responsibilities and tasks are to be assigned in

accordance with company structures.

Example cases
● For the following exemplary cases, a selection of suitable tools for

each step of the compliance toolchain is suggested.
● It is recommended to implement a toolchain for the most complex

applicable case and use this toolchain for all cases.
● Cases:

– Isolated component
– Embedded system
– Platform project (e.g. Linux distro with general proprietary components that

various users can build their products on)
– Container
– Large project (t.b.d.)
– Whole company (t.b.d.)

Compliance toolchain – Example 1:
Minimal toolchain for isolated components

Analyzing:
manual

Scanning and clearing:
ScanCode and Opossum

Component
catalog:

n/a

Security:
manual

Forensic scanning (matching):
n/a

BOM:
manual

Analyzing:
Package list from build /
package management

system, manual informa-
tion: Which additional

software?
Integration: Callgraph

and manual info (e.g. on
architecture)

Scanning:
First time use (to

make sure license
info is found cor-

rectly): FOSSology;
Extracting compli-
ance info: Scan-

code

Clearing:
FOSSology and
manual review

with legal exper-
tise, checklists, li-
cense compatibil-
ity (flict), based on
integration infor-

mation

Component
catalog:

homebrew au-
tomated (e.g
source file to

compliance info
via hashes)

Security:
Infos and tooling from build system (e.g. Yocto

cve-check or Debian Security advisories)

Forensic scanning (matching):
n/a if base system from trustworthy

source

Compliance toolchain – Example 2:
Embedded system

BOM:
AboutFiles

based on info
from integra-

tion, scan-
ning, clearing

Analyzing:
Package list from

build / package man-
agement system, man-
ual information: Which
additional software?
Integration: Callgraph

and manual info (e.g. on
architecture)

Scanning:
First time use (to

make sure li-
cense info is

found correctly):
FOSSology;

Extracting com-
pliance info:
Scancode

Clearing:
FOSSology and

manual review with
legal expertise,

checklists, license
compatibility (flict),

based on integration
information

Component
catalog:
centrally

accessible
database!

SW360

Security:
Infos and tooling from build system (e.g. Yocto cve-

check or Debian Security advisories)

Forensic scanning (matching):
might be advisable if large user base

Compliance toolchain – Example 3:
Platform project

BOM:
BOM skeleton

to be com-
pleted by the

users,
should be

tied in with
repository,

SW360

Users:
Outgoing info (e.g.

security advisories);
incoming info (e.g.

who builds on which
versions)

Same as for embedded system

Analyzing:
Which base image? Which lay-

ers? (as each layer must be ana-
lyzed separately);

How are components inte-
grated?

Tools:
container-inspector (to separate

layers), package management
system, Callgraph and manual

info (e.g. on architecture)

Scanning:
First time use (to

make sure li-
cense info is

found correctly):
FOSSology;

Extracting com-
pliance info:
Scancode

Clearing:
FOSSology and
manual review

with legal exper-
tise, checklists,
license compat-

ibility (flict),
based on inte-

gration informa-
tion

Repository:
centrally

accessible
database!

SW360

Security:
package management system for packages

components, lightweight tool (e.g. CVE hound,
VulnerableCode)

Forensic scanning (matching):
might be advisable if large user base

Compliance toolchain – Example 4:
Container

BOM:
Should be tied

in with
repository,

SW360

Extracting:
Obtain CCSC

of used
software,
Package

management
system and

manually

New and established tools for software scanning:
Overview of available compliance tools

Compact OSADL Online Lectures, March 23, 2022

Conclusion
● Integrating FOSS compliance into the development workflow is

done in several stages.
● There is a large (and growing) number of tools available to

support each stage.
● Every tool should be used only for the intended tasks.
● It is recommended to combine tools and, if warranted, even use

different tools for the same tasks to achieve more reliable results.
● Not everything can be automated! Human expertise and some

manual labor are always required.

	Overview of available compliance tools
	Compliance toolchain: Requirements (1)
	Alphabetical listing of tool selection
	Tooling categories
	Analyzing
	Digression: “Root of trust”
	Deltascan
	Deltascan: General information
	Deltascan: Example
	Callgraph
	Callgraph example: Linking graph for "rain"
	Callgraph example: Text
	nexB container-inspector
	container-inspector: Example
	container-inspector: Extracted layers
	Informational scanning
	ScanCode
	ScanCode: HTML
	ScanCode: JSON
	Clearing
	FOSSology
	Opossum
	Opossum: General information
	Opossum: Workflow
	Opossum: ScanCode JSON file imported
	Opossum: Clearing process
	Opossum: Report
	Open Source Review Toolkit (ORT)
	ORT: Workflow
	ORT: General information
	flict (FOSS License Compatibility Tool)
	flict: Example JSON
	flict: Example graphical
	Component catalog
	"Homebrew"
	SW360
	SW360: General information
	Software BOM
	Security
	CVEhound
	CVEhound: Example
	Snippet matching (Forensic scanning)
	General information
	ScanOSS
	ScanOSS: General information
	ScanOSS Audit Workbench Example: callgraph
	ScanOSS Audit Workbench: Detected
	ScanOSS Audit Workbench: Matched file
	ScanOSS Audit Workbench: Matched snippet
	ScanOSS Audit Workbench: Identify match
	ScanOSS Audit Workbench: Identified matches
	Compliance toolchain: Requirements (2)
	General notes
	Example cases
	Compliance toolchain – Example 1: minimal toolchain for isolated components
	Compliance toolchain – Example 2: embedded system
	Compliance toolchain – Example 3: platform project
	Compliance toolchain – Example 4: Container
	Conclusion

