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Project planning: hardware requirements

Our company is planning a project. The control system for the 
new model of a manufacturing machine has to be designed. The 
hardware has to fulfill some general aspects:
● Area of application
● Environment
● Required hardware connections, power supply
● Structural conditions, etc.
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List of requirements (real-time)

Real-time properties (worst-case latency of 500 s)µ

Real-time capable network interface

Isolated core for a real-time application 

.....and for the real-time application: 
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Hardware selection, from Linux perspective

Select hardware:
● Architecture supported by Linux/PREEMPT_RT
● Suitable for the field of application, especially with regard to 

the application requirements:
– certain real-time properties must be fulfilled, in our case a worst-case 

latency of 500 sµ
– real-time capable network interface
– isolated core for running a real-time application

● The OSADL QA-Farm (https://www.osadl.org/?id=850) can be 
helpful for a preselection
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Estimated real-time capabilities

Selected Hardware: 
● x86 Intel Core i5-8265UE

● 1600 MHz
● 4 core / 8 threads
● Expected worst case latency, calculated 

with the rule of thumb 63 s~ µ

t Lat=105∗ 1
freq

⇒ t Lat=105∗ 1

(1.6∗109)
1
s

=62,5 sµ
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Getting the Kernel

Selection criteria for the kernel version: 
● Preferably select the latest longterm version.

(LTS  https://www.kernel.org/category/releases.html)→
● Take a less recent sublevel, if the latest longterm release is not 

supported for real-time.
● Take a more recent kernel version if needed features are not 

available, but prepare for later upgrading to the subsequent 
longterm version. 
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Getting the Kernel

Get Kernel and PREEMPT_RT patches either:
● from git

 https://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-stable-rt
or by:
● Downloading the sources of the vanilla Kernel from 

https://www.kernel.org/pub/linux/kernel/v[x].[y]/ 
● and the corresponding PREEMPT_RT patch from 

https://www.kernel.org/pub/linux/kernel/projects/rt/v[x].[y]/  
● and patching the Kernel with PREEMPT_RT (e.g. by using quilt)
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Getting the Kernel

Get Kernel and PREEMPT_RT patches either:
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https://www.kernel.org/pub/linux/kernel/v[x].[y]/ 
● and the corresponding PREEMPT_RT patch from 

https://www.kernel.org/pub/linux/kernel/projects/rt/v[x].[y]/  
● and patching the Kernel with PREEMPT_RT (e.g. by using quilt)
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Enable CONFIG_PREEMPT_RT under “General Setup”
● Preemption Model  (x) Fully Preemptible Kernel (Real-Time)→
(only available in expert mode, CONFIG_EXPERT)

Disable:
● CONFIG_SLUB_CPU_PARTIAL
● CONFIG_SLUB_DEBUG
● CONFIG_DEBUG_PREEMPT
(Attention: These are enabled in many distro configurations)

Configuring the Kernel
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● Disable Kernel hacking   Debug Oops, Lockups and Hangs  → →
– Detect Hung Task (CONFIG_DETECT_HUNG_TASK)
– Detect Soft Lockups (CONFIG_SOFTLOCKUP_DETECTOR)
– Detect Hard Lockups (CONFIG_HARDLOCKUP_DETECTOR)

● Since many debug options can cause latencies, e.g. 
DEBUG_LOCKDEP, only activate these when they are needed.

Configuring the Kernel
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In order to have tracing possibilities the following options can 
safely be configured on a production system:
● Kernel hacking   Tracers   → →

– Kernel Function Tracer 
– Enable kprobes-based dynamic events 
– Enable uprobes-based dynamic events

Configuring the Kernel
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Optional (only available with the OSADL add-on patches)
● CPU/Task time and stats accounting  Provide individual CPU →

usage measurement based on idle processing
● Kernel patchset support  Enable access to patchset.tar.gz →

through /proc/patchset.tar.gz

Configuring the Kernel (optional)
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Under “Kernel hacking”, available with the OSADL add-on patches:
● Enable kernel built-in latency histograms at  Kernel hacking  → →

Tracers  →
– Missed Timer Offsets Histogram 
– Scheduling Latency Tracer
– Scheduling Latency Histogram
– Context Switch Time, Histogram, CPU/Task time and stats accounting
– Provide individual CPU usage measurement based on idle processing

Configuring the Kernel (optional)



Programming for Linux PREEMPT_RT:  How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Device driver to facilitate low-level kernel debugging via the 
parallel port under “Device Drivers”, available with the OSADL add-
on patches:
●  Misc devices  Raw output driver for parallel port→

Configuring the Kernel (optional)
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Building the Kernel

$ make -j16 
..
..
Kernel: arch/x86/boot/bzImage is ready (#1)
$ make modules_install install
..
..
$ reboot
..
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Booting the real-time Kernel

$ uname -srv
Linux project 5.10.41-rt42 #1 SMP PREEMPT_RT Mon Mar 
29 14:26:03 CET 2023

  

  

Check if real-time preemption model is enabled: 
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Configuring the operating system

$ for i in /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
do
  echo performance > $i
done

  

  

Set the scaling governor to ”performance” 
● only required while running a real-time application, should be 

restricted to the applicable core:
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Configuring the operating system

$ ls -d1 /sys/devices/system/cpu/cpu0/cpuidle/state?
/sys/devices/system/cpu/cpu0/cpuidle/state0
/sys/devices/system/cpu/cpu0/cpuidle/state1
/sys/devices/system/cpu/cpu0/cpuidle/state2
/sys/devices/system/cpu/cpu0/cpuidle/state3
/sys/devices/system/cpu/cpu0/cpuidle/state4
/sys/devices/system/cpu/cpu0/cpuidle/state5
/sys/devices/system/cpu/cpu0/cpuidle/state6
/sys/devices/system/cpu/cpu0/cpuidle/state7
/sys/devices/system/cpu/cpu0/cpuidle/state8 

  

  

Disable sleep states that can interfere with real-time requirements:

List the available sleep states: 
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Configuring the operating system

Disable sleep states that can interfere with real-time requirements:

List the latencies (in microseconds) caused by a particular state:
$ cat /sys/devices/system/cpu/cpu0/cpuidle/state?/latency
0
2
10
70
85
124
200
480
890
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Configuring the operating system

To enable sleep states that are allowed, depending on the 
requirements, set the maximum latency ( s)µ  in the psedo device
 /dev/cpu_dma_latency
This device must be opened by a program, then written to and kept 
open throughout the run of the program, e.g. setting to “400” 
enables only sleep states the transition time of which is below 400 

s, in our case state 0 -> state 6.µ
int fd = open("/dev/cpu_dma_latency", O_WRONLY);
write(fd, "400", 3);
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Configuring the operating system

$ for i in /sys/devices/system/cpu/cpu[0-9]*
  do
    cd $i
    for j in cpuidle/state*/disable
    do
      echo 1 > $j
    done
  done

  

  

Completely disable CPU sleep states 
● only required while running a real-time application, may be restricted to the applicable 

core and if the latency is too long as given in  
/sys/devices/system/cpu/cpu[0-9]*/cpuidle/state*/latency):
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Configuring the operating system

$ cat /proc/sys/kernel/sched_rt_period_us
1000000
$ cat /proc/sys/kernel/sched_rt_runtime_us
950000

  

  

Set RT_Throttling by setting the 
ratio between  
● RT_Period
● RT_Runtime

RT_Throttling can be disabled by:  
$ echo -1 >/proc/sys/kernel/sched_rt_runtime_us

  

  

1 

0
t(ms)0      500      1000     

  

sched_rt_runtime
sched_rt_period
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System latencies induced by hardware (SMI/NMI)

$ hwlatdetect

  

  

SMIs/NMIs are set up and serviced by BIOS code and not  by 
the Linux kernel. Though, they can spend an inordinate amount 
of time in the handler (sometimes up to milliseconds). 
To detect hardware latencies:
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System latencies induced by hardware (SMI/NMI)
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Measuring real-time capabilities

$ cyclictest -l100000000 -m -Sp98 -i200 -h400 -q >hist.txt

  

  

Installation and usage of cyclictest
● Cyclictest is part of the rt-tests, available as tarball on  

https://mirrors.edge.kernel.org/pub/linux/utils/rt-tests/ or 
via git git://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git
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Latency plot of the real time system
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Hardware: 
x86 Intel Core i5-8265UE @1600 MHz, 
Linux 5.10.41-rt42
Expected maximum latency, 
calculated with the rule of thumb:

t Lat=10
5∗ 1
freq

⇒ t Lat=10
5∗ 1

(1.6∗109)
1
s

=62,5µs
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Additional measurement 
(only available with OSADL add-on patches)

$ mount -t sysfs nodev /sys
$ mount -t debugfs nodev /sys/kernel/debug

  

  

Internal latency measurement with built-in kernel histograms:
● Mount virtual debug filesystem:

● Enable histograms (missed_timer_offsets, wakeup, switchtime, 
timerandwakeup, timerwakeupswitch)

● Histograms per CPU in /sys/kernel/debug/latency_hist/*/CPU*

$ for i in /sys/kernel/debug/latency_hist/enable/*
do
echo 1 > $i
done
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Built in histograms (results)
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List of requirements (real-time)

Real-time properties (worst-case latency of 500 s)µ

Real-time capable network interface

Isolated core for a real-time application 

✔
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Isolate cores for the real-time specific tasks

In order to keep the influence on the real-time processes as low as 
possible, it is recommended to run them on isolated cores. In the 
given use-case, we will therefore reserve one core for the operation 
of the network interface and one for the real-time application:

Core Isolation

1 (#0) no System applications

2 (#1) no System applications

3 (#2) yes Network interface (Interrupts)

4 (#3) yes Reserved for real-time application
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Isolate cores for the real-time specific tasks

The cores can be isolated by setting the following kernel 
commandline parameters:
● isolcpus -> Isolate a given set of CPUs from disturbance
● rcu_nocbs -> Specified list of CPUs is set to no-callback mode from boot 
● nohz_full -> Stop the tick on the specified list of CPUs whenever possible

Isolation of core 3(#2) and 4(#3):
BOOT_IMAGE=/boot/vmlinuz-5.10.41-rt42 isolcpus=2,3 nohz_full=2,3 rcu_nocbs=2,3
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Isolate cores for the real time specific tasks

Move away housekeeping threads from isolated CPUs:
● switch specified CPUs off/on during boot process (e.g. in 

/etc/rc.local or via script)

# echo 0 > /sys/devices/system/cpu/cpu2/online
# echo 0 > /sys/devices/system/cpu/cpu3/online
# echo 1 > /sys/devices/system/cpu/cpu2/online
# echo 1 > /sys/devices/system/cpu/cpu3/online
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Network IRQ routing on specified, isolated core

Irqbalance is a service which can reassign various IRQs to system 
CPUs depending on the workload involved. To avoid this on the RT 
system: 

Set the default IRQ affinity for all interrupts:
$ cd /proc/irq
for i in [0-9]*
do
  echo 0-1 >$i/smp_affinity_list 2>/dev/null
done

  

  

$ systemctl disable irqbalance
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Network IRQ routing on specified, isolated core

Set the affinity of the IRQ of the specific network interface 
(here: 124-128) to force the IRQ on the specific CPU core #3:

● Note: The affinity of the interrupt threads follows the 
hardware routing.

# for i in /proc/irq/12[4-8]
do
  echo 3 >$i/smp_affinity_list
done
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Network IRQ routing on specified, isolated core

Set the priority of the network interrupt threads 
(irq/12[4-8]-enp1s0) in our case to 80
Note: By default all IRQ threads run at SCHED_FIFO 50

Also set the priority of the ksoftirqd on the specific core

$ for i in `pgrep 'irq/[0-9]*-enp1s0'`
do
  chrt -fp 80 $i
done

  

  

$ chrt -fp 80 `pgrep 'ksoftirqd/3'`
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Top (IRQs + Priorities)
top - 18:57:43 up 32 days, 37 min,  2 users,  load average: 0.64, 0.77, 0.75
Tasks: 177 total,   1 running, 176 sleeping,   0 stopped,   0 zombie
%Cpu(s):  0.0 us,  0.2 sy,  0.0 ni, 99.8 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
MiB Mem :   3798.8 total,    480.1 free,    177.2 used,   3141.4 buff/cache
MiB Swap:   8064.0 total,   8064.0 free,      0.0 used.   3555.1 avail Mem 

P     PID USER      PR  NI    VIRT    RES    SHR S  %CPU  %MEM     TIME+ COMMAND                                        
3      46 root      20   0       0      0      0 S   0.0   0.0   0:00.00 cpuhp/3                                        
3      51 root     -81   0       0      0      0 S   0.0   0.0   0:00.00 ksoftirqd/3                                    
3      53 root       0 -20       0      0      0 I   0.0   0.0   0:00.00 kworker/3:0H-events          
3      77 root      20   0       0      0      0 I   0.0   0.0   0:35.72 kworker/3:1-events                             
3     168 root       0 -20       0      0      0 I   0.0   0.0   0:08.21 kworker/3:1H-events       
3     206 root     -51   0       0      0      0 S   0.0   0.0   0:00.00 irq/130-xhci_hcd                               
3    1691 root     -81   0       0      0      0 S   0.0   0.0   0:17.36 irq/124-enp1s0                                 
3    1692 root     -81   0       0      0      0 S   0.0   0.0   0:41.85 irq/125-enp1s0-TxRx-0                          
3    1693 root     -81   0       0      0      0 S   0.0   0.0   0:32.68 irq/126-enp1s0-TxRx-1                          
3    1694 root     -81   0       0      0      0 S   0.0   0.0   0:03.31 irq/127-enp1s0-TxRx-2                          
3    1695 root     -81   0       0      0      0 S   0.0   0.0   0:05.66 irq/128-enp1s0-TxRx-3                          
3    2115 root      20   0       0      0      0 I   0.0   0.0   0:00.00 kworker/3:2                                    
3  225706 root      20   0  142012    716    612 S   0.0   0.0   0:00.00 turbostat                                      
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Measurement results of the isolated IRQs
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Set the affinity of the kernel and RT threads

● Determine the process IDs of all kernel threads and set their 
affinity mask to 0x3 (cores allowed: #0, #1)
– This can be done and verified with the script at: 

https://www.osadl.org/?id=3661
– The affinity can only be set for threads without the 

PF_NO_SETAFFINITY flag 
● Set the affinity mask of the related user-space application to 0x4 

and its priority to 97 (to run the RT task on core #2)
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Measurement results of the Kthreads
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List of requirements (real-time)

Real-time properties (worst-case latency of 500 s)µ

Real-time capable network interface

Isolated core for a real-time application  

✔
✔
✔
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List of requirements (real-time)

Real-time properties (worst-case latency of 500 s)µ

Real-time capable network interface

Isolated core for a real-time application  

✔
✔
✔
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