
Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Programming for Linux PREEMPT_RT:
How to do it the right way?

Configuration of the Linux PREEMPT_RT kernel
and beyond

Alexander Bähr
Open Source Automation Development Lab (OSADL) eG

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Project planning: hardware requirements

Our company is planning a project. The control system for the
new model of a manufacturing machine has to be designed. The
hardware has to fulfill some general aspects:
● Area of application
● Environment
● Required hardware connections, power supply
● Structural conditions, etc.

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

List of requirements (real-time)

Real-time properties (worst-case latency of 500 s)µ

Real-time capable network interface

Isolated core for a real-time application

.....and for the real-time application:

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Hardware selection, from Linux perspective

Select hardware:
● Architecture supported by Linux/PREEMPT_RT
● Suitable for the field of application, especially with regard to

the application requirements:
– certain real-time properties must be fulfilled, in our case a worst-case

latency of 500 sµ
– real-time capable network interface
– isolated core for running a real-time application

● The OSADL QA-Farm (https://www.osadl.org/?id=850) can be
helpful for a preselection

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Estimated real-time capabilities

Selected Hardware:
● x86 Intel Core i5-8265UE

● 1600 MHz
● 4 core / 8 threads
● Expected worst case latency, calculated

with the rule of thumb 63 s~ µ

t Lat=105∗ 1
freq

⇒ t Lat=105∗ 1

(1.6∗109)
1
s

=62,5 sµ

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Getting the Kernel

Selection criteria for the kernel version:
● Preferably select the latest longterm version.

(LTS https://www.kernel.org/category/releases.html)→
● Take a less recent sublevel, if the latest longterm release is not

supported for real-time.
● Take a more recent kernel version if needed features are not

available, but prepare for later upgrading to the subsequent
longterm version.

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Getting the Kernel

Get Kernel and PREEMPT_RT patches either:
● from git

 https://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-stable-rt
or by:
● Downloading the sources of the vanilla Kernel from

https://www.kernel.org/pub/linux/kernel/v[x].[y]/
● and the corresponding PREEMPT_RT patch from

https://www.kernel.org/pub/linux/kernel/projects/rt/v[x].[y]/
● and patching the Kernel with PREEMPT_RT (e.g. by using quilt)

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Getting the Kernel

Get Kernel and PREEMPT_RT patches either:
● from git

 https://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-stable-rt
or by:
● Downloading the sources of the vanilla Kernel from

https://www.kernel.org/pub/linux/kernel/v[x].[y]/
● and the corresponding PREEMPT_RT patch from

https://www.kernel.org/pub/linux/kernel/projects/rt/v[x].[y]/
● and patching the Kernel with PREEMPT_RT (e.g. by using quilt)

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Enable CONFIG_PREEMPT_RT under “General Setup”
● Preemption Model (x) Fully Preemptible Kernel (Real-Time)→
(only available in expert mode, CONFIG_EXPERT)

Disable:
● CONFIG_SLUB_CPU_PARTIAL
● CONFIG_SLUB_DEBUG
● CONFIG_DEBUG_PREEMPT
(Attention: These are enabled in many distro configurations)

Configuring the Kernel

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

● Disable Kernel hacking Debug Oops, Lockups and Hangs → →
– Detect Hung Task (CONFIG_DETECT_HUNG_TASK)
– Detect Soft Lockups (CONFIG_SOFTLOCKUP_DETECTOR)
– Detect Hard Lockups (CONFIG_HARDLOCKUP_DETECTOR)

● Since many debug options can cause latencies, e.g.
DEBUG_LOCKDEP, only activate these when they are needed.

Configuring the Kernel

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

In order to have tracing possibilities the following options can
safely be configured on a production system:
● Kernel hacking Tracers → →

– Kernel Function Tracer
– Enable kprobes-based dynamic events
– Enable uprobes-based dynamic events

Configuring the Kernel

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Optional (only available with the OSADL add-on patches)
● CPU/Task time and stats accounting Provide individual CPU →

usage measurement based on idle processing
● Kernel patchset support Enable access to patchset.tar.gz →

through /proc/patchset.tar.gz

Configuring the Kernel (optional)

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Under “Kernel hacking”, available with the OSADL add-on patches:
● Enable kernel built-in latency histograms at Kernel hacking → →

Tracers →
– Missed Timer Offsets Histogram
– Scheduling Latency Tracer
– Scheduling Latency Histogram
– Context Switch Time, Histogram, CPU/Task time and stats accounting
– Provide individual CPU usage measurement based on idle processing

Configuring the Kernel (optional)

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Device driver to facilitate low-level kernel debugging via the
parallel port under “Device Drivers”, available with the OSADL add-
on patches:
● Misc devices Raw output driver for parallel port→

Configuring the Kernel (optional)

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Building the Kernel

$ make -j16
..
..
Kernel: arch/x86/boot/bzImage is ready (#1)
$ make modules_install install
..
..
$ reboot
..

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Booting the real-time Kernel

$ uname -srv
Linux project 5.10.41-rt42 #1 SMP PREEMPT_RT Mon Mar
29 14:26:03 CET 2023

Check if real-time preemption model is enabled:

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Configuring the operating system

$ for i in /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
do
 echo performance > $i
done

Set the scaling governor to ”performance”
● only required while running a real-time application, should be

restricted to the applicable core:

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Configuring the operating system

$ ls -d1 /sys/devices/system/cpu/cpu0/cpuidle/state?
/sys/devices/system/cpu/cpu0/cpuidle/state0
/sys/devices/system/cpu/cpu0/cpuidle/state1
/sys/devices/system/cpu/cpu0/cpuidle/state2
/sys/devices/system/cpu/cpu0/cpuidle/state3
/sys/devices/system/cpu/cpu0/cpuidle/state4
/sys/devices/system/cpu/cpu0/cpuidle/state5
/sys/devices/system/cpu/cpu0/cpuidle/state6
/sys/devices/system/cpu/cpu0/cpuidle/state7
/sys/devices/system/cpu/cpu0/cpuidle/state8

Disable sleep states that can interfere with real-time requirements:

List the available sleep states:

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Configuring the operating system

Disable sleep states that can interfere with real-time requirements:

List the latencies (in microseconds) caused by a particular state:
$ cat /sys/devices/system/cpu/cpu0/cpuidle/state?/latency
0
2
10
70
85
124
200
480
890

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Configuring the operating system

To enable sleep states that are allowed, depending on the
requirements, set the maximum latency (s)µ in the psedo device
 /dev/cpu_dma_latency
This device must be opened by a program, then written to and kept
open throughout the run of the program, e.g. setting to “400”
enables only sleep states the transition time of which is below 400

s, in our case state 0 -> state 6.µ
int fd = open("/dev/cpu_dma_latency", O_WRONLY);
write(fd, "400", 3);

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Configuring the operating system

$ for i in /sys/devices/system/cpu/cpu[0-9]*
 do
 cd $i
 for j in cpuidle/state*/disable
 do
 echo 1 > $j
 done
 done

Completely disable CPU sleep states
● only required while running a real-time application, may be restricted to the applicable

core and if the latency is too long as given in
/sys/devices/system/cpu/cpu[0-9]*/cpuidle/state*/latency):

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Configuring the operating system

$ cat /proc/sys/kernel/sched_rt_period_us
1000000
$ cat /proc/sys/kernel/sched_rt_runtime_us
950000

Set RT_Throttling by setting the
ratio between
● RT_Period
● RT_Runtime

RT_Throttling can be disabled by:
$ echo -1 >/proc/sys/kernel/sched_rt_runtime_us

1

0
t(ms)0 500 1000

sched_rt_runtime
sched_rt_period

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

System latencies induced by hardware (SMI/NMI)

$ hwlatdetect

SMIs/NMIs are set up and serviced by BIOS code and not by
the Linux kernel. Though, they can spend an inordinate amount
of time in the handler (sometimes up to milliseconds).
To detect hardware latencies:

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

System latencies induced by hardware (SMI/NMI)

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Measuring real-time capabilities

$ cyclictest -l100000000 -m -Sp98 -i200 -h400 -q >hist.txt

Installation and usage of cyclictest
● Cyclictest is part of the rt-tests, available as tarball on

https://mirrors.edge.kernel.org/pub/linux/utils/rt-tests/ or
via git git://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Latency plot of the real time system

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

0 50 100 150 200 250 300 350 400

N
um

be
r o

f l
at

en
cy

 s
am

pl
es

Latency (us) - Maximum 18 us (plotted on 03/25/2023 at 12:43:21 PM)

Latency rackaslot8

CPU0
CPU1
CPU2
CPU3

Hardware:
x86 Intel Core i5-8265UE @1600 MHz,
Linux 5.10.41-rt42
Expected maximum latency,
calculated with the rule of thumb:

t Lat=10
5∗ 1
freq

⇒ t Lat=10
5∗ 1

(1.6∗109)
1
s

=62,5µs

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Additional measurement
(only available with OSADL add-on patches)

$ mount -t sysfs nodev /sys
$ mount -t debugfs nodev /sys/kernel/debug

Internal latency measurement with built-in kernel histograms:
● Mount virtual debug filesystem:

● Enable histograms (missed_timer_offsets, wakeup, switchtime,
timerandwakeup, timerwakeupswitch)

● Histograms per CPU in /sys/kernel/debug/latency_hist/*/CPU*

$ for i in /sys/kernel/debug/latency_hist/enable/*
do
echo 1 > $i
done

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Built in histograms (results)

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

List of requirements (real-time)

Real-time properties (worst-case latency of 500 s)µ

Real-time capable network interface

Isolated core for a real-time application

✔

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Isolate cores for the real-time specific tasks

In order to keep the influence on the real-time processes as low as
possible, it is recommended to run them on isolated cores. In the
given use-case, we will therefore reserve one core for the operation
of the network interface and one for the real-time application:

Core Isolation

1 (#0) no System applications

2 (#1) no System applications

3 (#2) yes Network interface (Interrupts)

4 (#3) yes Reserved for real-time application

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Isolate cores for the real-time specific tasks

The cores can be isolated by setting the following kernel
commandline parameters:
● isolcpus -> Isolate a given set of CPUs from disturbance
● rcu_nocbs -> Specified list of CPUs is set to no-callback mode from boot
● nohz_full -> Stop the tick on the specified list of CPUs whenever possible

Isolation of core 3(#2) and 4(#3):
BOOT_IMAGE=/boot/vmlinuz-5.10.41-rt42 isolcpus=2,3 nohz_full=2,3 rcu_nocbs=2,3

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Isolate cores for the real time specific tasks

Move away housekeeping threads from isolated CPUs:
● switch specified CPUs off/on during boot process (e.g. in

/etc/rc.local or via script)

echo 0 > /sys/devices/system/cpu/cpu2/online
echo 0 > /sys/devices/system/cpu/cpu3/online
echo 1 > /sys/devices/system/cpu/cpu2/online
echo 1 > /sys/devices/system/cpu/cpu3/online

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Network IRQ routing on specified, isolated core

Irqbalance is a service which can reassign various IRQs to system
CPUs depending on the workload involved. To avoid this on the RT
system:

Set the default IRQ affinity for all interrupts:
$ cd /proc/irq
for i in [0-9]*
do
 echo 0-1 >$i/smp_affinity_list 2>/dev/null
done

$ systemctl disable irqbalance

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Network IRQ routing on specified, isolated core

Set the affinity of the IRQ of the specific network interface
(here: 124-128) to force the IRQ on the specific CPU core #3:

● Note: The affinity of the interrupt threads follows the
hardware routing.

for i in /proc/irq/12[4-8]
do
 echo 3 >$i/smp_affinity_list
done

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Network IRQ routing on specified, isolated core

Set the priority of the network interrupt threads
(irq/12[4-8]-enp1s0) in our case to 80
Note: By default all IRQ threads run at SCHED_FIFO 50

Also set the priority of the ksoftirqd on the specific core

$ for i in `pgrep 'irq/[0-9]*-enp1s0'`
do
 chrt -fp 80 $i
done

$ chrt -fp 80 `pgrep 'ksoftirqd/3'`

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Top (IRQs + Priorities)
top - 18:57:43 up 32 days, 37 min, 2 users, load average: 0.64, 0.77, 0.75
Tasks: 177 total, 1 running, 176 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.0 us, 0.2 sy, 0.0 ni, 99.8 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 3798.8 total, 480.1 free, 177.2 used, 3141.4 buff/cache
MiB Swap: 8064.0 total, 8064.0 free, 0.0 used. 3555.1 avail Mem

P PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
3 46 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/3
3 51 root -81 0 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/3
3 53 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kworker/3:0H-events
3 77 root 20 0 0 0 0 I 0.0 0.0 0:35.72 kworker/3:1-events
3 168 root 0 -20 0 0 0 I 0.0 0.0 0:08.21 kworker/3:1H-events
3 206 root -51 0 0 0 0 S 0.0 0.0 0:00.00 irq/130-xhci_hcd
3 1691 root -81 0 0 0 0 S 0.0 0.0 0:17.36 irq/124-enp1s0
3 1692 root -81 0 0 0 0 S 0.0 0.0 0:41.85 irq/125-enp1s0-TxRx-0
3 1693 root -81 0 0 0 0 S 0.0 0.0 0:32.68 irq/126-enp1s0-TxRx-1
3 1694 root -81 0 0 0 0 S 0.0 0.0 0:03.31 irq/127-enp1s0-TxRx-2
3 1695 root -81 0 0 0 0 S 0.0 0.0 0:05.66 irq/128-enp1s0-TxRx-3
3 2115 root 20 0 0 0 0 I 0.0 0.0 0:00.00 kworker/3:2
3 225706 root 20 0 142012 716 612 S 0.0 0.0 0:00.00 turbostat

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Measurement results of the isolated IRQs

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Set the affinity of the kernel and RT threads

● Determine the process IDs of all kernel threads and set their
affinity mask to 0x3 (cores allowed: #0, #1)
– This can be done and verified with the script at:

https://www.osadl.org/?id=3661
– The affinity can only be set for threads without the

PF_NO_SETAFFINITY flag
● Set the affinity mask of the related user-space application to 0x4

and its priority to 97 (to run the RT task on core #2)

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

Measurement results of the Kthreads

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

List of requirements (real-time)

Real-time properties (worst-case latency of 500 s)µ

Real-time capable network interface

Isolated core for a real-time application

✔
✔
✔

Programming for Linux PREEMPT_RT: How to do it the right way?
Configuration of the Linux PREEMPT_RT kernel and beyond

COOL March 29, 2023

List of requirements (real-time)

Real-time properties (worst-case latency of 500 s)µ

Real-time capable network interface

Isolated core for a real-time application

✔
✔
✔

Ful
fill

ed
 Pa

ssin
g th

e u
nit

ove
r to

 the

-

APP
LICA

TION
 de

vel
opm

ent
 de

par
tment

	Linux PREEMPT_RT kernel and beyond
	Hardware selection
	List of requirements (simplified)
	Hardware selection Linux
	Estimated real-time capabilities
	Getting the Kernel (1)
	Getting the Kernel (2)
	Getting the Kernel (3)
	Configuring the Kernel (1)
	Configuring the Kernel (2)
	Configuring the Kernel (4)
	Configuring the Kernel (5)
	Configuring the Kernel (6)
	Configuring the Kernel (7)
	Building the Kernel
	Booting the real-time Kernel
	Configuring the operating system (1)
	Configuring the operating system (2)
	Configuring the operating system (3)
	Configuring the operating system (4)
	Configuring the operating system (5)
	Configuring the operating system (6)
	System latencies induced by hardware (SMI/NMI)
	System latencies induced by hardware (SMI/NMI), Graph
	Measuring real-time capabilities
	Latency plot of the real time system
	Additional Measurement
	Built in histograms (results)
	List of requirements (real-time)
	Isolate cores for the real-time specific tasks
	Isolate cores for the real-time specific tasks (1)
	Isolate cores for the real-time specific tasks (2)
	Isolate cores for the real-time specific tasks (3)
	Network IRQ routing (1)
	Network IRQ routing (2)
	Top (IRQs + Priorities)
	Measurement results of the isolated IRQs
	Set the affinity of the kernel and RT threads
	Measurement results of the Kthreads
	List of requirements (2)
	List of requirements (real-time, end)

