
A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Flutter for embedded systems - a new approach for industrial HMIs

Karsten Herrler

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

1. What is Flutter?

2. Principles of Flutter

3. Testing and Debugging

4. Flutter on Embedded Linux

5. Flutter in comparison to Qt

Agenda

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

What is Flutter?

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

What is Flutter?

• First release was in 2018

• SDK from Google to develop applications for mobile, web, and desktop from a
single codebase

• It's a free and open-source SDK (BSD-3 license, permissive)

• Flutter uses Dart as programming language

• Flutter uses Google's open-source Skia graphic library to render UI, instead of
relying on platform-specific rendering tools

• Impeller is the new graphic library to render UI for iOS, (currently available also
as preview for macOS and Android)

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Flutter – Cross-Platform

• Originally intended for app development for Android and iOS

• Flutter provides a clean interface for platform abstraction, called an Embedder

• Since 2021, application development for Windows, macOS, Linux desktops and Web has also been supported

▪ For these platforms, a standard Embedder is provided

▪ For Embedded Linux there is no standard Embedder provided by Flutter

• Two popular open-source Embedders for the developing of Flutter applications for Embedded Linux are

▪ Flutter Pi (MIT license) for Raspberry Pi 2, 3 and 4

▪ Sony's Flutter Embedder (BSD-3-Clause license) for Embedded Linux platforms with x64 and Arm64 architectures

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Flutter architecture

Flutter architecture, source: Flutter.dev

• Flutter is designed as an extensible, layered system

• It exists as a series of independent libraries that each depend on the
underlying layer

• No layer has privileged access to the layer below

• Every part of the framework level is designed to be optional and
replaceable

• A platform-specific embedder provides an entry point to the
underlying operating system

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Flutter architecture – Framework layer

Flutter architecture, source: Flutter.dev

Consists of three main components:

• Widget layer provides a collection of predefined widgets that can be
used to create a widget tree. Developers can also create custom widgets
using code

• Rendering layer converts the widget tree into pixels and renders them
on the screen. This layer is called whenever there is any change in the
widget's animation, input, or state, and it updates the layout accordingly

• Foundation layer provides foundational classes and building block
services, such as animations and gestures, which enable developers to
abstract away complex implementation details

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Flutter architecture – Engine layer

Flutter architecture, source: Flutter.dev

• Core of the framework and manages the entire application lifecycle

• Is written in C++ and is designed to be platform-independent

• Provides a complete set of low-level services that handle everything
from rendering and layout to animation and gesture recognition

• Includes a virtual machine (VM) called Dart VM, which executes the
application code written in Dart programming language

• Optimized for high performance and provides a fast and smooth user
experience, even on low-end devices

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Flutter architecture – Embedder layer

Flutter architecture, source: Flutter.dev

• Serves as the interface between the Flutter framework and the host
platform

• Integrates the Flutter engine into platform-specific hosts, enabling
Flutter applications to run natively on various devices

• Handles platform-specific tasks such as input handling, accessibility,
rendering, event loops, and provides APIs for communication
between platform-specific code and the Flutter framework

• Is written in a platform-specific language, such as Java and C++ for
Android, Objective-C/Objective-C++ for iOS and macOS, and C++ for
Windows and Linux

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Dart - Overview

• First release was in 2013 (developed by Google)

• Open-source

• Object-oriented (class-based)

• Strong Typing

• Garbage Collection

• Asynchronous Programming (Integrated async / wait)

• Optimized for building UIs

• Dart's sound null safety feature enhances code quality by reducing common errors

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Dart - Coding

• Coding looks like C-style language

• Entry point of a Dart application is the main() method

• Dart classes only support single inheritance, but a class can have many
implementations of Interfaces

• Dart has static type inference; the code treats the variable according to what it
contains

• All data types are objects (including numbers), so the default value is null

• A return type of a method is not required in the method signature

• The keyword new used before the constructor for object creation is optional

• Method signatures can include a default value to the parameters passed

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Folder structure of a Flutter project

• Default structure is created by the CLI with the command: flutter create <DIRECTORY>

• android/ios Directory: contains native platform-specific code for Android and iOS

• lib Directory: houses the Dart code that makes up the core functionality of your Flutter app. Your app's main entry point, typically
named main.dart, resides here. You'll create custom widgets, screens, and logic within this directory

• build Directory: contains compiled code of your project

• asset Directory: used to store static files such as images, fonts, and JSON data that your app may need

• web Directory: contains the web-specific code and assets necessary for running your app in a web browser

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Folder structure of a Flutter project

• pubspec.yaml: manages your project's dependencies, defines metadata about your app, and specifies assets

• analysis_option.yaml: configures Dart Analyzer which will check all your codes and if your codes has any conflict with the
configurations than IDE will give an error or warning.

• app.iml: used for the project structure in JetBrains IDEs, it is not specific to Flutter. This file is basically a metadata for IDEs to know
how to structure the project and which folders are used for what

• pubspec.lock: contains all package version, dependency and description information used in the project

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Ecosystem - Toolset

• CLI (Command Line Interface)

▪ almost everything can be done in the terminal

▪ powerful tool that allows developers to interact with the Flutter
framework and manage various aspects of their Flutter projects

• Package Repository pub.dev

▪ shared packages contributed by other developers to the Flutter and
Dart ecosystems

▪ Install package with flutter pub get
▪ Package dependencies must be added to the pubspec.yaml file

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Ecosystem - Toolset

• VSCode-Integration

• Hot Reload & Hot Restart

• Flutter inspector (Debugger for Layout issues)

• CPU Profiler

• Just-In-Time (JIT) compilation for debug version

• Ahead-Of-Time (AOT) compilation for release version

Flutter inspector

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Hot reload in detail

Functionality

• Works by injecting updated source code files into the running Dart Virtual Machine (only in develop mode)

• Updates classes with new versions of fields and functions and rebuilds the widget tree to reflect changes quickly

Benefits

• Efficiency: Enables quick iteration, refinement of app design, and reducing development time significantly

• Real-time Updates: Changes to the code are immediately visible on the emulator or device instantly without a full application restart

• State Preservation: Hot Reload rebuilds the widget tree but retains the app state as it was before the changes, allowing developers to
continue testing without losing their current state

Limitations

• Performance in extremely large projects with thousands of classes might have longer reload times

• Complex changes, for more complex modifications that affect the entire application or involve significant structural alterations, Hot
Reload may not be as effective

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Ecosystem - IDEs

• Flutter comes with a Language Server Protocol (LSP)

▪ provides auto completion, go-to-definition, find all references, and more

• Popular IDEs

▪ Visual Studio Code (VSCode)

▪ Android Studio

▪ IntelliJ IDEA

• Others

▪ Kate (KDE Advanced Text Editor)

▪ Emacs

▪ Atom

▪ Sublime Text

▪ (Neo-)Vim

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Why using Flutter?

• Free and open-source (permissive licensing)

• Extensive documentation and tutorials on Flutter's site

• Cross-platform support => Single code base for multiple platforms (Android, iOS, Windows, macOS, Linux, Web)

• High performance (Flutter uses Skia/Impeller graphics engine, just like Chrome and Android)

• Wide range of customizable widgets for UI design

• Hot reload => Fast development cycle

• Easy to learn

• Offers an automated testing toolset for unit test, widget test and integration test

• Strong community support

• Easy integration of 3rd party packages from a central repository (https://pub.dev)

https://pub.dev/

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Companies and Apps Using Flutter

• Web/Mobile

▪ Alibaba

▪ Google Pay

▪ eBay Motors

▪ Groupon

▪ Etsy

▪ Superlist

• Embedded Systems

▪ Toyota

▪ BMW

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Principles of Flutter

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Flutter – Think declaratively

// Imperative style
b.setColor(red)
b.clearChildren()
ViewC c3 = new ViewC(...)
b.add(c3)

// Declarative style
return ViewB(

color: red,
child: const ViewC(),

);

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Flutter – Think declaratively

• A change of the state, triggers a redraw of the user interface

• There is only one code path for any state in the UI

• UI is only described once for any given state

• Pros

▪ Code readability and conciseness

▪ Declarative programs are generally simpler, safer, and more maintainable

▪ Immutable objects are easier to work with as they can only be in one state, reducing the risk of bugs related to mutable state

• Cons

▪ It can be more difficult to understand for beginner with experience in imperative programming

▪ Declarative approach might not seem as intuitive as the imperative style

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Widget-based rendering system

• Flutter apps start with a single root widget, building the entire UI as a tree of widgets.

• In Flutter everything is a widget and serves as the basic building blocks for UI elements.

• Flutter utilizes a Widget Tree, Element Tree, and Render Tree to efficiently render UI changes

• These three concepts work together to ensure that only the necessary parts of the UI are updated without rebuilding the entire
interface

• The RenderObject is responsible for laying out UI elements based on constraints and painting the visual representation of widgets
on the screen

• It participates in the painting pipeline to render the UI efficiently and manages layers for composing the final UI

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Widget-based rendering system

Layout and rendering, source: Flutter.dev

A company of the www.basyskom.com | sales@basyskom.com Protection notice DIN34 / ISO16016

• Does not maintain internal state and are immutable once built

• Cannot trigger rebuilds and remain static throughout the
application's runtime

• Does not react to user interactions

• Ideal for displaying static content that does not change during
runtime like texts, icons, or images

• Lightweight and efficient due to their static nature

• Single class

StatelessWidget

class GreenFrog extends StatelessWidget {
const GreenFrog({ super.key });

@override
Widget build(BuildContext context) {

return Container(color: const Color(0xFF2DBD3A));
}

}

StatefulWidget class, source: Flutter.dev

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

State management

Internal classes

• Stateful Widget

• InheritedWidget / InheritedModel

3rd party packages

• Provider

• BLoC

• Riverpod

• GetX

• MobX

• Redux

• Fish-Redux

A company of the www.basyskom.com | sales@basyskom.com Protection notice DIN34 / ISO16016

• Can update their internal state over time

• Can rebuild when their state changes, allowing for dynamic
updates

• Respond to user interactions and can change appearance or
behavior based on various factors

• Suitable for handling dynamic data and widgets by managing
mutable state

• Slightly more overhead compare to stateless widgets due to
managing mutable state

• Two classes: Widget + State

• Whenever you mutate a state object, you must call setState()
to signal the framework to update the user interface by calling
the State’s build method again

StatefulWidget
class MyCounter extends StatefulWidget {

const MyCounter({super.key});

@override
State<MyCounter> createState() => _MyCounterState();

}

class _MyCounterState extends State<MyCounter> {
int _counter = 0;

void _incrementCounter() {
setState(() {

_counter++;
});

}

@override
Widget build(BuildContext context) {

return Scaffold(
body: Center(
child: Text(

'$_counter',
style: Theme.of(context).textTheme.headlineMedium,

),
),
floatingActionButton: FloatingActionButton(
onPressed: _incrementCounter,
child: const Icon(Icons.add),

),
);

}
}

A company of the www.basyskom.com | sales@basyskom.com Protection notice DIN34 / ISO16016

• Useful for passing data down the widget tree efficiently
without the need for prop drilling

• It's immutable and stateless but allows widget to subscribe to
changes in the inherited data

• Simplifies data transfer across the widget tree by providing a
centralized way to share data

• Useful for sharing configuration settings, themes, or
application-wide data across multiple widgets without passing
them explicitly through constructors

• Limited reusability and scalability, especially as the app grows
in complexity

• Suitable for small apps due to its limitations in handling larger
and more complex applications

InheritedWidget

InheritedWidget class, source: Flutter.dev

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Testing and Debugging

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Testing Tools

• Flutter Testing library

▪ Built-in test library

▪ flutter_test package for writing unit tests and widget tests

▪ integration_test package for writing integration tests

• Mockito

▪ Popular mocking framework for writing unit tests

▪ Mock objects are objects that simulate the behavior of real objects

▪ Useful for testing code that depends on external services or APIs

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Testing Tools

• Flutter Driver

▪ Extension by the flutter_driver package

▪ Tool for writing integration tests that interact with a running app on a real device or emulator

▪ Integration tests are used to verify that different parts of the app work together correctly

▪ Useful for testing user interfaces and navigation

▪ Provides APIs for interacting with the app’s UI elements, such as tapping buttons, filling out forms, and scrolling through lists

▪ Also provides APIs for interacting with the device, such as taking screenshots and retrieving device information

• Code coverage tools

▪ Run "flutter test --coverage"

▪ Third-party: lcov, codecov

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Debugging Tools

• Built-in source-level debugger for VSCode, Android Studio and IntelliJ IDEA

• Flutter DevTools

▪ UI Inspector: Inspect UI Layout and state of a Flutter app

▪ Performance Diagnostics: Diagnosing UI jank performance issues, CPU profiling, network profiling, memory issue debugging, and
analyzing code and app size for optimization

▪ General Log Information: Provides access to general log and diagnostics information about running Flutter or Dart command-line
apps

• Debug-Mode

▪ Enables Debugging, Hot Reload, Assertions and Service extensions

• Profile-Mode

▪ For performance analysis

▪ Similar to Release-Mode, but enables some Service extensions, tracing and source-level debugging can connect to the process

• flutter_gdb: Remote debugging of the Flutter engine running within an Android app process with GDB

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Flutter linter

• Maintained by the Dart team (https://pub.dev/packages/flutter_lints)

• Helps developers maintain code quality by enforcing coding standards and identifying potential issues

• Provides a set of rules and recommendations to ensure code consistency, readability, and maintainability

• Helps developers with best practice compliance and avoidance of common development pitfalls

• Developers can integrate the Flutter Linter into their projects by configuring the analyis_options.yaml file with the desired lint
rules

• By running the linter as part of the development process, developers can identify and address issues early on, resulting in cleaner and
more efficient code

• Benefits:

▪ Code Consistency: The linter promotes consistent coding styles and practices across Flutter projects, making it easier for
developers to collaborate and maintain codebases

▪ Error Prevention: By highlighting potential issues and enforcing best practices, the linter helps prevent common errors and
improves code quality

▪ Performance Optimization: The linter rules include performance optimizations that can help developers write more efficient
Flutter code for better app performance

https://pub.dev/packages/flutter_lints

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Flutter on Embedded Linux

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Why did we need to create a new embedder for Embedded Linux?

Requirements for embedded systems are not the same as those for desktop systems

• Flutter desktop for Linux uses GTK/GDK and X11 => requires a lot of dependent libraries

• Embedded devices are generally more limited in CPU, physical memory, storages => only use as many libraries as necessary

• Embedder for Embedded Linux doesn't use GTK/GDK and X11 at all, it uses Wayland or DRM backends

Flutter desktop for Linux

source: https://github.com/sony/flutter-embedded-linux/wiki/What%27s-
the-difference-between-Linux-desktop-and-Embedded-Linux

Flutter for Embedded Linux

source: https://github.com/sony/flutter-embedded-linux/wiki/What%27s-
the-difference-between-Linux-desktop-and-Embedded-Linux

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Flutter on Raspberry Pi

• GitHub project: flutter-pi (https://github.com/ardera/flutter-pi)

• Good choice for developing Flutter applications on Raspberry Pi

• Light-weight Flutter Engine Embedder for Raspberry Pi

• Also runs without X11 => boot into command-line is sufficient

• flutter-pi is tested on a Raspberry Pi 4 2GB

• Known working boards

▪ Pi 2, 3 and 4 (even the 512MB models)

▪ Pi Zero 2 (W)

• Should work on other Linux platforms, with following conditions

▪ support for hardware 3D acceleration, more precisely support for kernel-modesetting (KMS) and the direct rendering infrastructure
(DRI)

▪ CPU architecture is one of ARMv7, ARMv8, x86 or x86 64bit

• flutter-pi won't work on Pi Zero or Pi 1

https://github.com/ardera/flutter-pi

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

How to run an application with flutter-pi

Detailed instructions are available under
https://github.com/ardera/flutter-pi?tab=readme-ov-file#-building-flutter-pi-on-the-raspberry-pi

1. Build and install the flutter-pi project and its dependencies on your Raspberry Pi

2. Prepare your host development machine (You can't use your Raspberry Pi as your development machine)

▪ Install Flutter SDK (at least version 3.10.5)

▪ Install flutterpi_tool: flutter pub global activate flutterpi_tool

3. Build the application bundle on your host development machine using the flutterpi_tool and deploy the bundle using rsync or scp to
the Raspberry Pi

4. Running your application with flutter-pi on your Raspberry Pi

https://github.com/ardera/flutter-pi?tab=readme-ov-file

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Performance

Graphical Performance

• Most of the Apps inside the Flutter SDK examples are smooth (50-60 fps) on the Pi 4 2GB and Pi 3 A+.

Touchscreen latency

• Touchscreen driver in the raspbian kernel repeatedly polls the touchscreen at 60 Hz
=> average delay of 17 ms (minimum 0 ms, maximum 34 ms)

• Due to a bug, the Linux side only polls at 25Hz, which makes touch applications look terrible
=> Dragging something in a touch application appears very sluggish

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Useful Packages for flutter-pi

Name Description

flutterpi_tool Tool to make developing and distributing apps for flutter-pi
easier.

flutterpi_gstreamer_video_player Official video player implementation for flutter-pi.

https://pub.dev/packages/flutterpi_tool
https://pub.dev/packages/flutterpi_gstreamer_video_player

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Flutter for Embedded Linux (eLinux)

• GitHub project: flutter-embedded-linux (https://github.com/sony/flutter-embedded-linux/)

• More general Flutter embedder optimized for embedded Linux systems, not just Raspberry Pi

• The goal is to integrate the embedder into the Flutter engine as the standard embedded Linux embedder

• Features

▪ More light-weight than Flutter desktop for Linux (Not using X11 and GTK)

▪ Minimal dependent libraries

▪ Main target is arm64 devices

• Embedded software development

▪ Cross-building from x64 to arm64 support

▪ Install/uninstall/debug to remote target devices

• Flutter plugins support

• Display backends: Wayland, X11, Direct rendering module (DRM), Generic Buffer Management (GBM), EGLStream for NVIDIA devices

• Keyboard, mouse and touch inputs support

https://github.com/sony/flutter-embedded-linux/

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Useful packages for the Sony Embedder

Name Description

flutter-embedded-linux Flutter Embedder for eLinux
supports x86 and Arm64 (aarch64, ARMv8) architectures on

which supports either Wayland backend or DRM backend

flutter-elinux Flutter tools for eLinux
non-official extension to Flutter SDK to build and debug

Flutter apps for embedded Linux devices

flutter-elinux-plugins Flutter Plugins for eLinux (e.g. video player, camera)

meta-flutter Yocto recipes of eLinux embedding for Flutter

https://github.com/sony/flutter-embedded-linux
https://github.com/sony/flutter-elinux
https://github.com/sony/flutter-elinux-plugins
https://github.com/sony/meta-flutter

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Tested devices

Board / SoC Vendor OS /BSP Backend

Jetson Orin Nano NVIDIA JetPack 5.1.1 Wayland / X11

Jetson Nano NVIDIA JetPack 4.3 Wayland / X11 / DRM

Raspberry Pi 5
Raspberry Pi
Foundation

Raspberry Pi OS Wayland / X11 / DRM

Raspberry Pi 4
Model B

Raspberry Pi
Foundation

Ubuntu 20.10 Wayland / DRM

i.MX 8M Quad EVK NXP Sumo (kernel 4.14.98) Wayland

i.MX 8M Mini EVKB NXP Zeus (kernel 5.4.70) Wayland

RB5 Development
Kit

Qualcomm Ubuntu 18.04.05 DRM

Desktop (x86_64) Intel Ubuntu 20.04 Wayland / X11 / DRM

QEMU (x86_64) QEMU
AGL (Automotive Grade
Linux) koi

Wayland / DRM

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Useful packages for Embedded Linux

Name Description

flutter_gpiod GPIO control support for dart/flutter, uses kernel interfaces
directly for more performance.

linux_serial Serial Port support for dart/flutter, uses kernel interfaces
directly for more performance.

linux_spidev SPI bus support for dart/flutter, uses kernel interfaces directly
for more performance.

dart_periphery All-in-one package GPIO, I2C, SPI, Serial, PWM, Led, MMIO
support using c-periphery.

charset_converter Encode and decode charsets using platform built-in converter.

https://pub.dev/packages/flutter_gpiod
https://pub.dev/packages/linux_serial
https://pub.dev/packages/linux_spidev
https://pub.dev/packages/dart_periphery
https://pub.dev/packages/charset_converter

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Flutter in comparison to Qt Quick

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

What is Qt Quick?

• is the current top dog for doing Embedded Linux HMIs

• is part of the Qt framework

▪ Qt is widely used in a variety of applications, including desktop software, mobile apps, embedded
systems, and even some web applications

▪ Qt is a powerful and versatile application framework that enables developers to create multi-platform
software applications with a consistent user experience across different operating systems and devices

• is a user interface technology that allows developers to create fluid and dynamic user interfaces and cross-
platform deployment

• uses a declarative language called QML (Qt Markup Language)

• provides a QML API for UI development and a C++ API for extending QML applications, allowing for a
smooth integration between the declarative UI and the underlying application logic

• can be used in conjunction with other Qt modules to create complete applications

• is optimized for hardware rendering and provides high runtime performance

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Flutter in comparison to Qt Quick

Pros:

• Flutter is free with a permissive FOSS license

• Hot reload makes the development and debugging applications less time-consuming

• Dart is easier to learn, C++ has a steep learning curve

• Automatic memory management avoids memory leaks and other errors

• Rich set of predefined widgets and extensive capabilities for creating complex custom widgets

• Flutter has better support for 3rd party packages in a central repository (https://pub.dev)

• Flutter is better optimized for mobile development than Qt

• Google is a big company with a big community

https://pub.dev/

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Flutter in comparison to Qt Quick

Cons:

• Flutter applications tend to have larger sizes

• C++ has higher performance and better efficiency than Dart

• C++ delivers the best results for extensive calculations that require significant CPU utilization

• Qt is better integrated into the platform, so it's a little bit easier to communicate with the native platform and the external devices

• Qt is more mature and stable framework with a long history

• Qt has LTS versions

• Qt has a large number of built-in features

• Internationalization is better solved in Qt (Qt Linguist, lupdate, lrelease)

• The Qt company is a European company and is more responsive to customer needs than Google

• Google tends to close projects quickly

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Useful links

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Useful links for Flutter and Dart

• Flutter documentation
https://docs.flutter.dev/

• Flutter YouTube channel
https://www.youtube.com/flutterdev

• Flutter architectural overview
https://docs.flutter.dev/resources/architectural-overview

• Performance best practices
https://docs.flutter.dev/perf/best-practices

• Dart documentation
https://dart.dev/guides

• Development of a first Flutter app
https://codelabs.developers.google.com/codelabs/flutter-codelab-first#0

https://docs.flutter.dev/
https://www.youtube.com/flutterdev
https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/perf/best-practices
https://dart.dev/guides
https://codelabs.developers.google.com/codelabs/flutter-codelab-first

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Useful links for Embedded Flutter

• Industrial Flutter
https://www.industrialflutter.com/

• Sony Embedded Linux Embedder for Flutter
https://github.com/sony/flutter-embedded-linux

• Raspberry Pi Embedder for Flutter
https://github.com/ardera/flutter-pi

https://www.industrialflutter.com/
https://github.com/sony/flutter-embedded-linux
https://github.com/ardera/flutter-pi

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Conclusion

A company of the www.basyskom.com| sales@basyskom.com Protection notice DIN34 / ISO16016

Conclusion

• Flutter is a well-established cross-platform UI toolkit from the mobile space

• Flutter is an open-source framework with a large and active community

• Flutter has a rich package ecosystem

• Flutter is easy to learn and provides excellent opportunities for rapid development of custom UIs

• Its excellent tooling and good performance also make it an interesting choice for Embedded Linux applications

	Slide 1
	Slide 2: Agenda
	Slide 3
	Slide 4: What is Flutter?
	Slide 5: Flutter – Cross-Platform
	Slide 6: Flutter architecture
	Slide 7: Flutter architecture – Framework layer
	Slide 8: Flutter architecture – Engine layer
	Slide 9: Flutter architecture – Embedder layer
	Slide 10: Dart - Overview
	Slide 11: Dart - Coding
	Slide 12: Folder structure of a Flutter project
	Slide 13: Folder structure of a Flutter project
	Slide 14: Ecosystem - Toolset
	Slide 15: Ecosystem - Toolset
	Slide 16: Hot reload in detail
	Slide 17: Ecosystem - IDEs
	Slide 18: Why using Flutter?
	Slide 19: Companies and Apps Using Flutter
	Slide 20
	Slide 21: Flutter – Think declaratively
	Slide 22: Flutter – Think declaratively
	Slide 23: Widget-based rendering system
	Slide 24: Widget-based rendering system
	Slide 25: StatelessWidget
	Slide 26: State management
	Slide 27: StatefulWidget
	Slide 28: InheritedWidget
	Slide 29
	Slide 30: Testing Tools
	Slide 31: Testing Tools
	Slide 32: Debugging Tools
	Slide 33: Flutter linter
	Slide 34
	Slide 35: Why did we need to create a new embedder for Embedded Linux?
	Slide 36: Flutter on Raspberry Pi
	Slide 37: How to run an application with flutter-pi
	Slide 38: Performance
	Slide 39: Useful Packages for flutter-pi
	Slide 40: Flutter for Embedded Linux (eLinux)
	Slide 41: Useful packages for the Sony Embedder
	Slide 42: Tested devices
	Slide 43: Useful packages for Embedded Linux
	Slide 44
	Slide 45: What is Qt Quick?
	Slide 46: Flutter in comparison to Qt Quick
	Slide 47: Flutter in comparison to Qt Quick
	Slide 48
	Slide 49: Useful links for Flutter and Dart
	Slide 50: Useful links for Embedded Flutter
	Slide 51
	Slide 52: Conclusion

