Open Source software copyright issues with special
focus on redistributing Docker images

Basic lecture: Copyright basics, adapter's copyright

Carsten Emde
Open Source Automation Development Lab (OSADL) eG

" oRglice COOL — Compact OSADL Online Lectures, October, 22, 2020
u - Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Open Source Automation Development Lab eG

Copyright (1)

* International copyright law rules that exclusive rights of use (/.e. to copy and to distri-
bute) are granted to an author of a work. These rights may be licensed to third parties.
* A work is any piece of art or literature that
— was created by a human being,

— IS perceivable by a human being,
— IS the result of an individual creativity.

 Software is considered a literary work and as such is protected by copyright law.

» (Copyright is granted automatically and immediately when a work is created; it does
not require any formality such as registration.

COOL — Compact OSADL Online Lectures, October, 22, 2020
u p— Basic lecture: Copyright basics, adapter's copyright @SH DL
COMPACT OSADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg Dpen Soure A

utomation Development Lab eG

Copyright (2)

* To copy and distribute a work without permission constitutes an infringement of law
that may entail serious consequences, since the right holder may assert claims against
the offender, for example, that:

— the offender must inform all unlawful recipients of the work to stop using It,
— the offender must provide lists of all unlawful recipients to the author,

— all unauthorized copies are physically destroyed,
— penalties are imposed for infringement of copyright law.

COOL — Compact OSADL Online Lectures, October, 22, 2020
u p— Basic lecture: Copyright basics, adapter's copyright @SH DL
COMPACT OSADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg Development Lab G

Copyright (2)

* To copy and distribute a work without permission constitutes an infringement of law
that may entail serious consequences, since the right holder may assert claims against
the offender, for example, that:

— the offender must inform all unlawful recipients of the work to stop using It,
— the offender must provide lists of all unlawful recipients to the author,

— all unauthorized copies are physically destroyed,
— penalties are imposed for infringement of copyright law.

Copyright law is a sharp sword that grants
considerable rights to an author of a work.

F(]()’ oegghrce, COOL — Compact OSADL Online Lectures, October, 22, 2020 (’*
u [Basic lecture: Cppyrlght basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

on Development Lab eG

Copyright and adaptor’s copyright

* When an author adapts a work of another author with permission a so-called
adapter’s copyright is granted. The adapter’s copyright includes the same rights as
the rights of the primary author:

— Free selection of type of license
— Free selection of license conditions

* Alicensee of an adapted work must fulfill all license conditions of each author. The
adapted work is called a derivative of the original work.

* The license conditions of the two authors must not contradict each other. If they do,
the licenses are “incompatible” and the work may not be licensed at all.

COOL — Compact OSADL Online Lectures, October, 22, 2020
u p— Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Adapter’'s copyright in software

 There is probably no software that is not sooner or later adapted (fixing
bugs, implementing new features, considering altered conditions).

 Why is it important to know whether a software adaptation is creating a
derivative work?

— |f derivative work: Licenses must be compatible, and obligations of both licenses
must be fulfilled.

— If no derivative work: Obligations of every license must be fulfilled, but this may
be done independently. Licenses may be incompatible.

COOL — Compact OSADL Online Lectures, October, 22, 2020
u p— Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

How to find out whether a software adaptation
creates a derivative work?

1. Find out what constitutes a derivative work in non-software works.

2. Transpose the findings to software.

3. Check out the various ways two software components may interact and
decide whether they create a derivative work according to
» Mainstream interpretation of copyright law
* View of the Free Software Foundation (FSF)
* Recommendation of OSADL

cooLS

COMPACT OSADL ONLINE LECTURES

COOL — Compact OSADL Online Lectures, October, 22, 2020
Basic lecture: Copyright basics, adapter's copyright @SH DL
Open Source Automation Development Lab (OSADL), Heidelberg

Open Source Automation Development Lab eG

How to find out whether a software adaptation
creates a derivative work?

1. Find out what constitutes a derivative work in non-software wr;a ““n

2. Transpose the findings to software. WEN "\ 1

3
3. Check out the various \wa e THE: o\\?\)\' QL\(.‘ “— s inay interact and
decide ! "\\E\\ \)ESYX\\B%?_ \&\)E\é 3“““5‘5’ v\\:ork according to
-“.\\S 13 ‘:\“\ '3 'K\'\E ‘Zuoi of copyright law
/ Gi the Free Software Foundation (FSF)
* Recommendation of 0SADL

" oRglice COOL — Compact OSADL Online Lectures, October, 22, 2020
u - Basic lecture: Copyright basics, adapter's copyright @SH DL
COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Open Source Automation Development Lab eG

Painted ...

Mona Lisa
Leonardo da Vinci
1503 to 1506, until 15177

"[]()’ COOL — Compact OSADL Online Lectures, October, 22, 2020 (’*
u [Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Open Source Automation Development Lab eG

... and painted on top

: '

¥

Mona Lisa
Adapted by Marcel Duchamp
1919

LHOOQ

"0(]’ COOL — Compact OSADL Online Lectures, October, 22, 2020
u [Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Open Source Automation Development Lab eG

... and painted on top

i &

Painting on top of an existing painting is known to
create a derivative work. The two works merge in such
a way that they can no longer be separated without
destroying the new work.

What would be the software equivalence of painting
on top of an existing painting?

LHOOQ

" COOL — Compact OSADL Online Lectures, October, 22, 2020
u [Basic lecture: Copyright basics, adapter's copyright @SHDL
Open Source Automation Development Lab (OSADL), Heidelberg

COMPACT OSADL ONLINE LECTURES

Open Source Automation Development Lab eG

... and painted on top

i &

Painting on top of an existing painting is known to
create a derivative work. The two works merge in such
a way that they can no longer be separated without
destroying the new work.

What would be the software equivalence of painting
on top of an existing painting?

Let’s have a look at various scenarios.

LHOOQ

" COOL — Compact OSADL Online Lectures, October, 22, 2020
u [Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Open Source Automation Development Lab eG

Scenario 1: Modify existing source code

Before applying the modification:

int a; Declare the integer variable named “a”

a=1; Assign a value of 1 to the integer variable “a”

"0(]’ orgglce COOL — Compact OSADL Online Lectures, October, 22, 2020 (’*
u [Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Open Source Automation Development Lab eG

Scenario 1: Modify existing source code

After applying the modification:

int a;
int condition;

if (condition)

a = 2;
else
a=1;

GO0

COMPACT OSADL ONLINE LECTURES

Declare the integer variable named “a”
Declare the integer variable named “condition”

Test whether the variable “condition” is true or not
If “condition” is true, assign a value of 2 to the variable “a”

w_m

If “condition” is false, assign a value of 1 to the variable “a

COOL — Compact OSADL Online Lectures, October, 22, 2020
Basic lecture: Copyright basics, adapter's copyright
Open Source Automation Development Lab (OSADL), Heidelberg

{OSADL

Open Source Automation Development Lab eG

Scenario 1: Modify existing source code

The related patch file to apply the above modification would look like:

int a;
+int condition;

-a = 1;

+if (condition)
+ a = 2;

+else

+ a=1;

n[)(]l COOL — Compact OSADL Online Lectures, October, 22, 2020 (’*
u [Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Open Source Automation Development Lab eG

Scenario 1: Modify existing source code

Will this result in a derivative work?

Mainstream interpretation of copyright law ~ View of FSF Recommendation of 0SADL

Yes Yes Yes

n[](]I oRgce COOL — Compact OSADL Online Lectures, October, 22, 2020 (’*
u [Basic lecture: Copyright basics, adapter's copyright @SH DL
Open Source A

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

utomation Development Lab eG

Scenario 2: Add a function to a single source
code file and call it from code of this file

Before applying the modification:

int a; Declare the integer variable named “a”

a=1; Assign a value of 1 to the integer variable “a”

" oRglice COOL — Compact OSADL Online Lectures, October, 22, 2020
u - Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT OSADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg Source Automaton Development Lo o6

Scenario 2: Add a function to a single source
code file and call it from code of this file

After applying the modification:

int condition; Declare the integer variable named “condition”
int set() Define a function named “set” that returns an integer value
{
if (condition) lest whether the variable “condition” is true or not
return 2; If “condition” is true, return the value 2
else
return 1; If “condition” is false, return the value 1
}
int a; Declare the integer variable named “a”
a = set(); Call the function “set” and assign the return value to the variable “a”

" oRglice COOL — Compact OSADL Online Lectures, October, 22, 2020
u [Basic lecture: Copyright basics, adapter's copyright @SH DL
COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Open Source Automation Development Lab eG

Scenario 2: Add a function to a single source
code file and call it from code of this file

After applying the modification:

int condition; Declare the integer variable named “condition”
int set() Define a function named “set” that returns an integer value
{

lest whether the variable “condition” is true or not
If “condition” is true, return the value 2

if (condition)
return 2;

else

return 1;

If “condition” is false, return the value 1

Declare the integer variable named “a”

a = set(); Call the function “set” and assign the return value to the variable “a”

"0(]’ orgglce COOL — Compact OSADL Online Lectures, October, 22, 2020 (’*
u [Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Open Source Automation Development Lab eG

Scenario 2: Add a function to a single source
code file and call it from code of this file

The related patch would look like:

+int condition;
+int set()

+{

+ 1if (condition)
+ return 2;

+ else

+ return 1;

+}
int a;

-a = 1;
+a = set();

" oRglice COOL — Compact OSADL Online Lectures, October, 22, 2020
u - Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT OSADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg Source Automaton Development Lo o6

Scenario 2: Add a function to a single source
code file and call it from code of this file

Will this result in a derivative work?

Mainstream interpretation of copyright law View of FSF Recommendation of OSADL

Yes Yes Yes

" oRglice COOL — Compact OSADL Online Lectures, October, 22, 2020
u - Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Open Source Automation Development Lab eG

Scenario 3: Provide an additional source code file
with a new function and add a call to that function to
existing source code

This scenario can be realized in two different ways:
1.The additional and the existing source code file are statically linked
together and cannot be separated at run time.

COMPACT OSADL ONLINE LECTURES

Existing source code
. <7
"y o8>

Existing binary code

Val

S

Additional source code

Oy o

Compiler

‘X
Additional binary code

>

Linker

Combined binary code

COOL — Compact OSADL Online Lectures, October, 22, 2020
Basic lecture: Copyright basics, adapter's copyright
Open Source Automation Development Lab (OSADL), Heidelberg

Distributed software

Open Source Automation Development Lab eG

Scenario 3: Provide an additional source code file
with a new function and add a call to that function to
existing source code

This scenario can be realized in two different ways:
2.The additional source code file is organized as a software library and will
dynamically be linked only at run time so the two files will stay separate.

Existing source code —®» Existing binarycode ——#® Existing binary code

. <& . & . <&
. . .

Additional source code ——®» Additional binary code ——#® Additional binary code

Compiler Linker Distributed software

COOL — Compact OSADL Online Lectures, October, 22, 2020
u p— Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Scenario 3: Provide an additional source code file
with a new function and add a call to that function to
existing source code

The way of providing the function, i.e. either inseparably in the same source code file or separately
in another file, has an important implication, as the various Open Source licenses differ from each
other. For example, a particular proprietary software may

* be combined with another software irrespective of whether the components may be separated later on or
not, if the other software is under a “permissive license” such as a BSD-type license

n orgglce COOL — Compact OSADL Online Lectures, October, 22, 2020
u - Basic lecture: Copyright basics, adapter's copyright @SH DL
COMPACT OSADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg Dren Sourco

utomation Development Lab eG

Scenario 3: Provide an additional source code file
with a new function and add a call to that function to
existing source code

The way of providing the function, i.e. either inseparably in the same source code file or separately
in another file, has an important implication, as the various Open Source licenses differ from each
other. For example, a particular proprietary software may

* be combined with another software irrespective of whether the components may be separated later on or
not, if the other software is under a “permissive license” such as a BSD-type license,

* be combined with another software, if the components always can be separated and exchanged

individually, if the other software is under a “license with restricted copyleft” such as the Lesser GNU
Public License (LGPL)

" oRgghree, COOL — Compact OSADL Online Lectures, October, 22, 2020
u - Basic lecture: Copyright basics, adapter's copyright @SH DL
COMPACT OSADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg Dpen Soure A

utomation Development Lab eG

Scenario 3: Provide an additional source code file
with a new function and add a call to that function to
existing source code

The way of providing the function, i.e. either inseparably in the same source code file or separately
in another file, has an important implication, as the various Open Source licenses differ from each
other. For example, a particular proprietary software may

* be combined with another software irrespective of whether the components may be separated later on or
not, if the other software is under a “permissive license” such as a BSD-type license,

* be combined with another software, if the components always can be separated and exchanged

individually, if the other software is under a “license with restricted copyleft” such as the Lesser GNU
Public License (LGPL),

* never be combined with another software, if the other software is under a “license with strong
copyleft” such as the GNU General Public License (GPL).

n[](]I oRgce COOL — Compact OSADL Online Lectures, October, 22, 2020 (’*
u [Basic lecture: Copyright basics, adapter's copyright @SH DL
Open Source A

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

utomation Development Lab eG

Scenario 3: Provide an additional source code file
with a new function and add a call to that function to

existing source code

Proprietary software plus software under a
permissive license, e.g. BSD

Proprietary software plus software under a
license with restricted copyleft, e.g. LGPL

Proprietary software plus software under a
license with strong copyleft, e.g. GPL

Combined hinary code

E@ing binary Eé(ye

COOL — Compact OSADL Online Lectures, October, 22, 2020
Basic lecture: Copyright basics, adapter's copyright
COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Additional binary code

Open Source A

ADL

utomation Development Lab eG

Scenario 3: Provide an additional source code file
with a new function and add a call to that function to
existing source code

Propr_letgry spftware plus software under a Exiting binary coge
permissive license, e.g. BSD Combined binary code S ‘
Additional binary code
. /
Ffropnetar_y softh_are plus software under a Fising binery cge
license with restricted copyleft, e.g. LGPL Combingztary code £ ‘
Additional binary code

Proprietary software plus software under a
license with strong copyleft, e.g. GPL

f‘(](]’ oRce, COOL — Compact OSADL Online Lectures, October, 22, 2020 (’*
u [Basic lecture: Cppyrlght basics, adapter's copynght @SH DL

COMPACT OSADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg Automtion Dovelopment Lab ¢

Scenario 3: Provide an additional source code file
with a new function and add a call to that function to
existing source code

Proprietary software plus software under a
permissive license, e.g. BSD

Proprietary software plus software under a
license with restricted copyleft, e.g. LGPL

Proprietary software plus software under a
license with strong copyleft, e.g. GPL

COO0LS

COMPACT OSADL ONLINE LECTURES

Combined hinary code

Combin ary code

-

Combin ry code

COOL — Compact OSADL Online Lectures, October, 22, 2020
Basic lecture: Copyright basics, adapter's copyright
Open Source Automation Development Lab (OSADL), Heidelberg

E@ing binary (iye

Additional binary code

EQséting binary Eé(pe

Additional binary code

binarW

/

C

Add#ronal binary co

T~

{OSADL

e Automation Development Lab eG

Scenario 3: Provide an additional source code file
with a new function and add a call to that function to

Before applying the modification:

int a;

a =1

CO0IS

COMPACT OSADL ONLINE LECTURES

existing source code

Declare the integer variable named “a”

Assign a value of 1 to the integer variable “a”

COOL — Compact OSADL Online Lectures, October, 22, 2020
Basic lecture: Copyright basics, adapter's copyright
Open Source Automation Development Lab (OSADL), Heidelberg

{OSADL

e Automation Development Lab eG

Scenario 3: Provide an additional source code file
with a new function and add a call to that function to
existing source code

After applying the modification:
Code in a file named code.c:

int a; Declare the integer variable named “a”

a = set(); Call the function “set” and assign the return value to the variable “a”

Code in a separate file named set.c:

int condition; Declare the integer variable named “condition”
int set() Define a function named “set” that returns an integer value
{
if (condition) lest whether the variable “condition” is true or not
return 2; If “condition” is true, return the value 2
else
return 1; If “condition” is false, return the value 1

+
" oRglice COOL — Compact OSADL Online Lectures, October, 22, 2020
u - Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT OSADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg Automtion Dovelopment Lab ¢

Scenario 3: Provide an additional source code file
with a new function and add a call to that function to
existing source code

After applying the modification:
Code in a file named code.c:

int a; Declare the integer variable named “a”

a = set(); Call the function “set” and assign the return value to the variable “a”

Code in a separate file named setc:

int condition; Declare the integer variable named “condition”

int set() Define a function named “set” that returns an integer value
{
if (condition) lest whether the variable “condition” is true or not
return 2; If “condition” is true, return the value 2
else
return 1; If “condition” is false, return the value 1

+
" oRglice COOL — Compact OSADL Online Lectures, October, 22, 2020
u - Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT OSADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg Automtion Dovelopment Lab ¢

Scenario 3: Provide an additional source code file
with a new function and add a call to that function to
existing source code

The related patch would look like:

Index: code.c This indicates that the following patch instructions relate to the file “code.c”
--- code.c.orig This indicates that there was an existing original file “code.c” to be modified
+++ code.c This indicates that the modified file will be “code.c”
@@ -1,3 +1,3 @@ This indicates that the patch deals with lines 1 to 3

int a;

Here come the actual patch instructions
1;
set () ;

I
)
I

+a

n[](]l SBhce COOL — Compact OSADL Online Lectures, October, 22, 2020 (’*
[Basic lecture: Cppynght basics, adapter's copyrlght @SH DL

COMPACT OSADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg Automtion Dovelopment Lab ¢

Scenario 3: Provide an additional source code file
with a new function and add a call to that function to

Index: set.c

existing source code

This indicates that the following patch instructions relate to the file “set.c”

-—— /dev/null
+++ set.c
@@ -0,0 +1,9 @@

+int condition;
+int set()

+{

+ if (condition)
+ return 2;
+ else

+ return 1;

+}
CO0LS

COMPACT OSADL ONLINE LECTURES

This indicates that there was no existing file
This indicates that the new file will be created as “set.c”
This indicates that the patch found 0 lines and added lines 1 to 9

)

> Here come the actual patch instructions

COOL — Compact OSADL Online Lectures, October, 22, 2020
Basic lecture: Copyright basics, adapter's copyright @SH DL

Open Source Automation Development Lab (OSADL), Heidelberg Aot Bovlopmont e 6

Scenario 3: Provide an additional source code file
with a new function and add a call to that function to
existing source code

Will this result in a derivative work, if combined in a single file?

Mainstream interpretation of copyright law View of FSF Recommendation of OSADL

Yes Yes Yes

" oRglice COOL — Compact OSADL Online Lectures, October, 22, 2020
u - Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Open Source Automation Development Lab eG

Scenario 3: Provide an additional source code file
with a new function and add a call to that function to
existing source code

Will this result in a derivative work, if distributed in separate files’

Mainstream interpretation of copyright law View of FSF Recommendation of OSADL

Unknown Yes Yes

" oRglice COOL — Compact OSADL Online Lectures, October, 22, 2020
u - Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Open Source Automation Development Lab eG

Scenario 4: Provide a so-called plugin with a new
function and call that function from existing source
code via function pointer at run-time

This scenario Is similar to scenario 3 except that the existing code may run even if
the additional code is not available. [t may not have the entire functionality, though.
The plugin may optionally be connected at run-time via function pointer.

Existing source code —® Existing binarycode ~—® Existing binary code
ng/ o‘é&&
7o X
Plugin source code —® Pluginbinarycode |~ ® Plugin binary code

Compiler Linker Distributed software

COOL — Compact OSADL Online Lectures, October, 22, 2020
u p— Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Scenario 4: Provide a so-called plugin with a new
function and call that function from existing source
code via function pointer at run-time

C language:
int set() Define a function named “set” that returns an integer value
{
return 1; Retun the value 1 Normal call to a static function
}
int a = set(); Call the function “set” and use the return value

The above source code in Intel assembly language:

<set>: Define the label “set”, this is the start of the subroutine

mov $0x1,%eax Load the value 1 to the machine register “eax”

ret Return from subroutine, this is the end of the subroutine

call <set> Call the subroutine “set” and return from it

(cannot be another address, since “set” is a static address)

move %eax, ... Use the return value for future computation
n orgglce COOL — Compact OSADL Online Lectures, October, 22, 2020
u - Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

e Automation Development Lab eG

Scenario 4: Provide a so-called plugin with a new
function and call that function from existing source
code via function pointer at run-time

C language:

int set() Define a function named “set” that returns an integer value
{

return 1;

Return the value 1 Normal call to a static function

}

int a = set(); Call the function “set” and use the return value

The above source code in Intel assembly language:

<set>: Define the label “set”, this is the start of the subroutine
mov $0x1,%eax Load the value 1 to the machine register “eax”
ret Return from subroutine, this is the end of the subroutine
call <set> Call the subroutine “set” and return from it
(cannot be another address, since “set” is a static address)
move %eax, ... Use the return value for future computation

n oRgce COOL — Compact OSADL Online Lectures, October, 22, 2020
u - Basic lecture: Copyright basics, adapter's copyright @SHDL
Open Source Automation Development Lab (OSADL), Heidelberg

COMPACT OSADL ONLINE LECTURES e Automation Development Lab eG

Scenario 4: Provide a so-called plugin with a new
function and call that function from existing source
code via function pointer at run-time

C language:

int set() Define a function named “set” that returns an integer value
{

return 1;

Return the value 1 Normal call to a static function

}

int a = set(); Call the function “set” and use the return value

The above source code in Intel assembly language:

<set>: Define the label “set”, this is the start of the subroutine
mov $0x1,%eax Load the value 1 to the machine register “eax”
ret Return from subroutine, this is the end of the subroutine
call <set> Call the subroutine “set” and return from it
(cannot be another address, since “set” is a static address)
move %eax, ... Use the return value for future computation

COOL — Compact OSADL Online Lectures, October, 22, 2020

n orglee - i , 22,
UI]()L- Basic lecture: Copyright basics, adapter's copyright i@SH DL

COMPACT OSADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg Automtion Dovelopment Lab ¢

Scenario 4: Provide a so-called plugin with a new
function and call that function from existing source
code via function pointer at run-time

int set() Define a function named “set” that returns an integer value
{ This function may be exchanged by adifferent plugin
return 1; Return the value 1
}
int (*func) () = set; Declare the variable function pointer “func” and assign
the start address of the function “set” to it
int a = func(); Call the function and use the return value

The above source code in Intel assembly language:

<set>: Define the label “set”, this is the start of the subroutine
mov $0x1,%eax Load the value 1 to the machine register “eax”
ret Return from subroutine, this is the end of the subroutine
mov <set>,%rdx Store the address of the function “set” to the machine register “rax”

(could be another address, if desired)

call *}rdx Evaluate the address of the machine register “rdx”, branch to and

return from it
move %eax, ... Use the return value for future computation

Call to a function via variable pointer

"0(]’ COOL — Compact OSADL Online Lectures, October, 22, 2020 (’*
u [Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Open Source Automation Development Lab eG

Scenario 4: Provide a so-called plugin with a new
function and call that function from existing source
code via function pointer at run-time

int set() Define a function named “set” that returns an integer value
{ This function may be exchanged by adifferent plugin
return 1; Return the value 1

int (*func) () = set; Declare the variable function pointer “func” and assign

the start address of the function “set” to it Call to a function via variable pointer

Call the function and use the return value

int a = func();

The above source code in Intel assembly language:

<set>: Define the label “set”, this is the start of the subroutine

mov $0x1,%eax Load the value 1 to the machine register “eax”

ret Return from subroutine, this is the end of the subroutine

mov <set>,%rdx Store the address of the function “set” to the machine register “rax”
(could be another address, if desired)

call *}rdx Evaluate the address of the machine register “rdx”, branch to and
return from it

move %eax, ... Use the return value for future computation

" COOL — Compact OSADL Online Lectures, October, 22, 2020
u [Basic lecture: Copyright basics, adapter's copyright @SH DL
COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Open Source Automation Development Lab eG

Scenario 4: Provide a so-called plugin with a new
function and call that function from existing source
code via function pointer at run-time

int set() Define a function named “set” that returns an integer value
{ This function may be exchanged by adifferent plugin
return 1; Return the value 1

Declare the variable function pointer “func” and assign

the start address of the function “set” to it Call to a function via variable pointer

Call the function and use the return value

int (*func) () = set;

int a = func();

The above source code in Intel assembly language:

<set>: Define the label “set”, this is the start of the subroutine
mov $0x1,%eax Load the value 1 to the machine register “eax”
Return from subroutine, this is the end of the subroutine

ret

Store the address of the function “set” to the machine register “rax”
(could be another address, if desired)

Evaluate the address of the machine register “rdx”, branch to and
return from it

move %eax, ... Use the return value for future computation

"0(]’ COOL — Compact OSADL Online Lectures, October, 22, 2020 (’*
u [Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

mov <set>,’%rdx

call *%rdx

Open Source Automation Development Lab eG

Scenario 4: Provide a so-called plugin with a new
function and call that function from existing source
code via function pointer at run-time

C language:
int set() Define a function named “set” that returns an integer value
{
return 1; Retun the value 1 Normal call to a static function
}
int a = set(); Call the function “set” and use the return value

The above source code in Intel assembly language:

<set>: Define the label “set”, this is the start of the subroutine

mov $0x1,%eax Load the value 1 to the machine register “eax”

ret Return from subroutine, this is the end of the subroutine

call <set> Call the subroutine “set” and return from it

(cannot be another address, since “set” is a static address)

move %eax, ..+ Use the return value for future computation
n orgglce COOL — Compact OSADL Online Lectures, October, 22, 2020
u - Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

e Automation Development Lab eG

Scenario 4: Provide a so-called plugin with a new
function and call that function from existing source
code via function pointer at run-time

int set() Define a function named “set” that returns an integer value
{ This function may be exchanged by adifferent plugin
return 1; Return the value 1
}
int (*func) () = set; Declare the variable function pointer “func” and assign
the start address of the function “set” to it
int a = func(); Call the function and use the return value

The above source code in Intel assembly language:

<set>: Define the label “set”, this is the start of the subroutine
mov $0x1,%eax Load the value 1 to the machine register “eax”
ret Return from subroutine, this is the end of the subroutine
mov <set>,%rd¥ Store the address of the function “set” to the machine register “rax”

(could be another address, if desired)

call *}rdx Evaluate the address of the machine register “rdx”, branch to and

return from it
move %eax, .. Use the return value for future computation

Call to a function via variable pointer

The mechanism is identical

"0(]’ COOL — Compact OSADL Online Lectures, October, 22, 2020 (’*
u [Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Open Source Automation Development Lab eG

Scenario 4: Provide a so-called plugin with a new
function and call that function from existing source
code via function pointer at run-time

Will this result in a derivative work, If the call uses a function pointer?

Mainstream interpretation of copyright law View of FSF Recommendation of OSADL

Unknown Yes Yes

" oRglice COOL — Compact OSADL Online Lectures, October, 22, 2020
u - Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Open Source Automation Development Lab eG

Scenario 5: Any connection between software
components other than by function call

a) User-space program and operating system kernel
b) Compiler and source code

¢) Interpreter and script

Components interact only temporarily,
d) Programs connected via local Unix socket can be separated at any time and may

_ _ work independently elsewhere.
e) Programs connected via local or remote network connection

f) Software connected via local bus (e.g. PCle) interface

g) Programs connected via remote bus (e.g. USB) interface

n[](]I orSEhree, COOL — Compact OSADL Online Lectures, October, 22, 2020 (’*
[Basic lecture: Cppyrlght basics, adapter's copynght @SHDL

COMPACT OSADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg Automtion Dovelopment Lab ¢

Scenario 5: Any connection between software
components other than by function call

Will this result in a derivative work?

Mainstream interpretation of copyright law Assumed view of FSF Recommendation of OSADL

Unknown No No

" oRglice COOL — Compact OSADL Online Lectures, October, 22, 2020
u - Basic lecture: Copyright basics, adapter's copyright @SH DL

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

Scenario 5: Any connection between software
components other than by function call

Will this result in a derivative work?

Mainstream interpretation of copyright law Assumed view of FSF Recommendation of OSADL

Unknown No? No

“However, if two independent programs establish intimate communication by sharing complex data struc-
tures, or shipping them back and forth they might be considered a derivative work.

n[](]I orSEhree, COOL — Compact OSADL Online Lectures, October, 22, 2020 (’*
[Basic lecture: Cppyrlght basics, adapter's copynght @SHDL

COMPACT OSADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg Development Lab G

Rule of thumb (exceptions may apply)

* A derivative work of a software that may trigger licensing issues Is created

when
— existing code is modified inline or
— acall to a newly provided function Is added locally or in a separate file

* A mere aggregate of software components that does not trigger licensing

ISsues Is created, if
— existing code is not modified and
— the software components do not call each other’s functions

F(]()’ oegghrce, COOL — Compact OSADL Online Lectures, October, 22, 2020 (’*
u [Basic lecture: Copyright basics, adapter's copyright @SH DL
Open Source A

COMPACT 0SADL ONLINE LECTURES Open Source Automation Development Lab (OSADL), Heidelberg

utomation Development Lab eG

	Economical and legal basics of Open Source software
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50

