
Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

 Accelerated graphics with real-time. How do
they play together? – Part 2

How accelerated graphics processors may
interact with general-purpose operations

Carsten Emde
Open Source Automation Development Lab (OSADL) eG

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Topics
In theory, there are at least two functional areas where
accelerated graphics processors may interact with general
purpose operations:

1. Memory bus and cache bandwidth

2. Locking during execution of atomic code sections

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Topics
In theory, there are at least two functional areas where
accelerated graphics processors may interact with general
purpose operations:

1. Memory bus and cache bandwidth

2. Locking during execution of atomic code sections

Let’s have a look!

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

OSADL QA Farm system #1 to be examined
● Name: rack0slot2.osadl.org (https://www.osadl.org/?id=1532)
● Distribution: Fedora Linux 35 (Workstation Edition)
● Linux kernel: 5.15.2-rt19, OSADL add-on patches applied
● CPU: x86 Intel Core i7-3770K @3500 MHz (4 cores with HT)
● Formerly named: Sandy Bridge
● Video resolution: 1920 x 1080 pixels
● Video adapter interface: PCI bus
● DRM subsystem: Open source mainline Linux driver

https://www.osadl.org/?id=1532

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

OSADL QA Farm system #2 to be examined
● Name: rack0slot3.osadl.org (https://www.osadl.org/?id=1546)
● Distribution: Ubuntu 20.04.3 LTS
● Linux kernel: 5.15.2-rt19, OSADL add-on patches applied
● CPU: x86 Intel Core i9-9900K CPU 3600 MHz (8 cores with HT)
● Formerly named: Coffee Lake
● Video resolution: 1920 x 1080 pixels
● Video adapter interface: On-chip
● DRM subsystem: Open source mainline Linux driver

https://www.osadl.org/?id=1546

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Particular OSADL add-on patch in use
● The patch is called latency-histograms.patch.
● It is publicly available at https://www.osadl.org/?id=2945.
● It was originally part of the PREEMPT_RT patches, but was removed to

not jeopardize the mainlining process.
● All RT Linux kernel versions are supported since kernel patch level 4.16.
● Configuration: Kernel hacking ---> [*] Tracers --→
 [*] Missed Timer Offsets Histogram
 [*] Scheduling Latency Tracer
 [*] Scheduling Latency Histogram
 [*] Context Switch Time Histogram

https://www.osadl.org/?id=2945

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Available histograms

missed_timer_offsets wakeup

timerandwakeup

timerwakeupswitch

switchtime

Programmed Effective
Insertion into
the run queue

Context switch

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Enabling the histograms
● By default, histograms are disabled, thus imposing very little extra load.
● Histograms are enabled by writing non-zero to the related virtual file:

enabledir=/sys/kernel/debug/latency_hist/enable
for i in wakeup missed_timer_offsets timerandwakeup switchtime \
 timerwakeupswitch
do
 echo 1 >$enabledir/$i
done

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Results are available per core and histogram
● All output of the latency histograms is available in the directory

/sys/kernel/debug/latency_hist.
● The entire preemption latency histogram is available in the virtual file

timerwakeupswitch/CPU$core.
● The maximum latency since most recent reset along with switch data is

available in the virtual file timerwakeupswitch/max_latency-CPU$core.
● Format of the maximum latency file is:

1234 99 37 (0,13) cyclictest <- 0 -21 swapper/0 1234.123456 sleep
 PID Prio Latency Command PID Prio Command Timestamp Syscall

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Graphics & RT: Reproduce the interference
● Set cpufreq governor to performance.
● Run cyclictest with usual OSADL parameters, but only on core $core:

 cyclictest -m -n -t1 -a$core -p99 -i200
● Determine maximum preemption latency every minute from file:

 /sys/kernel/debug/latency_hist/timerwakeupswitch/max_latency-CPU$core

● Apply graphics stress with parallel execution of 2D graphics:
 taskset -c $core x11perf -sync -rect500

● Set affinity of Xorg and graphics interrupt to same core.
● Plot latency over time with and without graphics stress.

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Graphics & RT: Result of the interference

0

50

100

150

200

0 20 40 60 80 100

(µs)

Time (s)

2D graphics operations via X11

Real-time wakeup latency with and without 2D graphics

Latency

System #1

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Graphics & RT: Reproduce the interference
● Set cpufreq governor to performance.
● Run cyclictest with usual OSADL parameters, but only on core $core:

 cyclictest -m -n -t1 -a$core -p99 -i200
● Determine maximum preemption latency every minute from file:

 /sys/kernel/debug/latency_hist/timerwakeupswitch/max_latency-CPU$core

● Apply graphics stress with parallel execution of 2D graphics:
 taskset -c $core x11perf -sync -rect500

● Set affinity of Xorg and graphics interrupt to same core.
● Plot latency over time with and without graphics stress.

By the way:
We call this “level #1

latency fighting”

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

1. Memory bus and cache bandwidth

0.0 GB/s

118.0 GB/s

System #1
59.0 GB/s

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

1. Memory bus and cache bandwidth

L2 cache

L3 cache
No cache

L1 cache

0.0 GB/s

118.0 GB/s

System #1
59.0 GB/s

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

1. Memory bus and cache bandwidth

L2 cache

L3 cache
No cache

L1 cache

Memory controllerPer core

0.0 GB/s

118.0 GB/s

System #1
59.0 GB/s

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

1. Memory bus and cache bandwidth

L2 cache

L3 cache
No cache

L1 cache

Memory controllerPer core

0.0 GB/s

302.0 GB/s

System #2
151.0 GB/s

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Test the effect of memory load
Run cyclictest with OSADL standard parameters, but only on one core:
 cyclictest -m -n -t1 -a$core -p99 -i200

While cyclictest is running:
1. Check latency

Apply continuous memory load to the selected core $core with random
data that fit into L3 cache and above L3.

2. Check graphics performance
Using the same test as before, but additionally record performance:
 taskset -c $core x11perf -sync -rect500

3. Do both

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Results of testing the effect of memory load
Memory bandwidth* Preemption latency** Graphics performance*

No memory load - 12 µs -

No memory load - 127 µs 7.530 rects/s

L3 memory load 11.622 MB/s 15 µs -

L3 memory load 11.389 MB/s 131 µs 7.520 rects/s

Above L3 memory load 8.902 MB/s 19 µs -

Above L3 memory load 8.896 MB/s 133 µs 7.520 rects/s

*Average during 5-min measurement interval **Maximum during 5-min measurement interval

System #1

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Results of testing the effect of memory load
Memory bandwidth* Preemption latency** Graphics performance*

No memory load - 24 µs -

No memory load - 58 µs 21.100 rects/s

L3 memory load 23.778 MB/s 23 µs -

L3 memory load 20.033 MB/s 61 µs 21.200 rects/s

Above L3 memory load 12.684 MB/s 25 µs -

Above L3 memory load 11.442 MB/s 57 µs 21.000 rects/s

*Average during 5-min measurement interval **Maximum during 5-min measurement interval

System #2

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Topics
In theory, there are at least two functional areas where
accelerated graphics processors may interact with general
purpose operations:

1. Memory bus and cache bandwidth

2. Locking during execution of atomic code sections

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Tracing the interference of graphics with RT
● Run cyclictest on a selected core $core with the break trace function

enabled to stop tracing when the latency exceeds 100 µs and enable
function tracing (-fb100):
 cyclictest -m -n -t1 -a$core -p99 -i200 -fb100

● Apply graphics stress with parallel execution of 2D graphics:
 taskset -c $core x11perf -sync -rect500

● When cyclictest stopped search the trace file of core $core for the
most recent but one execution of cyclictest.

● Add 200 µs to the time stamp at the end of cyclictest’s execution.
● Find out why the system failed to switch to cyclictest at this time.

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Tracing the interference of graphics with RT
● Run cyclictest on a selected core $core with the break trace function

enabled to stop tracing when the latency exceeds 100 µs and enable
function tracing (-fb100):
 cyclictest -m -n -t1 -a$core -p99 -i200 -fb100

● Apply graphics stress with parallel execution of 2D graphics:
 taskset -c $core x11perf -sync -rect500

● When cyclictest stopped search the trace file of core $core for the
most recent but one execution of cyclictest.

● Add 200 µs to the time stamp at the end of cyclictest’s execution.
● Find out why the system failed to switch to cyclictest at this time.

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Tracing the interference of graphics with RT
● Run cyclictest on a selected core $core with the break trace function

enabled to stop tracing when the latency exceeds 100 µs and enable
function tracing (-fb100):
 cyclictest -m -n -t1 -a$core -p99 -i200 -fb100

● Apply graphics stress with parallel execution of 2D graphics:
 taskset -c $core x11perf -sync -rect500

● When cyclictest stopped search the trace file of core $core for the
most recent but one execution of cyclictest.

● Add 200 µs to the time stamp at the end of cyclictest’s execution.
● Find out why the system failed to switch to cyclictest at this time.

By the way:
We call this “level #2

latency fighting”

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Examination of the trace file
● Search for the most recent task switch when cyclictest gives up its time slice
cyclicte-390094 5d...2.. 337980218us : sched_switch: prev_comm=cyclictest prev_pid=390094 ...
cyclicte-390094 5d...2.. 337980218us : _raw_spin_lock_irqsave <-__schedule
cyclicte-390094 5d...3.. 337980218us : do_raw_spin_lock <-_raw_spin_lock_irqsave
cyclicte-390094 5d...3.. 337980219us : _raw_spin_unlock_irqrestore <-__schedule
cyclicte-390094 5d...3.. 337980219us : do_raw_spin_unlock <-_raw_spin_unlock_irqrestore
cyclicte-390094 5d...2.. 337980219us : enter_lazy_tlb <-__schedule
cyclicte-390094 5d...2.. 337980219us : __switch_to <-__schedule
cyclicte-390094 5d...2.. 337980219us : save_fpregs_to_fpstate <-__switch_to
 <idle>-0 5d...2.. 337980219us : finish_task_switch.isra.0 <-__schedule

System #1

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Examination of the trace file
● Search for the most recent task switch when cyclictest gives up its time slice
cyclicte-390094 5d...2.. 337980218us : sched_switch: prev_comm=cyclictest prev_pid=390094 ...
cyclicte-390094 5d...2.. 337980218us : _raw_spin_lock_irqsave <-__schedule
cyclicte-390094 5d...3.. 337980218us : do_raw_spin_lock <-_raw_spin_lock_irqsave
cyclicte-390094 5d...3.. 337980219us : _raw_spin_unlock_irqrestore <-__schedule
cyclicte-390094 5d...3.. 337980219us : do_raw_spin_unlock <-_raw_spin_unlock_irqrestore
cyclicte-390094 5d...2.. 337980219us : enter_lazy_tlb <-__schedule
cyclicte-390094 5d...2.. 337980219us : __switch_to <-__schedule
cyclicte-390094 5d...2.. 337980219us : save_fpregs_to_fpstate <-__switch_to
 <idle>-0 5d...2.. 337980219us : finish_task_switch.isra.0 <-__schedule

● Calculate the time stamp of the expected task switch to cyclictest
 337980219us
 + 200us
 337980419us

System #1

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Examination of the trace file
● Check the function trace for the task switch to cyclictest at time stamp 337980419us
 <idle>-0 5d...2.. 337980375us : sched_switch: next_comm=irq/45-nvkm
 ...
 <idle>-0 5d...2.. 337980376us : __switch_to <-__schedule
irq/45-n-489 5d...2.. 337980376us : finish_task_switch.isra.0 <-__schedule
 ...
irq/45-n-489 5.....12 337980379us : nvkm_pci_intr <-irq_forced_thread_fn
irq/45-n-489 5.....12 337980379us : nvkm_mc_intr_unarm <-nvkm_pci_intr
irq/45-n-489 5.....12 337980380us : gf100_mc_intr_unarm <-nvkm_pci_intr
irq/45-n-489 5d....12 337980506us : irq_enter_rcu <-sysvec_apic_timer_interrupt

● Calculate the time stamp of the expected Task switch to cyclictest
 337980219us
 + 200us
 337980419us

System #1

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Examination of the trace file
● Lookup the function trace around the time stamp 337980419us
irq/45-n-489 5d...212 337980530us : sched_switch: prev_comm=irq/45-nvkm next_comm=cyclictest
irq/45-n-489 5d...212 337980530us : switch_mm_irqs_off <-__schedule
irq/45-n-489 5d...212 337980531us : __switch_to <-__schedule
cyclicte-390094 5d...2.. 337980531us : finish_task_switch.isra.0 <-__schedule
cyclicte-390094 5d...2.. 337980531us : raw_spin_rq_unlock <-finish_task_switch.isra.0

● Verify the delay
 337980531us
 -337980219us
 312us
 - 200us
 112us

● The final task switch to cyclictest occurred 112 s later than expected thus µ
exceeding the break trace threshold of 100 s.µ

System #1

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

RT and graphics running on same core

0

50

100

150

200

0 20 40 60 80 100

(µs)

Time (s)

2D graphics operations via X11

Real-time wakeup latency with and without 2D graphics

Latency
Cyclictest and graphics on same core

System #1

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

RT and graphics running on different cores

0

50

100

150

200

0 20 40 60 80 100 120
Time (s)

(µs)
Latency

Real-time wakeup latency with and without 2D graphics

2D graphics operations via X11

Cyclictest and graphics on different cores

System #1

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Conclusion (1)
For the time being and at least when running on Intel processors,
accelerated graphics interferes with real-time capabilities.
● Is it caused by a limited L3 cache or memory bandwidth?

– Based on the observations described here, the answer is No.

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Conclusion (1)
For the time being and at least when running on Intel processors,
accelerated graphics interferes with real-time capabilities.
● Is it caused by a limited L3 cache or memory bandwidth?

– Based on the observations described here, the answer is No.
● Is it caused by disabling IRQs or preemption too long in the

graphics driver?
– Based on the observations described here, the answer is Yes.

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Conclusion (1)
For the time being and at least when running on Intel processors,
accelerated graphics interferes with real-time capabilities.
● Is it caused by a limited L3 cache or memory bandwidth?

– Based on the observations described here, the answer is No.
● Is it caused by disabling IRQs or preemption too long in the

graphics driver?
– Based on the observations described here, the answer is Yes.

(This is good news, since it means that it can, in principle, be fixed in software.)

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Conclusion (2)
Is there a workaround to cope with the interference between
accelerated real-time capabilities by setting a defined core affinity
to the various tasks such as graphics server, graphics interrupts,
graphics clients and real-time control applications?

– Based on the observations described here, the answer is Maybe.

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Conclusion (3)
Instead of starting to tinker again and inventing some short-term
emergency solutions, we should realize that even after the
inclusion of the whole PREEMPT_RT patch into the mainline Linux
kernel a lot of work is waiting for us.

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Conclusion (3)
Instead of starting to tinker again and inventing some short-term
emergency solutions, we should realize that even after the
inclusion of the whole PREEMPT_RT patch into the mainline Linux
kernel a lot of work is waiting for us.
In consequence, we should also be prepared to continue to raise
the necessary funding to get this work done.

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Conclusion (3)
Instead of starting to tinker again and inventing some short-term
emergency solutions, we should realize that even after the
inclusion of the whole PREEMPT_RT patch into the mainline Linux
kernel a lot of work is waiting for us.
In consequence, we should also be prepared to continue to raise
the necessary funding to get this work done.
And, by the way, the interference of accelerated graphics with
real-time capabilities is only one of the many topics that merits
consideration after the RT full mainline merge will have happened.

Accelerated graphics with real-time. How do they play together? – Part 2
How accelerated graphics processors may interact with general-purpose operations

COOL December 15, 2021

Copyright © 2021 Open Source Automation Development Lab (OSADL) eG

	How accelerated graphics processors may interact with general-purpose operations
	Topics
	Topics - Let's have a look
	OSADL QA Farm system #1 to be examined
	OSADL QA Farm system #2 to be examined
	Particular OSADL add on patch in use
	Available histograms
	Enabling the histograms
	Results are available per core and histogram
	Graphics & RT: Reproduce the interference
	Graphics & RT: Result of the interference
	Graphics & RT: Reproduce the interference - By the way ...
	1. Memory bus and cache bandwidth
	1. Memory bus and cache bandwidth - with caches
	1. Memory bus and cache bandwidth - with memory controller
	1. Memory bus and cache bandwidth - with memory controller, system #2
	Test the effect of memory load
	Results of testing the effect of memory load
	Results of testing the effect of memory load, system #2
	Topic: Locking during execution of atomic code sections
	Tracing the interference of graphics with RT
	Tracing the interference of graphics with RT (why 200µs)
	Tracing the interference of graphics with RT - By the way ...
	Examination of the trace file
	Examination of the trace file, calculate next switch
	Examination of the trace file, find something instead
	Examination of the trace file - verify the delay
	RT and graphics running on same core
	RT and graphics running on different cores
	Conclusion (1) - Q1
	Conclusion (1) - Q2
	Conclusion (1) - Good news.
	Conclusion (2)
	Conclusion (3) - 1
	Conclusion (3) - 2
	Conclusion (3) - 3
	OSADL Copyright Notice

