
Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Improved Redundancy and Consistency beyond
RAID-1

Roland Kammerer

Institute of Computer Engineering
Vienna University of Technology

March 3, 2011



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Agenda

1. Introduction

2. Safe Storage

3. Implementation

4. Evaluation

5. Conclusion



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Introduction
Background

RAID-1 Part I

Introduction



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Introduction
Background

RAID-1

Background of this work

I Part of the thesis “Linux in safety-critical applications”

I Can we trust the way Linux (and FLOSS) is developed
and tested

I LTP1 was looking for RAID tests

1Linux Test Project (http://ltp.sf.net)



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Introduction
Background

RAID-1

How does it work?

I RAID: Redundant Array of Inexpensive/Independent
Disks

I Different RAID levels (e.g.):
I RAID-0: striping
I RAID-1: mirroring

I RAID-1 creates virtual hard disk

I Data written to virtual disk is mirrored to multiple
physical disks

I If one disk fails, whole system is still operational



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Introduction
Background

RAID-1

How to test it?

I Separate test environment from system under test

I Physically switch on/off hard disks

I Use cryptographic hashes to verify consistent state of
files on the disk

I Linux software RAID has proven to be very stable



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Introduction
Background

RAID-1

What are the problems?

I In general RAID-1 improves availability, but availability
of storage can be part of the safety argumentation

I Consistency checks:

I Important properties are missing that qualify RAID-1 as
safe storage.

I ⇒ RAID-1 like behaviour is fine, but additional
properties are necessary



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Safe
Storage
Definition

Requirements
Part II

Safe Storage



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Safe
Storage
Definition

Requirements

What is safe storage

Informal definition:
Storage is considered to be safe, if it provides a
high degree of confidence that raw data that is
read is exactly the same as the raw data that was
written to it.



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Safe
Storage
Definition

Requirements

Consistency

I Safe storage needs much stronger concept of
consistency checking than standard RAID-1

I Whenever the safe storage detects an inconsistent state
(e.g., a bit flip) it has to inform the reading application

I Of utmost importance for safety critical applications. If
they are informed, a safe-state can be reached.



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Safe
Storage
Definition

Requirements

Diversity

I File system development is a difficult task. Modern file
systems are getting more complex.

File System Lines of Code Open Bugs2

ext2 8965 4
ext3 16362 15
ext4 33979 45
xfs 74503 8

btrfs 57088 43

I Safe storage can benefit from the diversity in the file
system sector

I Would be impossible to achieve in hardware (e.g., one
file system on RAID-1 disk set)

2http://bugzilla.kernel.org



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Safe
Storage
Definition

Requirements

On-the-fly correction

I According to literature there is a large number of
Undetected Disk Errors (UDEs).

I Use consistency and redundancy as a prerequisite

I Overwrite faulty copies on-the-fly with an agreed,
consistent state (e.g., TMR + voting)



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Safe
Storage
Definition

Requirements

Simplicity

I As we have seen from the lines of code, file system
development is a complex matter

I Implementation of safe storage should not introduce
unnecessary complexity by itself

I ⇒ a simple layer above existing file systems



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Implementation
Tools

Tinysafefs
Two Disk Mode

Three Disk Mode

Part III

Implementation



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Implementation
Tools

Tinysafefs
Two Disk Mode

Three Disk Mode

Tools of the trade - FLOSS software

I Linux:
I Widely used
I A lot of different file systems which are proven in use
I Necessary design diversity (different programmes,

different companies)

I FUSE:
I Upstream and used by many projects (sshfs, ntfs-3g,. . . )
I Really nice for rapid prototyping of crazy ideas



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Implementation
Tools

Tinysafefs
Two Disk Mode

Three Disk Mode

Tinysafefs

I Wrapper file system around existing file systems

I Has its own mount point (e.g., /mnt/tinysafefs)

I Reads/Writes data from/to existing mountpoints which
should be the mointpoints of physical disks with distinct
file systems



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Implementation
Tools

Tinysafefs
Two Disk Mode

Three Disk Mode

Two Disk Mode

I Simple “lowcost” version

I Similar to RAID-1, but with consistency checks (and file
system diversity)

I On write: Data gets written to two mount points (i.e.,
two disks)

I On read: Data is read from both disks, gets compared
and if (and only if) consistent gets forwarded to reading
application

I If data not consistent: Return ENOENT (No such file or
directory)



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Implementation
Tools

Tinysafefs
Two Disk Mode

Three Disk Mode

Two Disk Mode (2)
$ cd /tmp/tinysafefs
$ ls

testfile.txt
$ ls /disk*/

/disk1:
testfile.txt

/disk2:
testfile.txt

$ mkdir testdir
$ ls

testfile.txt
testdir

$ ls /disk*/
/disk1:
testfile.txt
testdir

/disk2:
testfile.txt
testdir



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Implementation
Tools

Tinysafefs
Two Disk Mode

Three Disk Mode

Two Disk Mode (3)

$ cd /tmp/tinysafefs
$ echo "testdata" > ./testfile.txt
$ ls /disk*
/disk1:
testfile.txt

/disk2:
testfile.txt

$ cat ./testfile.txt
testdata

$ echo "destroy it" > /disk1/testfile.txt
$ cat ./testfile.txt
cat: ./testfile.txt: No such file or directory



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Implementation
Tools

Tinysafefs
Two Disk Mode

Three Disk Mode

Three Disk Mode

I Wrapped around three disks

I On write: data is written to three disks
I On read: data is read from all copies and consistency

gets checked
I If at least two copies have a consistent state, data gets

forwarded to user space application
I If one copy is inconsistent, tinysafefs tries to overwrite it
I If all copies are inconsistent: ENOENT



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Implementation
Tools

Tinysafefs
Two Disk Mode

Three Disk Mode

Three Disk Mode (2)
$ cd /tmp/tinysafefs
$ echo "testdata" > ./testfile.txt
$ ls /disk*
/disk1:
testfile.txt

/disk2:
testfile.txt

/disk3:
testfile.txt

$ cat ./testfile.txt
testdata

$ echo "destroy it" > /disk1/testfile.txt
$ cat ./testfile.txt
testdata

$ cat /disk1/testfile.txt
testdata

$ echo "destroy it 1" > /disk1/testfile.txt
$ echo "destroy it 2" > /disk2/testfile.txt
$ cat ./testfile.txt
cat: ./testfile.txt: No such file or directory



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Evaluation
Setup

Performance

Correction
Part IV

Evaluation



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Evaluation
Setup

Performance

Correction

Evaluation Setup

I Hardware:
I Standard PC with Ubuntu Server 10.04.1
I One disk with the OS, 3 usb drives with ext2, ext4, xfs
I Used for performance tests and selected scenarios

I Software:
I Simulator written in Python
I Simulates three disk mode with on-the-fly correction
I Worst/Best case scenarios (and randomly selected

cases) used for hardware evaluation



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Evaluation
Setup

Performance

Correction

Performance of tinysafefs

I dd with fsync

I Caches were dropped after each run to minimize cache
influence

I Block sizes from 128 bytes to 8192 bytes.



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Evaluation
Setup

Performance

Correction

Read performance of tinysafefs - 3 disk mode

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

128 256 512 1024 2048 4096 8192

M
B

/s

Block Size (in Bytes)

xfs
ext4
ext2

tinysafefs

Figure: Read performance



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Evaluation
Setup

Performance

Correction

Write performance of tinysafefs 3 disk mode

 0

 2

 4

 6

 8

128 256 512 1024 2048 4096 8192

M
B

/s

Block Size (in Bytes)

xfs
ext4
ext2

tinysafefs

Figure: Write performance



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Evaluation
Setup

Performance

Correction

Corrections of tinysafefs in 3 disk mode
I Hard to assume realistic numbers of failures per read.

Assumption: 1 failure per 50 reads

I 1000 runs ⇒ 1000 seeds for random generator

I 100 files per run

I After 50 reads, 1 random file on one random disk gets
destroyed.

I Read until first uncorrectable fault

Until First Error TDMC Single Disk Factor

Min. Repairs 0 None -
Max. Repairs 849 None -
Min. Reads 103 51 2.0
Max. Reads 42861 299 143.3
Overall Reads 5317517 117697 45.1
Overall Repairs 102033 None -
Average Reads 5317 117 45.4
Average Repairs 102 None -



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Conclusion

Part V

Conclusion



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Conclusion

Lessons learned

I Safe storage can be implemented by means of
consistency, diversity, on-the-fly correction, and
simplicity

I Safety critical systems can benefit from FLOSS
I All the tools are already there
I Trust is put on software that can be reviewed (no

binary-blob firmware)



Improved
Redundancy and

Consistency
beyond RAID-1

Kammerer

Conclusion

ETX and EOT

Thank you for your attention!


	Introduction
	Introduction
	Background
	RAID-1


	Safe Storage
	Safe Storage
	Definition
	Requirements


	Implementation
	Implementation
	Tools
	Tinysafefs


	Evaluation
	Evaluation
	Setup
	Performance
	Correction


	Conclusion
	Conclusion


