
Utilizing security methods of FLOSS GPOS for

safety

Nicholas Mc Guire
Distributed & Embedded Systems Lab

Lanzhou, China
safety@osadl.org, mcguire@lzu.edu.cn



Introduction 1

Security for Safety

Reuse of security methods can potentially cover the entire life-cycle of

systems.

• Why look at security at all ?

• High-level concept and Standards reuse

• Security vs Safety - differences and overlap

• security methods potentially suitable

• field data (though de-scoped for this talk)

This is not to state that one can simply use security methods to provide

safety - but one can use security methods to mitigate some threats and

enhance safety related systems.

DSLab March 2011



Introduction 2

Safety is ”discovering” its security demands

• Fail safe is quite often a (dangerous) illusion

• Safety and security demands are often viewed as being opposing -

this is only partially true

• Safety by secrecy is unfortunately still the norm - Security by

obscurity was abandoned more than 20 years ago !

• If security and safety is integrated in the right way - we believe that

safety can benefit from a lot of the established security methods

Safety and security are attending to two problem domains - but our claim

is that the overlap is far greater than many anticipate - reusing successful

security methods for safety is feasible and, as I believe, advisable.

DSLab March 2011



Introduction 3

Security issues in 61508

Security has traditionally been excluded from functional safety

considerations - this is (maybe) now changing. The two cases to be

distinguished are:

• safety function fails dangerously

• safety function is not available

Security can obviously impact both.

DSLab March 2011



Introduction 4

Security in Safety Related Systems

DSLab March 2011



Introduction 5

Safety Impact of Service Loss

[Braband: Risikoanalyse in der Eisenbahn Sicherung]

DSLab March 2011



Introduction 6

Safety vs. Security

A somewhat simplistic model with respect to focus

Fault
Avoidance Dectect.

Error Failure
Mitigat.

AccidentHazard
Respon. Contain.

Safety Scope Security Scope

Security is mainly concerned with Failure detection and response as well

as preventive measures not fault or error detection.

DSLab March 2011



Introduction 7

Difference of focus

There are some fundamental differences in approaching corruption of

data and code - intentional or not.

• Procedural safety focuses on fault avoidance by procedure

• Evidence based safety focused on fault probability based on history

• Security focuses on fault tolerance and failure detection/response.

DSLab March 2011



Introduction 8

Constraints on fault relevance

While security limits it self to responding to failures due to systematic

software faults it is not concerned with the class of stochastic faults.

Safety is strongly focused on systematic software faults.

The underlying assumption is:

• Security:

repeatable failures - thus based on systematic faults - are critical

failures

• Safety:

Any fault - including stochastic faults - is potentially dangerous and

must be detected.

DSLab March 2011



Introduction 9

Rational of constraint

The justification for this security approach is simply that they are

concerned with the malicious user - the active component having

malicious intentions - and the probability of a ”hacker” trying to enter

the pentagon, making it due to a bit flip in the CPU is sufficiently low

against the existing software bugs to be ignored.

In safe systems we don’t have any such constraint on the intention of

the active component ad there is no distinction between malicious and

non malicious interaction (at least not with respect to stochastic faults)

DSLab March 2011



Motivation 10

Security in IEC 61508-1 Rev 2

• requires malevolent and unauthorized actions to be considered

during hazard and risk analysis and provides informative guidance on

the security required for the achievement of functional safety. [IEC

61508-1 Rev 2 1.2 l)]

• 6.2 n) (third item) might need reinterpretation in the security

context - ”the procedures for preventing unauthorized items from

entering service” [IEC 61508-1 Rev 2 6.2 n)]

• The first objective of the requirements of this subclause is to

determine the hazards, and hazardous events and hazardous

situations relating to of the EUC and the EUC control system (in all

modes of operation) for all reasonably foreseeable circumstances,

including fault conditions and misuse. [IEC 61508-1 Rev 2 7.4.1.1]

DSLab March 2011



Motivation 11

• The hazards, and hazardous events and hazardous situations of the

EUC and the EUC control system shall be determined under all

reasonably foreseeable circumstances (including fault conditions, and

reasonably foreseeable misuse and malevolent or unauthorized

action). [IEC 61508-1 Rev 2 7.4.2.3]

DSLab March 2011



Motivation 12

Security in IEC 61508-1 Rev 2 - consistency

k) does not cover the precautions that may be necessary to

prevent unauthorized persons damaging, and/or otherwise

adversely affecting, the functional safety of E/E/PE

safety-related systems;

l) requires malevolent and unauthorised actions to be considered

during hazard and risk analysis and provides informative

guidance on the security required for the achievement of

functional safety.

[IEC 61508-1 Ed 2 CD Clause 1.2]

That does sound a bit ignorant of security reality - Imagine a HAZOP

where you would need to consider a malicious intent for every transition !

DSLab March 2011



Motivation 13

Security is to be considered for

• operation

• maintenance

• repair

”...EUC control systems and E/E/PE safety-related systems operate in

one or more security environments that are physically and logically

protected and securely separated from the external environment ” [IEC

61508-1 Rev 2 Annex B]

DSLab March 2011



Design 14

Security Model - separate security environments

Control
System

EUC

Logical Access Cont.

Logical Access Cont.

Physical
Access
Control

Logical Access Cont.

Logical Access Cont.

[IEC 61508−1 CD 2009 Annex B]

related System
E/E/EP Safety

Note this is based on 61508 Ed2 CD informative Annex B

DSLab March 2011



Design 15

High-Level reuse

With respect to high-level properties security and safety does not differ

that much - maybe with the exception of the dimension of temporal

properties

• guarantee of separation (of different security realms vs. different

SILs)

• integrity guarantees (detection of malicious modification vs

accidental modification)

• authentication of components (functional assurance - there really is

no difference here)

• robustness (DOS vs. babbling idiot problems)

Its more a matter of changing mind-set than changing concepts.

DSLab March 2011



Design 16

IEC 61508-3 1998

Fundamentally 61508 and derived standards don’t dictate a specific

integrity level for generic components - but they do put relatively clear

requirements on ”SIL decomposition”:

7.4.2.7 Where the software is to implement both safety and non-safety

functions, then all of the software shall be treated as safety-related,

unless adequate in dependence between the functions can be

demonstrated in the design.

This is in line with security concepts that use domain-models and

appropriate verification methods to validate these (i.e. SELinux).

DSLab March 2011



Design 17

IEC 61508-3 1998

7.4.2.8 Where the software is to implement safety functions of different

safety integrity levels, then all of the software shall be treated as

belonging to the highest safety integrity level, unless adequate

independence between the safety functions of the different safety

integrity levels can be shown in the design. The justification for

independence shall be documented.

NOTE The software safety integrity level must be at least as high as

the safety integrity level of the safety function to which it belongs.

However, the safety integrity level of a software component can be lower

than the safety integrity level of the the safety function to which the

software component belongs, if the component is used in combination

with other hardware components such that the safety integrity level of

the combination at least equals that of the the safety function.

DSLab March 2011



Security 18

IEC 61508-3 ED2 CD 2009

NOTE 2 Software elements which execute on a single computer system

(processor and memory) can be shown to be independent of each other

by means of a number of different methods. Independence must be

demonstrated both in the spatial domain (the data used by a high

integrity element must not be changed by a lower integrity element) and

temporal (the lower integrity elements must not cause the higher

integrity elements to function incorrectly by taking too high a share of

the available processor execution time). Techniques for achieving and

demonstrating spatial independence include

DSLab March 2011



Design 19

Proof of Separability

John Rushbbys criteria (very informally) - given two domains RED and

BLACK then separation means from REDs perspective:

• for every I/O operations on behalf of RED on the concrete machine

there is one equivalent abstract operation in the RED domain

• Every RED operation does not impact the perceivable state of the

concrete machine for BLACK

• state change in the RED regime caused by RED I/O activity must

depend only on the activity itself and the previous state of RED

• BLACK I/O devices cannot change the state of the RED regime

• if RED revisits the same state then the output must be the same

• if RED revisits the same state then the next state must be the same

DSLab March 2011



Design 20

Some details 7.4.2.8

This is the list of possible technologies listed in 61508 Ed 2 CD as

extension in the note2 to 7.4.2.8

• Use of hardware memory protection between elements of differing

safety integrity levels.

• Where data has to be passed from a higher integrity to a lower

integrity element between , use of unidirectional interfaces such as

messages or pipes instead of shared memory (data passed from a

lower to a higher integrity element should not be permitted unless

the higher integrity element can independently verify that the data

is of sufficient integrity).

• Any data resident on permanent storage devices such as magnetic

discs must be taken into account in addition to transient data in

DSLab March 2011



Design 21

random access memory, for example by means of file access

protection.

• Use of rigorous design and source code analysis to demonstrate that

no explicit or implicit memory references are made from the

lower to the higher integrity software elements.

• Strict priority based scheduling implemented by a real-time executive

with a means of avoiding priority inversion.

• Time fences which will terminate the execution of a lower integrity

element if it over-runs its allotted execution time or deadline.

DSLab March 2011



Design 22

7.4.2.8 continued

IEC 61508-3 Ed 7.4.2.8 Note 2 Continued

• If an operating system, real-time executive, memory management or

timer management software is to be used to provide spatial or

temporal independence, or both, then such software must be of the

highest safety integrity level of any function.

• Software elements of different criticality monitored by logical and

temporal program flow monitoring as per IEC 61508-2 Table A.11.

• Techniques for ensuring temporal independence include deterministic

scheduling methods supported by worst case execution time analysis

of each element.

Show-stoppers ? still some work to do...

DSLab March 2011



Standards 23

Standards

• ”proof of separability” <–> ARINC 653 (AUTOSAR with

limitations)

• EAL Level 5 <–> DO 178-B - highly overlapping

• Security splits requirements into

– Security Functional Requirements (IEC 15408-2)

– Security Assurance Requirements (IEC 15408-3

might be good to replace ”...shall include, commensurate with the

required SIL ,...” ”In accordance with the required SIL..” with

clearer Assurance requirements.

IEC 15408-2/3 can serve as model for developing clearer functional safety

standards without reverting to the check-list mentality of Mu 8004.

DSLab March 2011



SEC for Safety 24

Where can security methods help ?

Security methods are not the answer to all safety issues.

• Generic functionality (those that have no application ”knowledge”

i.e. memcopy, write, malloc...)

• Generic components connecting safety related components

• isolation of safety related components from generic components and

each other

The essential thing is that the security methods don’t target a specific

application or context but protection of generic low-level functions -

broadly speaking they all attempt to re-enforce isolation even in the

presence of systematic software faults.

DSLab March 2011



SEC for Safety 25

Integrity

Basic Integrity related Attack Categories of interest for safety.

• information leakage - environment diversification

• code injection attacks - ISR instruction set randomization

• control flow hijacking - stochastic control-flow diversification

• memory corruption attacks - ASR address space randomization

• File level attacks - IDS/Access control

The security related mechanisms are far more mature than what is

currently in use in the safety domain.

DSLab March 2011



SEC for Safety 26

Methods of interest

• Address space randomization

• Stack/heap randomization

• inherent randomness / inherent diversity

• Binary Translators (BTs) - (not yet covered)

• Instruction set randomization

• Isolation enhancements

• Multilevel Monitoring (Kenrel,LSM,VFS...)

Note that some of these methods will draw some of the common safety

strategies into question (i.e. some forms of replication and recovery).

DSLab March 2011



SEC for Safety 27

memory corruption attacks

• They are the simplest to detect

• They are the simplest to implement

• the simplest to mitigate

• memory, notably stacks, are/were quite predictable

GNU/Linux is very much concerned with security - thus current Linux

kernels randomize address spaces by default.

DSLab March 2011



SEC for Safety 28

ISR

Why ISR will not directly help safety - Fault class: dormant/permanent

CPU fault

Instruction set randomization is assuming an attacker that utilizes

structural knowledge of the code to inject code - but the safety concern

is random code injection respectively CPU fault related injection (which

from the code perspective is random)

what studies do show though that such random injections have a low

chance of not crashing the application, and the probability of those

surviving doing anything useful is also low - notably on complex

hardware with complex software!

ISR from a safety perspective could though impact the target of the

unintentional jump -> A != B -> detectable.

DSLab March 2011



SEC for Safety 29

stochastic control-flow diversification

Note we are ignoring network hijacking - thats a separate bowl of soup.

• reducing predictability of control flow

• increasing variability and perceived complexity in systems

• structure theorem based automated transformation

This can constitute an additional defense against CCF - a kind of fault

propagation diversification. More at:

http://www.cert.org/archive/html/stochastic-divers.html

DSLab March 2011



SEC for Safety 30

Address Space Randomization

ASR is one of the best studied security methods

• text,data,bss address base randomization

• heap randomization: padding,alignment,random over-allocation

• stack randomization: layout, padding, object order

Address spaces are randomized by default in Linux 2.6, GCC has the

ability to add stack randomization.

DSLab March 2011



SEC for Safety 31

Esoteric concepts - inherent randomness

• Utilizing growing complexity

• inherent Diversity

• Transition to statistical approach

Modern super-scalar CPUs are non-deterministic beasts - instead of

fighting the complexity, it could be utilized !

DSLab March 2011



SEC for Safety 32

MLS: Isolation Issues

Security enhancements in GNU/Linux primarily target extended Isolation

capabilities:

• Virtualization (KVM,lgues,UML,etc.)

• Kernel Credentials/Capabilities

• Linux Security Modules (SELinux, APARMOR)

• OS-level partitioning: cgroups, cpu-pinning

• Access Control Lists/Extended Attributes

these are useful to cover the growing security demands of safety related

systems as well as improve the fault containment capabilities of

GNU/Linux.

DSLab March 2011



Conclusions 33

Conclusions

Functional safety needs some fundamental changes:

• Safety by secrecy does not work - peer review by the safety

community is mandatory to achieve adequate safety in systems of

ever growing complexity

• A clearer development of assurance requirements is needed - security

practice might be a reusable model (IEC 15408-3)

• where security and safety overlap - reuse of heavily scrutinized

methods rather than developing from scratch seems prudent.

• Due to the openness applied to security mechanisms ample reviewed

field data is available - which is lacking in most dedicated safety

related components

DSLab March 2011



Conclusion 34

Closing Note

Open-Source is not the answer to all functional safety questions

but there is a lot to learn from the model notably with respect to how

security is treated and peer review policies

safety by secrecy - is one of the most critical systematic faults of the

safety community.

http://www.osadl.org/Safety-Critical-Linux.safety-critical-linux.0.html

DSLab March 2011


