Linux as a Hypervisor for the automotive Industry.

Andreas Platschek <andi@opentech.at>
Nicholas McGuire <der.herr@hofr.at>

OVERSEE
An open and secure application and communication platform
Some Facts

- www.oversee-project.com
- OVERSEE is the acronym for Open VEHiculaR SecurE platform
- European research project funded within the 7th Framework Programme of the European Commission.
- Duration: 30 Month
- Start: January 1st, 2010
The Consortium

Industrial Partners:

Academic Partners:
Goals of OVERSEE

The idea of OVERSEE can be split in three main parts:

- The open platform for the execution of OEM and non OEM applications,
- the secure single point of access to
- internal and external communication channels.

However, only the combination of these three objectives will offer the potential for a wide range of new automotive application.
Open architectures enable an industry-wide participation and portable software modules, and allow even small companies to enter this sector.
Security in Automotive applications

TPMS - Tire Pressure Monitoring System[1]
Experimental Security Analysis of a Modern Automobile[2]
Common Criteria

- 7 EAL's => The higher the number the more secure the system is supposed to be. (Not necessarily true)

- RHEL5 certified at EAL4+
Evaluation Assurance Levels

- EAL1 - functionally tested
- EAL2 - structurally tested
- EAL3 - methodically tested and checked
- EAL4 - methodically designed, tested and reviewed
- EAL5 - semiformal design and tested
- EAL6 - semiformal verified design and tested
- EAL7 - formally verified design and tested
Evaluation Assurance Levels

Table 1 - Evaluation assurance level summary

<table>
<thead>
<tr>
<th>Assurance class</th>
<th>Assurance Family</th>
<th>Assurance Components by Evaluation Assurance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development</td>
<td></td>
<td>EAL1</td>
</tr>
<tr>
<td>ADV_ARC</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ADV_FSP</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ADV_IMP</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ADV_INT</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ADV_SPM</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ADV_TDS</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>AGD_OPE</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>AGD_PRE</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ALC_CMC</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ALC_CMS</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ALC_DEL</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ALC_DVS</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ALC_FLR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALC_LCD</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ALC_TAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security Target evaluation</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ASE_CCL</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ASE_ECD</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ASE_INT</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ASE_OBJ</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ASE_REQ</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ASE_SPD</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ASE_TSS</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Tests</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ATE_COV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATE_DPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATE_FUN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATE_IND</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Vulnerability assessment</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

ISO/IEC 15408-3, clause 7
Evaluation Assurance Levels

• ADV_FSP.1 Basic functional specification
• ADV_FSP.2 Security-enforcing functional specification
• ADV_FSP.3 Functional specification with complete summary
• ADV_FSP.4 Complete functional specification
• ADV_FSP.5 Complete semi-formal functional specification with additional error information
• ADV_FSP.6 Complete semi-formal functional specification with additional formal specification
ADV_FSP.2 – Functional Specification

The ADV_FSP criteria are used to specify the level of formalism in the functional specification of the TOE.

Dependencies:

- ADV_RCR.1 Informal correspondence demonstration.

Developer action elements:

- ADV_FSP.2.1D The developer shall provide a functional specification.

The DO-178B requires the development of high-level requirements in section 5.1 to produce the documentation specified in section 11.9, “Software Requirements Data”.

[Towards Common Criteria Certification for DO-178B Compliant Airborne Software Systems - Jim Alves-Foss, Bob Rinker and Carol Taylor]
Content and presentation of evidence elements:

ADV_FSP.2.1C The functional specification shall describe the TSF and its external interfaces using an informal style. The style of specification is unspecified in DO-178B; but is assumed to be informal. However, section 11.6 “Software Requirements Standards” provides for defining this type of requirement. Understand that to be compliant with the CC, you must explicitly specify the security functions; this is similar to the explicit specification of safety requirements as specified in 5.1.2d. Again, these restrictions can be documented in 11.6

ADV_FSP.2.2C The functional specification shall be internally consistent.
This corresponds to DO-178B section 5.1.2a and to section 6.3.1b and is documented in sections 11.9 and 11.14 “Software Verification Results”.

[Towards Common Criteria Certification for DO-178B Compliant Airborne Software Systems - Jim Alves-Foss, Bob Rinker and Carol Taylor]
Using Linux Security Mechanisms

MILS Architecture based on the following mechanisms:

- Hypervisor checks for validity of channels
- IPtables Firewall
- LSM – Linux Security Modules
- FUSE – Userspace Filesystem
Federated vs. Integrated Architecture

Reasons for an Integrated Architecture

• reduction of hardware nodes
• better utilization of modern CPUs
• savings in power consumption, weight, cooling and costs
• better scalability
• higher flexibility
• reuse of (legacy) software modules
Federated vs. Integrated Architecture

Example: Federated Approach

Federated Architecture

- CPUs: 3
- I/O Modules + Network Interface Modules: 5
- Physical Communication Channels: 4
Federated vs. Integrated Architecture

Example: Integrated Approach

IMA Architecture
- CPUs: 1
- I/O Modules + Network Interface Modules: 4
- Physical Communication Channels: 1
OSEK System Context

application software

module 1

module 2

module 3

module n

OSEK operation system

Input/Output System

μController
"Where the application software is to implement safety instrumented functions of different safety integrity levels or Non-safety functions, then all of the software shall be treated as belonging to the highest safety integrity level, unless independence between the safety instrumented functions of the different safety integrity levels can be shown in the design. The justification for independence shall be documented. Whether independence is claimed or not, the intended SIL of each SIF shall be identified."

[ISO/IEC 61511-1, 12.4.2.5]
[ISO/IEC 61508-3, clause 7.2.4.7 / 7.2.4.8]
Layered Safety Case

Requirements and Speciation Layer

Design Layer

Implementation Layer

Management Layer
Why Layering the Safety Case?

- easier to handle Complexity

- analytical evidence could be pulled into the upper layers, leaving it untouched in case of a change in the lower layers

- Better Maintenance of the Safety Case

- “Divide and Conquer” - Strategy
Requirements and Specification Layer

Chosen Standards and Specifications are appropriate

G.RS.1

- Proven in Use: ARINC653, IEC17356, ...
 S.RS.1
- Review of Standards: SuSv3, POSIX, ...
 S.RS.2
- Show that Divergence of Standards is not a safety problem
 ST.RS.1
- Show Consistency of chosen Standards
 ST.RS.2
- Consistent Mapping is Possible
 S.RS.3
Design Layer

Design is sufficiently mature and suitable for the system

- Well defined subsets of guiding standards chosen
 G.D.2

- Evaluation of the high level architectures and derive safety requirements
 ST.D.1

- Check against safety standards
 ST.D.2

Document Review
S.D.1
Management Layer

Suitability of Software Management

- Traceability over Documents and Code is made sure.
 - Usage of modern Revision Control System (e.g. GIT)
 - S.M.1
 - Usage of Mechanisms to prevent committing complex patches.
 - S.M.2
- Configuration Management
 - Automatic Configuration Checks (e.g. to detect overlaps in memory)
 - S.M.3
- All Persons involved... TODO

61508-1, clause G. Management of functional safety

- 61508-1, Annex B Competence of persons
 - j.M.2
- The DLC is suitable.
 - G.M.5

Show that the DLC is consistent.

- Documentation of the DLC.
 - S.M.4
- Evaluation of Consistency of the DLC.
 - S.M.5
References

• [2] Experimental Security Analysis of a Modern Automobile, Karl Koscher, Alexei Czeskis et. al, 2010