Open Source in Industry: Trouble shooting of real-time Linux

Technical Heidelberg OSADL Talks, April 29, 2020, Online Session 3

Determination of the real-time properties of a Linux system Presentation of the OSADL QA Farm

Some information on today's sessions

- Please provide feedback on Legal HOT using the online form
 - Use the quick link osadl.org/FB (FeedBack), same as osadl.org/?id=3325
- You may ask questions during the session to be answered online, if possible
 The quick link URL is **osadl.org/AQ** (AskQuestion), same as osadl.org/?id=3321
- You may join an online discussion on all topics of today at 4 pm
 - The quick link URL is osadl.org/OD (OnlineDiscussion), same as jitsi.osadl.org
 - Meeting name OSADLTechnicalHOT
 - > Username and password will be displayed here after the last presentation

(We will show this slide again at the end of this session)

Issues leading to system latency

1979, e.g. Motorola MC68000 @ 8 MHz 600 Dhrystones

2009, e.g. Intel Core 2 Duo @ 3 GHz 12,000,000 Dhrystones

Peak vs. worst-case performance

	1979	2009
Peak performance (e.g. Dhrystones)	600	12,000,000
Factor	1	20,000
Moore's Law [2 ^{((2009-1979)/1.5)}]	1	~1.048.576
Worst-case performance (e.g. signal latency)	~400 µs	20 µs
1/Factor	1	20

1979: Software issues related to system latency

1979, e.g. Motorola MC68000 @ 8 MHz 600 Dhrystones **2009**, e.g. Intel Core 2 Duo @ 3 GHz 12,000,000 Dhrystones

1979: Hardware issues related to system latency

1979, e.g. Motorola MC68000 @ 8 MHz 600 Dhrystones **2009**, e.g. Intel Core 2 Duo @ 3 GHz 12,000,000 Dhrystones

2009: Software issues related to system latency

1979, e.g. Motorola MC68000 @ 8 MHz 600 Dhrystones **2009**, e.g. Intel Core 2 Duo @ 3 GHz 12,000,000 Dhrystones

2009: Hardware issues related to system latency

1979, e.g. Motorola MC68000 @ 8 MHz 600 Dhrystones **2009**, e.g. Intel Core 2 Duo @ 3 GHz 12,000,000 Dhrystones

latency-fighters@osadl.org

A total of 18 requests

latency-fighters@osadl.org

A total of 18 requests

Path analysis: 1979 vs. 2009

i = dram[0]; i++; dram[0] = i;

movea.l	#dram,a0	mov	dram,eax
move.l	(a0),d0	mov	eax,-4(ebp)
		addl	\$1,-4(ebp)
add.l	#1,d0	mov	-4(ebp),eax
move.l	d0,(a0)	mov	eax,dram

1979, e.g. Motorola MC68000 @ 8 MHz 600 Dhrystones **2009**, e.g. Intel Core 2 Duo @ 3 GHz 12,000,000 Dhrystones

Path analysis: 1979 *vs.* 2009 1979

1979, e.g. Motorola MC68000 @ 8 MHz 600 Dhrystones **2009**, e.g. Intel Core 2 Duo @ 3 GHz 12,000,000 Dhrystones

1979, e.g. Motorola MC68000 @ 8 MHz 600 Dhrystones **2009**, e.g. Intel Core 2 Duo @ 3 GHz 12,000,000 Dhrystones

Path analysis

Path analysis

- Generally accepted verification procedure
- Source code normally required
- Difficult to do in modern high-performance processors
- Required processor data often not disclosed
- Expensive procedure
- Normally not done by users
- Result of path analysis often not publicly available
- May need to be checked against empirical latency testing

Path analysis vs. latency testing

Path analysis

- Generally accepted verification procedure
- Source code normally required
- Difficult to do in modern high-performance processors
- Required processor data often not disclosed
- Expensive procedure
- Normally not done by users
- Result of path analysis often not publicly available
- May need to be checked against empirical latency testing

Latency testing

- Not considered a valid "verification"
- Source code not required
- System complexity irrelevant
- Easy procedure
- Can be done by everybody

Path analysis vs. latency testing

Path analysis

- Generally accepted verification procedure
- Source code normally required
- Difficult to do in modern high-performance processors
- Required processor data often not disclosed
- Expensive procedure
- Normally not done by users
- Result of path analysis often not publicly available
- May need to be checked against empirical latency testing

Latency testing

- Not considered a valid "verification"
- Source code not required
- System complexity irrelevant
- Easy procedure
- Can be done by everybody
 - Let's do it!

Four levels of latency tests

External measurement with simulation OSADL's "Latency-Box"

Internal latency recording Built-in kernel latency histograms

Internal measurement with simulation Cyclictest

Real-world internal measurement Application CONFIG_WAKEUP_LATENCY_HIST=y CONFIG_INTERRUPT_OFF_HIST=y CONFIG_SWITCHTIME_HIST=y

cyclictest -a -t -n -p99

<application>

Four levels of latency tests

External measurement with simulation OSADL's "Latency-Box"

Internal latency recording Built-in kernel latency histograms

Internal measurement with simulation Cyclictest

Real-world internal measurement Application

cyclictest -a -t -n -p99

<application>

Signal path to be monitored

OSADL's "Latency Box"

OSADL's "Latency Box" - Specification

PowerPC 750FX@600MHz 64 MB SDRAM on SODIMM, 16 MB Flash-EPROM 10/100 Mb/s Network 2 serial channels RS232 and RS485 2 TTL Outputs, 4 TTL Inputs 4 Status LEDs On-board FPGA

OSADL's "Latency Box" connected to a CPU board

OSADL's "Latency Box" data transfer

OSADL standard "latency plot" (**RT** system)

Latency rackislot0

OSADL standard "latency plot" (slow RT system)

OSADL standard "latency plot" (non-RT system)

Latency rack0slot1

Test: "Potential latency" vs. "Effective latency"

Find appropriate measurement parameters

cyclictest -m -n -Sp90 -i100 -d0
/dev/cpu_dma_latency set to 0us
policy: fifo: loadavg: 10.43 6.56 3.38 2/1454 4126098

Т: 0 (4122431)	P:99 I:100 C:5154828 Min:	3 Act: 4	Avg: 6 Max: 42
T: 1 (4122432)	P:99 I:100 C:5154687 Min:	3 Act: 4	Avg: 5 Max: 88
т: 2 (4122433)	P:99 I:100 C:5154561 Min	3 Act: 4	Avg: 5 Max: 40
т: 3 (4122434)	P:99 I:100 C:5154439 Min	3 Act: 7	Avg: 6 Max: 40
T: 4 (4122435)	P:99 I:100 C:5154318 Min	3 Act: 4	Avg: 6 Max: 31
T: 5 (4122436)	P:99 I:100 C:5154196 Min	3 Act: 5	Avg: 5 Max: 47
т: 6 (4122437)	P:99 I:100 C:5153993 Min	3 Act: 4	Avg: 6 Max: 41
т: 7 (4122438)	P:99 I:100 C:5153936 Min	3 Act: 4	Avg: 5 Max: 94
т: 8 (4122439)	P:99 I:100 C:5153807 Min	3 Act: 4	Avg: 5 Max: 39
T: 9 (4122440)	P:99 I:100 C:5153662 Min	3 Act: 5	Avg: 5 Max: 51
T:10 (4122441)	P:99 I:100 C:5153517 Min	3 Act: 5	Avg: 5 Max: 42
T:11 (4122442)	P:99 I:100 C:5153371 Min	3 Act: 4	Avg: 5 Max: 30

"Potential latency" vs. "Effective latency"

"Potential latency" vs. "Effective latency"

Four levels of latency tests

External measurement with simulation OSADL's "Latency-Box"

Internal latency recording Built-in kernel latency histograms

Internal measurement with simulation Cyclictest

Real-world internal measurement Application CONFIG_WAKEUP_LATENCY_HIST=y CONFIG_INTERRUPT_OFF_HIST=y CONFIG_SWITCHTIME_HIST=y

cyclictest -a -t -n -p99

<application>

"Potential latency" vs. "Effective latency"

Internal recording of potential latencies

- Preemption off
- Interrupts off
- Preemption and interrupts off

Duration of critical section

Internal recording of effective latencies

- Wakeup time
- Context switch

Recording of execution time

Internal recording of effective latencies, sections

Restarting a waiting application by timer expiration

Internal recording of effective latencies, variables

Restarting a waiting application by timer expiration

Four levels of latency tests

External measurement with simulation OSADL's "Latency-Box"

Internal continuous recording Built-in kernel latency histograms

Internal measurement with simulation Cyclictest

Real-world internal measurement Application CONFIG_WAKEUP_LATENCY_HIST=y CONFIG_INTERRUPT_OFF_HIST=y CONFIG_SWITCHTIME_HIST=y

cyclictest -a -t -n -p99

<application>

Cyclictest: Command line parameters

cyclictest -a -t -n -p99 -i100 -d50
560.44 586.11 606.12 211/1160 3727
T: 0 (18617) P:99 I:100 C:1,011,846,111 Min: 2 Act: 4 Avg: 5 Max: 39
T: 1 (18618) P:98 I:150 C: 708,641,019 Min: 2 Act: 5 Avg: 11 Max: 57

- -a **PROC** Affinity. Run all threads on processor number **PROC**. If **PROC** is not specified, run thread #N on processor #N.
- -t NUM Threads. Create NUM test threads (default is 1). If NUM is not specifed, NUM is set to the number of available CPUs.
- -n *Nanosleep*. Run the tests with **clock_nanosleep()**. This is the standard and should always be used.
- -p99 *Priority*. Set the priority of the first thread. The given priority is assigned to the first test thread. Each further thread receives the priority reduced by the number of the thread.
- **-i100** *Interval*. Repetition interval of the first thread in μs (default is 1000 μs).
- -d50 *Delay of additional threads.* Set the distance of thread intervals in µs (default is 500 µs). When cyclictest is called with the -t option and more than a single thread is created, then this distance value is added to the interval of the threads.

Why are we testing computer boards and systems?

- Use as release testing for OSADL's "Latest Stable" Linux real-time kernel
- Provide selection criteria for automation hardware
- Generate availability and stability data of individual systems
- "Freeze and grow"
- Generate reliable data for certification purpose (e.g. real-time)

"Freeze and grow"

2.6.31.12-rt21

OSADL QA Farm osadl.org/QA (1)

OSADL Test Rack

- Eight individual tablets
- Power supply 220 V, Ethernet, RS232
- 10/100/1000 Mb/s Switch with port mirroring
- Power distribution unit with power monitoring for every tablet
- Remote power switch for every tablet
- Serial network adapter for every tablet
- KVM switch (optional) for every tablet
- One central server per rack

OSADL QA Farm osadl.org/QA (2)

Mounting the individual systems on specially designed removable tablets

OSADL QA Farm osadl.org/QA (3)

OSADL QA Farm osadl.org/QA (4)

Exhaustive and transparent documentation of every system

- Vendor, board
- BIOS version
- Distribution
- Kernel
- Kernel command line
- Command to generate latency plot histogram data
- CPU, interrupts, scaling governor, timer, RT features
- RAM, DIMMs
- PCI components
- BIOS analysis
- Kernel configuration, off-tree patches, script to reproduce kernel source tree

Processor families/processors under test (selection)

ARM

Broadcom

• BCM2708 @700 MHz, 32 bit

Freescale

- i.MX27 @400 MHz, 32 bit
- i.MX35 @532 MHz, 32 bit
- i.MX53 @886 MHz, 32 bit
- i.MX6 X4 @996 MHz, 32 bit

Marvell

• SheevaPlug @1200 MHz, 32 bit

Texas Instruments

- AM3517 @600 MHz, 32 bit
- OMAP3525 @720 MHz, 32 bit
- OMAP4430 X2 @1008 MHz, 32 bit
- OMAP4460 X2 @1200 MHz, 32 bit

MIPS

ICT

• Loongson 2F @800 MHz, 64 bit

PowerPC

Freescale

• MPC 5200 @396 MHz, 32 bit

x86/x86_64 AMD

- K6 3D, @333 MHz, 32 bit
- LX-800 @500 MHz, 32 bit
- Athlon XP 2000+, 32 bit
- Athlon 64 2800+, 64 bit
- G-Series T56N @1400 MHz, 64 bit
- Phenom II X6 @3200 MHz, 64 bit
- Opteron X32 @2100 MHz, 64 bit
- Kaveri A10 7850k @3700 MHz, 64 bit

Intel

- Pentium @133 MHz, 32 bit
- Atom D510 @1667 MHz, 64 bit
- Atom N270 @1600 MHz, 32 bit
- Atom D2700 @2133 MHz, 64 bit
- Celeron M @1500 MHz, 32 bit
- Pentium M @2300 MHz, 32 bit
- Xeon @2000 MHz, 32 bit
- Core 2 Duo @2400 MHz, 64 bit
- Core 2 Quad @2400 MHz, 32 bit
- Nehalem 975 @3333 MHz, 32 bit
- Gulftown X990 @3467 MHz, 64 bit
- Sandybridge 3770 @3400 MHz, 64 bit
- Haswell 4960X @3600 MHz, 64 bit

VIA

- C3 Samuel 2 @533 MHz, 32 bit
- C7 @1000 MHz, 32 bit
- Nano X2 L4050 @1400 MHz, 64 bit

Continuously determined variables (1)

• Firewall Throughput

• HTTP loadtime of a page

Network

Netstat

NFS Client

Processes

Fork rate

Processes

VMstat

NFSv4 Client

• Number of threads

Processes priority

NFS

• eth0 errors

eth0 traffic

Benchmarks

- GL benchmark gltestperf
- UnixBench (multi-core)
- UnixBench (single-core)
- UnixBench 2D graphics performance

Disk

- Disk IOs per device
- Disk latency per device
- Disk throughput per device
- Disk usage in percent
- Disk utilization per device
- File system mount-scheduled checks
- File system time-scheduled checks
- Filesystem usage (in bytes)
- Inode usage in percent
- IO Service time
- IOstat
- S.M.A.R.T values of every drive

HOT HEIDELBERG OSADL TALKS 2020

Trouble shooting of real-time Linux Technical Heidelberg OSADL Talks, April 29, 2020, Online Session 3 Open Source Automation Development Lab (OSADL), Heidelberg

Real-time system

- 5-min max. timer and wakeup latency
- 5-min max. timer offsets
- 5-min max. wakeup latency
- RT Features

Email

- Sendmail email traffic
- Sendmail email volumes
- Sendmail queued mails

Sensors

- Fans
- HDD temperature
- Power consumption
- Temperatures

Continuously determined variables (2)

System

- Available entropy
- C states
- CPU frequency
- CPU usage
- File table usage
- Individual interrupts
- Inode table usage
- Interrupts and context switches
- Kernel version
- Load average
- Logged in users
- Memory usage
- Split memory usage
- Application memory usage
- Swap in/out
- Uptime

Virtual systems

- Virtual domain block device I/O
- Virtual domain CPU time
- Virtual domain memory usage
- Virtual domain network I/O

Time synchronization

- NTP kernel PLL estimated error (secs)
- NTP kernel PLL frequency (ppm + 0)
- NTP kernel PLL offset (secs)
- NTP states
- NTP timing statistics for system peer

CPU and graphics benchmarks

Slowest (reddest)

L							
r5s0	51053	5215.2	7310.4	209.98	1800.7	1240.1	24.04. 18:12
r9s1	53541	4884.6	6549.8	85.08	1364.0	839.7	24.04. 18:11
r0s0	62655	10528.0	9547.5	253.67	3142.4	1716.1	24.04. 18:12
r8s2	62708	3780.9	7659.2	301.56	1432.7	1296.2	24.04. 18:10
r3s8	69034	14246.8	16194.3	171.38	4926.6	1984.7	24.04. 18:13
r7s2	89680	22966.9	6662.2	189.33	2779.4	1752.0	21.04.06:14
r5s1	102987	24195.3	19470.7	150.85	4038.8	2330.2	24.04. 18:12
r0s2	105523	8066.6	12745.5	129.70	3714.9	1764.1	24.04. 18:11
r8s8	124787	14457.6	12704.9	178.59	2922.2	1961.1	24.04.06:11
r0s3	149833	28304.6	15877.8	102.33	5621.2	2359.5	24.04. 18:11
r8s3	171306	23773.2	12331.1	214.99	5476.0	2757.5	24.04. 18:11
r4s6	180687	31339.9	17958.5	284.93	4211.0	2948.6	24.04. 18:11
r0s8	194089	22765.4	9104.9	149.12	7525.3	2557.9	24.04. 18:16
r0s8	194089	22765.4	9104.9	149.12	7525.3	2557.9	24.04. 18:16

Fastest (greenest)

Four different time resolutions (e.g. temperatures)

Alert colors of warnings and alarms (Munin)

Warning

Alarm

rack1slot2.osadl.org [benchmarks disk network nfs processes sendmail sensors system time]
 rack1slot3.osadl.org [benchmarks disk network nfs processes sendmail sensors system time]
 rack1slot4.osadl.org [benchmarks disk network nfs processes sendmail sensors system time]
 rack1slot6.osadl.org [benchmarks disk network processes sendmail sensors system time]
 rack1slot8.osadl.org [benchmarks disk network nfs processes sendmail sensors system time]
 rack1slot8.osadl.org [benchmarks disk network nfs processes sendmail sensors system time]
 rack2slot0.osadl.org [benchmarks disk network nfs processes sendmail sensors system time]
 rack2slot2.osadl.org [benchmarks disk network nfs processes system time]
 rack2slot5.osadl.org [benchmarks disk network nfs processes system time]
 rack2slot6.osadl.org [benchmarks disk network nfs processes system time]
 rack2slot6.osadl.org [benchmarks disk network nfs processes system time]
 rack2slot6.osadl.org [benchmarks disk network nfs processes system time]
 rack2slot6.osadl.org [benchmarks disk network nfs processes system time]
 rack2slot6.osadl.org [benchmarks disk network nfs processes system time]
 rack3slot0.osadl.org [benchmarks disk network nfs processes system time]
 rack3slot1.osadl.org [benchmarks disk network nfs processes system time]
 rack3slot1.osadl.org [benchmarks disk network nfs processes sendmail sensors system time]
 rack3slot1.osadl.org [benchmarks disk network nfs processes sendmail sensors system time]
 rack3slot1.osadl.org [benchmarks disk network nfs processes sendmail sensors system time]
 rack3slot1.osadl.org [benchmarks disk network nfs processes sendmail sensors system time]
 rack3slot2.osadl.org [benchmarks disk network nfs processes sendmail sensors system time

Event recording with Nagios (1)

Service Overview For All Host Groups

Trouble shooting of real-time Linux

Technical Heidelberg OSADL Talks, April 29, 2020, Online Session 3 Open Source Automation Development Lab (OSADL), Heidelberg

Event recording with Nagios (2)

Service alert histogram, e.g. hour-of-the-day analysis of latency peaks in current year

Hour of the Day (15 minute increments)

Monitoring and benchmark schedule

- Standardized network, disk and memory load
- Latency determination using cyclictest
- Continuous latency monitoring using kernel built-in histograms

Example 1a: Memory leak diagnosis

Normal (no leak)

Example 1b: Memory leak diagnosis

System leak

Application leak

Example 2: Stable vs. instable system

Example 3a: Power management

Example 3b: Power management

Example 3c: Power management

Example 3d: Power management

Example 4a: Determinism

Latency plot with linear x scale and logarithmic y scale

Example 4b: Determinism

Standard OSADL plot (very low maximum latency)

Example 4c: Determinism

Standard OSADL plot (relatively high maximum latency)

Repetitive latency plots each of 100 million cycles (1)

Repetitive latency plots each of 100 million cycles (2)

Example 5a: Real-time optimization

System in rack #1, slot #1 Recording from 08.01.2011 until 04.05.2011

Example 5b: Real-time optimization

System in rack #1, slot #1 Recording from 08.01.2011 until 04.05.2011

Example 6: Real-time optimization

System in rack #4, slot #2 Recording from 08.01.2011 until 04.05.2011

Determinism (no outlier in more than 22 billion cycle)

Example 7: Long-term latency plot

Example 8: Long-term latency plot

Example 9: Long-term latency plot

System in rack #3, slot #7 Recording from 08.01.2011 until 03.07.2011

Sporadic outliers due to a DMA problem of the Ethernet controller

Technical Heidelberg OSADL Talks, April 29, 2020, Online Session 3 Open Source Automation Development Lab (OSADL), Heidelberg

Example 10: Long-term latency plot

System in rack #2, slot #6 Recording from 08.01.2011 until 04.05.2011

Erroneous use of a non-realtime kernel

Example 11: Long-term latency plot

System in rack #2, slot #3 Recording from 08.01.2011 until 04.05.2011

Four levels of latency tests

External measurement with simulation OSADL's "Latency-Box"

Internal continuous recording Built-in kernel latency histograms

Internal measurement with simulation Cyclictest

Real-world internal measurement Application

CONFIG_WAKEUP_LATENCY_HIST=y CONFIG_INTERRUPT_OFF_HIST=y CONFIG_PREEMPT_OFF_HIST=y

cyclictest -a -t -n -p99

<application>

