
Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Carsten Emde

Open Source Automation Development Lab (OSADL) eG

Path analysis vs. empirical determination of a system's
real-time capabilities: The crucial role of latency tests

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Issues leading to system latency

Software

1979, e.g. Motorola
MC68000 @ 8 MHz

600 Dhrystones

Hardware Software

2009, e.g. Intel
Core 2 Duo @ 3 GHz

12,000,000 Dhrystones

Hardware

x 20,000

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Peak vs. worst-case performance

1979 2009

Peak performance (e.g. Dhrystones) 600 12,000,000

Factor 1 20,000

Moore's Law [2((2009-1979)/1.5)] 1 048,576

Worst-case performance (e.g. signal latency) 4,000 s 20 s

1/Factor 1 200

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

1979: Software issues related to system latency

Software

1979, e.g. Motorola
MC68000 @ 8 MHz

600 Dhrystones

Hardware Software

2009, e.g. Intel
Core 2 Duo @ 3 GHz

12,000,000 Dhrystones

Hardware

RTOSes in their early stage
No thread libraries
Limited IPC capabilities
Little RT knowledge
Many unresolved bugs
Assembly language

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

1979: Hardware issues related to system latency

Software

1979, e.g. Motorola
MC68000 @ 8 MHz

600 Dhrystones

Hardware Software

2009, e.g. Intel
Core 2 Duo @ 3 GHz

12,000,000 Dhrystones

Hardware

Single-core processor
No caches
One IRQ per device
Vectored IRQs, VBR
Fixed execution time per instruction
No microcode patches
Delayed DTACK

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

2009: Software issues related to system latency

Software

1979, e.g. Motorola
MC68000 @ 8 MHz

600 Dhrystones

Hardware Software

2009, e.g. Intel
Core 2 Duo @ 3 GHz

12,000,000 Dhrystones

Hardware

[2 ((2009-1980)/1.8)  71,000]

Mature RTOS
Mature IPC mechanisms
Thread libraries
Optimized kernel code
● Kernel profiling
● Kernel tracing
Better RT knowledge
Still unresolved bugs

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

2009: Hardware issues related to system latency

Software

1979, e.g. Motorola
MC68000 @ 8 MHz

600 Dhrystones

Hardware Software

2009, e.g. Intel
Core 2 Duo @ 3 GHz

12,000,000 Dhrystones

Hardware

[2 ((2009-1980)/1.8)  71,000]

Several levels of cache
Mixed caches (D/I/S)
Shared IRQs
Arbitrated busses
Multi-processing
SMI interference
Microcode patches
Very high peak performance

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

latency-fighters@osadl.org

A total of 18 requests

Hardware
N=17Software

N=1

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

latency-fighters@osadl.org

A total of 18 requests

Hardware
N=17Software

N=1What is the impact of these findings on path

analysis?

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Path analysis: 1979 vs. 2009

1979, e.g. Motorola
MC68000 @ 8 MHz

600 Dhrystones

2009, e.g. Intel
Core 2 Duo @ 3 GHz

12,000,000 Dhrystones

[2 ((2009-1980)/1.8)  71,000]

movea.l #dram,a0

move.l (a0),d0

add.l #1,d0

move.l d0,(a0)

mov dram,eax

mov eax,-4(ebp)

addl $1,-4(ebp)

mov -4(ebp),eax

mov eax,dram

i = dram[0];
i++;
dram[0] = i;

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Path analysis: 1979 vs. 2009
1979

1979, e.g. Motorola
MC68000 @ 8 MHz

600 Dhrystones

2009, e.g. Intel
Core 2 Duo @ 3 GHz

12,000,000 Dhrystones

[2 ((2009-1980)/1.8)  71,000]

mov dram,eax

mov eax,-4(ebp)

addl $1,-4(ebp)

mov -4(ebp),eax

mov eax,dram

Load instruction
from memory
and execute it.
Duration = 56
clock cycles

movea.l #dram,a0

move.l (a0),d0

add.l #1,d0

move.l d0,(a0)

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Path analysis: 1979 vs. 2009
2009

1979, e.g. Motorola
MC68000 @ 8 MHz

600 Dhrystones

2009, e.g. Intel
Core 2 Duo @ 3 GHz

12,000,000 Dhrystones

[2 ((2009-1980)/1.8)  71,000]

movea.l #dram,a0

move.l (a0),d0

add.l #1,d0

move.l d0,(a0)

mov dram,eax

mov eax,-4(ebp)

addl $1,-4(ebp)

mov -4(ebp),eax

mov eax,dram

Load instruction
from cache
and execute it.
Duration = ?

Instruction not
in cache/no
free cache lines

System
Management
Interrupt

Data not in
cache/no free
cache lines

Instruction may be emulated
(microcode patch)

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Path analysis

Path analysis
● Generally accepted verification procedure

● Source code normally required

● Difficult to do in modern high-performance processors

● Required processor data often not disclosed

● Expensive procedure

● Normally not done by users

● Result of path analysis often not publicly available

● May need to be checked against empirical latency testing

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Path analysis vs. latency testing

Latency testing
● Not considered a valid “verification”

● Source code not required

● System complexity irrelevant

● Easy procedure

● Can be done by everybody

Path analysis
● Generally accepted verification procedure

● Source code normally required

● Difficult to do in modern high-performance processors

● Required processor data often not disclosed

● Expensive procedure

● Normally not done by users

● Result of path analysis often not publicly available

● May need to be checked against empirical latency testing

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Path analysis vs. latency testing

Latency testing
● Not considered a valid “verification”

● Source code not required

● System complexity irrelevant

● Easy procedure

● Can be done by everybody

Let's do it!

Path analysis
● Generally accepted verification procedure

● Source code normally required

● Difficult to do in modern high-performance processors

● Required processor data often not disclosed

● Expensive procedure

● Normally not done by users

● Result of path analysis often not publicly available

● May need to be checked against empirical latency testing

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Four levels of latency tests

External measurement with simulation
 OSADL's „Latency-Box“

Internal latency recording
 Built-in kernel latency histograms

Internal measurement with simulation
 Cyclictest

Real-world internal measurement
 Application

CONFIG_WAKEUP_LATENCY_HIST=y
CONFIG_INTERRUPT_OFF_HIST=y
CONFIG_PREEMPT_OFF_HIST=y

cyclictest -a -t -n -p99

<application>

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

External measurement with simulation
 OSADL's „Latency-Box“

Internal latency recording
 Built-in kernel latency histograms

Internal measurement with simulation
 Cyclictest

Real-world internal measurement
 Application

CONFIG_WAKEUP_LATENCY_HIST=y
CONFIG_INTERRUPT_OFF_HIST=y
CONFIG_PREEMPT_OFF_HIST=y

cyclictest -a -t -n -p99

<application>

Four levels of latency tests

External measurement with simulation
 OSADL's „Latency-Box“

Internal continuous recording
 Built-in kernel latency histograms

Internal measurement with simulation
 Cyclictest

Real-world internal measurement
 Application

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

External event,
e.g. from a light barrier

Wakeup application
in user space

Scheduling,
context switch

Interrupt service
routine

Total latency or preemption latency

IRQ
latency

Gate
latency

CPU
IRQ

3 3 9 15

6

30

Signal path to be monitored

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

OSADL's „Latency Box“

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

OSADL's „Latency Box“ - Specification
PowerPC 750FX@600MHz
64 MB SDRAM on SODIMM, 16 MB Flash-EPROM
10/100 Mb/s Network
2 serial channels RS232 and RS485
2 TTL Outputs, 4 TTL Inputs
4 Status LEDs
On-board FPGA

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

OSADL's „Latency Box“ connected to a CPU board

Scheduling,
context switch

Interrupt service
routine

3 3 9 15

PowerPC 750FX@600MHz
64 MB SDRAM on SODIMM, 16 MB Flash-EPROM
10/100 Mb/s Network
2 serial channels RS232 and RS485
2 TTL Outputs, 4 TTL Inputs
4 Status LEDs
On-board FPGA

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

OSADL's „Latency Box“ data transfer

Line #1 0 (No latency recording below 1 µs duration)
0
0
0
0
0
0
0
0
0

Line #11 76 (A total of 76 latency values between 10 and 11 µs duration)
2238
8800
20027 (Most frequently observer latency values between 13 and 14 µs duration)
18433
430
25
14
[..]

Line #1000 0 (No overflow)

Histogram data

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

OSADL's „Latency Box“ - data plot

1

10

100

1000

10000

0 5 10 15 20 25 30 35 40

N
u

m
be

r
o

f
d

at
a

po
in

ts

Max. latency 35 µs

OSADL Latency Box

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

„Potential latency“ vs. „Effective latency“

Trigger interval 200 μs

Measurement

Latency

Not detected Partially detected

Effective latency

Completely detected

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

„Potential latency“ vs. „Effective latency“

But would have been
registered!

Trigger interval 200 μs

Measurement

Latency

Not detected Partially detected

Effective latency

Completely detected

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

External measurement with simulation
 OSADL's „Latency-Box“

Internal latency recording
 Built-in kernel latency histograms

Internal measurement with simulation
 Cyclictest

Real-world internal measurement
 Application

CONFIG_WAKEUP_LATENCY_HIST=y
CONFIG_INTERRUPT_OFF_HIST=y
CONFIG_PREEMPT_OFF_HIST=y

cyclictest -a -t -n -p99

<application>

Four levels of latency tests

External measurement with simulation
 OSADL's „Latency-Box“

Internal continuous recording
 Built-in kernel latency histograms

Internal measurement with simulation
 Cyclictest

Real-world internal measurement
 Application

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

„Potential latency“ vs. „Effective latency“

But would have been
registered!

Trigger interval 200 μs

Measurement

Latency

Not detected Partially detected

Effective latency

Completely detected

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Latency

Internal recording of potential latencies

Start
Recording

Stop
Recording

Start
Recording

Stop
Recording

Start
Recording

Stop
Recording

● Preemption off
● Interrupts off
● Preemption and interrupts off

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Delay between wakeup and context switch

Internal recording of effective latencies

Start
Recording

Stop
Recording

Start
Recording

Stop
Recording

● Wakeup time

Start
Recording

Stop
Recording

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Internal latency recording

Kernel configuration
 CONFIG_WAKEUP_LATENCY_HIST=y
 CONFIG_INTERRUPT_OFF_HIST=y
 CONFIG_PREEMPT_OFF_HIST=y

Access via debug file system
Command
 mount -t debugfs nodev /sys/kernel/debug

Entry in /etc/fstab
 nodev /sys/kernel/debug debugfs defaults 0 0

Directories
 /sys/kernel/debug/tracing/latency_hist/enable

 /sys/kernel/debug/tracing/latency_hist/irqsoff
 /sys/kernel/debug/tracing/latency_hist/preemptirqsoff
 /sys/kernel/debug/tracing/latency_hist/preemptoff

 /sys/kernel/debug/tracing/latency_hist/wakeup

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Internal latency recording - Files

Files

Enable latency recording
 echo 1 >/sys/kernel/debug/tracing/latency_hist/enable/preemptirqsoff
 echo 1 >/sys/kernel/debug/tracing/latency_hist/enable/wakeup

Latency histogram data
 /sys/kernel/debug/tracing/latency_hist/irqsoff/CPU?
 echo 1 >/sys/kernel/debug/tracing/latency_hist/irqsoff/reset

 /sys/kernel/debug/tracing/latency_hist/preemptirqsoff/CPU?
 echo 1 >/sys/kernel/debug/tracing/latency_hist/preemptirqsoff/reset

 /sys/kernel/debug/tracing/latency_hist/preemptoff/CPU?
 echo 1 >/sys/kernel/debug/tracing/latency_hist/preemptoff/reset

 /sys/kernel/debug/tracing/latency_hist/wakeup/CPU?
 /sys/kernel/debug/tracing/latency_hist/wakeup/max_latency-CPU?
 echo $pid >/sys/kernel/debug/tracing/latency_hist/wakeup/pid
 echo 1 >/sys/kernel/debug/tracing/latency_hist/wakeup/reset

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Handle histograms - Reset

Reset

#!/bin/bash

HISTDIR=/sys/kernel/debug/tracing/latency_hist
if test -d $HISTDIR
then
 cd $HISTDIR
 for i in */reset
 do
 echo 1 >$i
 done
fi

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Handle histograms – Evaluate data

Data
grep -v " 0$" /sys/kernel/debug/tracing/latency_hist/irqsoff/CPU0
#Minimum latency: 0 microseconds.
#Average latency: 0 microseconds.
#Maximum latency: 63 microseconds.
#Total samples: 2622976567
#There are 0 samples greater or equal than 10240 microseconds
#usecs samples
 0 2174555930
 1 251129896
 2 108221353
 3 22726693
 4 17853433
 5 20486535
 6 13811530
 7 6996682
 8 3464499
 9 2084766
 10 832247
 11 366531
 12 158594
 13 67561
 14 40456
 15 28985
 16 21873
 17 16504

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Interrupt-off latency histogram

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Calibration of latency recording

“Bad” driver (blocksys.ko)
 local_irq_disable();
 while (nops--)
 asm("nop");
 local_irq_enable();

Using the “bad” driver (mklatency)
 Command
 mklatency

 Kernel log
 [..] kernel: blocksys: CPU #0 will be blocked for 2000000 nops
 [..] kernel: blocksys: CPU #0 blocked about 835 us

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Interrupt-off latency histogram (before)

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Interrupt-off latency histogram (after)

local_irq_disable();
while (nops--)
 asm("nop");
local_irq_enable();

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Penalty of latency recording

Latency recording of potential latencies (interrupt off etc.)

has a measurable effect on the system latency in the range of 5%.

Latency recording of effective latencies (wakeup latency)

has a negligible effect on the system latency in the range of <1%. This makes it

possible to continuously monitor the wakeup latency in a production system (even

during its entire life cycle).

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Continuous recording of the wakeup latency (1)

(using the Munin monitoring tool)

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Latencies

Number of samples

Continuous recording of the wakeup latency (2)

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

External measurement with simulation
 OSADL's „Latency-Box“

Internal continuous recording
 Built-in kernel latency histograms

Internal measurement with simulation
 Cyclictest

Real-world internal measurement
 Application

CONFIG_WAKEUP_LATENCY_HIST=y
CONFIG_INTERRUPT_OFF_HIST=y
CONFIG_PREEMPT_OFF_HIST=y

cyclictest -a -t -n -p99

<application>

Four levels of latency tests

External measurement with simulation
 OSADL's „Latency-Box“

Internal continuous recording
 Built-in kernel latency histograms

Internal measurement with simulation
 Cyclictest

Real-world internal measurement
 Application

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Cyclictest - Principle

cyclictest
Master process

cyclictest
Meas. thread

cyclictest
Meas. thread

cyclictest
Meas. thread

T1

T2

TN

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Cyclictest: Command line parameters

cyclictest -a -t -n -p99 -i100 -d50
560.44 586.11 606.12 211/1160 3727
T: 0 (18617) P:99 I:100 C:1,011,846,111 Min: 2 Act: 4 Avg: 5 Max: 39
T: 1 (18618) P:98 I:150 C: 708,641,019 Min: 2 Act: 5 Avg: 11 Max: 57

-a PROC Affinity. Run all threads on processor number PROC. If PROC is not specified, run thread #N on processor #N.

-t NUM Threads.Create NUM test threads (default is 1). If NUM is not specifed, NUM is set to the number of available
CPUs.

-n Nanosleep. Run the tests with clock_nanosleep().This is the standard and should always be used.

-p99 Priority. Set the priority of the first thread. The given priority is assigned to the first test thread. Each further thread
receives the priority reduced by the number of the thread.

-i100 Interval. Repetition interval of the first thread in μs (default is 1000 μs).

-d50 Delay of additional threads. Set the distance of thread intervals in μs (default is 500 μs). When cyclictest is called
with the -t option and more than a single thread is created, then this distance value is added to the interval of the
threads.

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

External measurement with simulation
 OSADL's „Latency-Box“

Internal continuous recording
 Built-in kernel latency histograms

Internal measurement with simulation
 Cyclictest

Real-world internal measurement
 Application

CONFIG_WAKEUP_LATENCY_HIST=y
CONFIG_INTERRUPT_OFF_HIST=y
CONFIG_PREEMPT_OFF_HIST=y

cyclictest -a -t -n -p99

<application>

Four levels of latency tests

External measurement with simulation
 OSADL's „Latency-Box“

Internal continuous recording
 Built-in kernel latency histograms

Internal measurement with simulation
 Cyclictest

Real-world internal measurement
 Application

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Conclusions (1)

Path analysis
● Generally accepted verification procedure
● Source code normally required
● The more complex is system is, the less

Latency testing
● Not considered a valid “verification”
● Source code not required
● System complexity irrelevant

Latency tests must be done

● long enough (recommended at least 10 measurements or continuously)⁹

● frequently enough (interval between triggers no more than twice the
 expected worst-case latency)

● under appropriate load (every OS has a low wakeup latency when idle)

● after calibration (make sure that latencies are, in fact, recorded)

Eleventh Real Time Linux Workshop
September 28 to 30, 2009, Dresden, Germany

Conclusions (2)

Path analysis
● Generally accepted verification procedure
● Source code normally required
● The more complex is system is, the less

Latency testing
● Not considered a valid “verification”
● Source code not required
● System complexity irrelevant

Path analysis is the “gold standard” - it is the best way to determine the

worst-case latency of a system. Use it whenever possible.

On modern high-performance processors, path analysis may no longer be

feasible. The empirical determination of the worst-case latency may be used

instead. When done correctly, it may provide a level of confidence that is

similar to path analysis.

	Title page
	Issues leading to system latency
	Peak vs. worst-case performance
	1979: Software issues related to system latency
	1979: Hardware issues related to system latency
	2009: Software issues related to system latency
	2009: Hardware issues related to system latency
	latency-fighters@osadl.org
	What is the impact of these findings on path analysis?
	Path analysis: 1979 vs. 2009
	Path analysis: 1979 vs. 2009 - 1979
	Path analysis: 1979 vs. 2009 - 2009
	Path analysis
	Path analysis vs. latency testing
	Path analysis vs. latency testing - Let's do it!
	Four levels of latency tests
	Four levels of latency tests (1)
	Latenzquellen
	OSADL's „Latency Box“
	OSADL's „Latency Box“ - Specification
	OSADL's „Latency Box“ connected to a CPU board
	OSADL's „Latency-Box“ data transfer
	Beispiel-Histogramm-Daten als Latenz-Plot
	„Potentielle Latenz“ vs. „Effektive Latenz“
	„Potentielle Latenz“ vs. „Effektive Latenz“ (aber registriert!)
	Four levels of latency tests (2)
	„Potential latency“ vs. „Effective latency“ (2)
	Internal recording of potential latencies
	Internal recording of effective latencies
	Internal latency recording
	Internal continuous latency recording - Files
	Handle histogram data - reset
	Handle histogram data – evaluate data
	Interrupt-off latency histogram
	Calibration of latency recording
	Interrupt-off latency histogram (before)
	Interrupt-off latency histogram (after)
	Penalty of latency recording
	Continuous recording of the wakeup latency (1)
	Continuous recording of the wakeup latency (2)
	Four levels of latency tests (3)
	Cyclictest - Principle
	Cyclictest: Command line parameters
	Four levels of latency tests (4)
	Conclusions (1)
	Conclusions (2)

