

Realtime In the Enterprise

(definitely not your grandfather's realtime)

Clark Williams
Team Lead, MRG Realtime

Red Hat Inc.

Realtime
Back in the Day...

● Usually about meeting strict timing deadlines
● Special purpose hardware

● Uniprocessor
– Many times a relatively weak 8 or 16-bit processor

● Limited RAM
● Limited mass storage (usually EPROM)
● Serial communications
● Single purpose system
● I/O devices were generally purpose-built for a task

Realtime
Today

● Less about meeting deadlines and more about
reducing the time between an event and the
servicing of that event (latency)

● High-end, general-purpose systems
● Multi-core processors
● Gigabytes of RAM
● Large mass storage array
● High-speed network connections
● More use of standardized I/O devices

General Purpose Systems Make RT
Hard to Do

● SMP complicates the scheduler
● Large numbers of interrupts + large numbers of

cores complicate interrupt handling
● Migration costs cause us to lose performance

as number of processor cores rise
● Work is being done on different schedulers and

new ways of mutual exclusion (EDF and RCU)
● RT is a magnifier of existing kernel problems

● “If RT sees it now, mainline will see it in 3-5 years”

Enterprise Realtime Applications

● Financial
● Market data (operating on a multicast stream)
● Trading (transaction oriented)

● Military
● C3 (Command, Control, Communications)
● Navigation (image recognition)

● Multimedia
● Audio recording/playback (millisecond deadlines)

● Seismic Analysis

Realtime Applications differ from
Most Regular Applications

● Fairness goes out the window
● Some threads are more important than others
● Realtime priorities used to indicate relative

importance of threads (SCHED_FIFO)
● Resources are locked down (e.g. mlock(2))

● Systems are partitioned
● Core (or groups of cores) dedicated to applications
● Interrupt affinity used to move important interrupts

to lightly used core(s)
– Tuna or taskset is useful for this

Issues with RT Linux on General
Purpose Hardware

● Throughput Loss
● Determinism has its cost
● 10-20% loss over vanilla kernel in network

throughput loads (e.g. netperf)
● Work is ongoing to identify and remove

performance hotspots

● Unexplained Latencies
● System Management Interrupts (SMIs)

RT Tools

● Many tools being developed for finding/fixing
problems and tuning RT Linux
● perf
● ftrace
● rteval
● hwlat_detector
● tuna

● All of these tools run on mainstream Linux

perf

● Interface to kernel Performance Events system
● Command line tool with pluggable sub-

commands, similar to 'git':
– perf top – provides updating view of top kernel routines
– perf record – profiles a command
– perf report – analyzes data from a 'perf record' run
– perf annotate – another way to view 'perf record' data
– perf stat – gather perf counter statistics on a command

● Main use is to analyze kernel performance
● Kept in kernel source tree: tools/perf

ftrace

● Originally grew from Ingo Molnar's latency-
tracer

● Steven Rostedt generalized it and added
functions

● Many, many tracer's available to gather
different views of kernel execution

● More info in kernel tree in Documents/tracing
● See Steven's talk this afternoon

– git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-2.6-trace.git

rteval

● Used to measure latency on a system under
moderate load

● Two loads:
● Kernel compile:

– make -j<ncores*2> bzImage modules
● hackbench

● Uses cyclictest to measure latency
● Produces XML output with statistical analysis of

run data
● git://git.kernel.org/pub/scm/linux/kernel/git/clrkwllms/rteval.git

hwlat_detector

● Kernel module written by Jon Masters used to
detect hardware related latencies (e.g. SMIs)
● debugfs interface

● Uses stop_machine() to poll system clock,
looking for gaps where control transferred away
from the OS

● Python wrapper in rt-tests package, named
hwlatdetect.py, drives module

● Tentative plan is to rewrite hwlatdetect.py
functionality as perf sub-command

tuna

● Graphical tool for interactively tuning a running
RT system

● Has command line backend, so things done in
GUI can be scripted later

● Still under development
● Python + GTK
● Should be out in Fedora 12 (already in MRG)
● git://git.kernel.org/pub/scm/linux/kernel/git/acme/tuna.git

tuna Screenshot

RT Things We Want to Get
Upstream

● Finish up threaded IRQ support
● Lots of drivers need to be evaluated/converted

● Full preemption (sleeping spinlocks)
● Still working on how to indicate that locks will

change behavior based on config options

● More tools
● tuna
● rteval
● perf framework needs extending

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

