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Realtime
Back in the Day...

» Usually about meeting strict timing deadlines

» Special purpose hardware

e Uniprocessor
- Many times a relatively weak 8 or 16-bit processor

Limited RAM

Limited mass storage (usually EPROM)

Serial communications

Single purpose system

/O devices were generally purpose-built for a task



Realtime
Today

* Less about meeting deadlines and more about
reducing the time between an event and the
servicing of that event (latency)

* High-end, general-purpose systems

* Multi-core processors
Gigabytes of RAM
Large mass storage array

High-speed network connections

More use of standardized I/O devices



General Purpose Systems Make RT
Hard to Do

« SMP complicates the scheduler

* Large numbers of interrupts + large numbers of
cores complicate interrupt handling

» Migration costs cause us to lose performance
as number of processor cores rise

* Work is being done on different schedulers and
new ways of mutual exclusion (EDF and RCU)

* RT is a magnifier of existing kernel problems
* “If RT sees it now, mainline will see it in 3-5 years”



Enterprise Realtime Applications

Financial

* Market data (operating on a multicast stream)
* Trading (transaction oriented)

Military

e C®(Command, Control, Communications)

* Navigation (Image recognition)

Multimedia

« Audio recording/playback (millisecond deadlines)
Seismic Analysis



Realtime Applications differ from
Most Regular Applications

* Fairness goes out the window

 Some threads are more important than others

» Realtime priorities used to indicate relative
importance of threads (SCHED_ FIFO)

* Resources are locked down (e.g. mlock(2))
e Systems are partitioned

e Core (or groups of cores) dedicated to applications

 |nterrupt affinity used to move important interrupts
to lightly used core(s)

— Tuna or taskset is useful for this



Issues with RT Linux on General
Purpose Hardware

 Throughput Loss

e Determinism has Its cost

e 10-20% loss over vanilla kernel in network
throughput loads (e.g. netperf)

 Work Is ongoing to identify and remove
performance hotspots

 Unexplained Latencies
e System Management Interrupts (SMIs)



RT Tools

* Many tools being developed for finding/fixing
problems and tuning RT Linux

e perf

e ftrace

* rteval
 hwlat_detector
e tuna

o All of these tools run on mainstream Linux



perf

Interface to kernel Performance Events system

Command line tool with pluggable sub-
commands, similar to 'git"
- perf top — provides updating view of top kernel routines
- perf record — profiles a command
- perf report — analyzes data from a 'perf record' run

- perf annotate — another way to view 'perf record' data
- perf stat — gather perf counter statistics on a command

Main use Is to analyze kernel performance
Kept in kernel source tree: tools/perf



ftrace

* Originally grew from Ingo Molnar's latency-
tracer

« Steven Rostedt generalized it and added
functions

 Many, many tracer's available to gather
different views of kernel execution

* More info in kernel tree in Documents/tracing
» See Steven's talk this afternoon

- git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-2.6-trace.qgit



rteval

* Used to measure latency on a system under
moderate load

e Two loads:

« Kernel compile:
- make -j<ncores*2> bzlmage modules
* hackbench

» Uses cyclictest to measure latency

* Produces XML output with statistical analysis of
run data

o git://git.kernel.org/pub/scm/linux/kernel/git/clrkwlims/rteval.qgit



hwiat_detector

« Kernel module written by Jon Masters used to
detect hardware related latencies (e.g. SMIs)

e debugfs interface

* Uses stop _machine() to poll system clock,
looking for gaps where control transferred away
from the OS

* Python wrapper in rt-tests package, named
hwlatdetect.py, drives module

* Tentative plan is to rewrite hwlatdetect.py
functionality as perf sub-command



tuna

* Graphical tool for interactively tuning a running
RT system

 Has command line backend, so things done in
GUI can be scripted later

 Still under development

 Python + GTK
« Should be out in Fedora 12 (already in MRG)

 git://git.kernel.org/pub/scm/linux/kernel/git/acme/tuna.git



tuna Screenshot
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RT Things We Want to Get
Upstream

* Finish up threaded IRQ support
* Lots of drivers need to be evaluated/converted
* Full preemption (sleeping spinlocks)

 Still working on how to indicate that locks will
change behavior based on config options

e More tools
e funa

* rteval
» perf framework needs extending



Questions?
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