Realtime In the Enterprise

(definitely not your grandfather's realtime)

Clark Williams Team Lead, MRG Realtime Red Hat Inc.

Realtime Back in the Day...

- Usually about meeting strict timing deadlines
- Special purpose hardware
 - Uniprocessor
 - Many times a relatively weak 8 or 16-bit processor
 - Limited RAM
 - Limited mass storage (usually EPROM)
 - Serial communications
 - Single purpose system
 - I/O devices were generally purpose-built for a task

Realtime *Today*

- Less about meeting deadlines and more about reducing the time between an event and the servicing of that event (latency)
- High-end, general-purpose systems
 - Multi-core processors
 - Gigabytes of RAM
 - Large mass storage array
 - High-speed network connections
 - More use of standardized I/O devices

General Purpose Systems Make RT Hard to Do

- SMP complicates the scheduler
- Large numbers of interrupts + large numbers of cores complicate interrupt handling
- Migration costs cause us to lose performance as number of processor cores rise
- Work is being done on different schedulers and new ways of mutual exclusion (EDF and RCU)
- RT is a *magnifier* of existing kernel problems
 - "If RT sees it now, mainline will see it in 3-5 years"

Enterprise Realtime Applications

- Financial
 - Market data (operating on a multicast stream)
 - Trading (transaction oriented)
- Military
 - C³ (Command, Control, Communications)
 - Navigation (image recognition)
- Multimedia
 - Audio recording/playback (millisecond deadlines)
- Seismic Analysis

Realtime Applications differ from Most Regular Applications

- Fairness goes out the window
 - Some threads are more important than others
 - Realtime priorities used to indicate relative importance of threads (SCHED_FIFO)
 - Resources are locked down (e.g. mlock(2))
- Systems are *partitioned*
 - Core (or groups of cores) dedicated to applications
 - Interrupt affinity used to move important interrupts to lightly used core(s)
 - Tuna or taskset is useful for this

Issues with RT Linux on General Purpose Hardware

- Throughput Loss
 - Determinism has its cost
 - 10-20% loss over vanilla kernel in network throughput loads (e.g. netperf)
 - Work is ongoing to identify and remove performance hotspots
- Unexplained Latencies
 - System Management Interrupts (SMIs)

RT Tools

- Many tools being developed for finding/fixing problems and tuning RT Linux
 - perf
 - ftrace
 - rteval
 - hwlat_detector
 - tuna
- All of these tools run on mainstream Linux

perf

- Interface to kernel Performance Events system
- Command line tool with pluggable subcommands, similar to 'git':
 - perf top provides updating view of top kernel routines
 - perf record profiles a command
 - perf report analyzes data from a 'perf record' run
 - perf annotate another way to view 'perf record' data
 - perf stat gather perf counter statistics on a command
- Main use is to analyze kernel performance
- Kept in kernel source tree: tools/perf

ftrace

- Originally grew from Ingo Molnar's latencytracer
- Steven Rostedt generalized it and added functions
- Many, many tracer's available to gather different views of kernel execution
- More info in kernel tree in Documents/tracing
- See Steven's talk this afternoon
 - git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-2.6-trace.git

rteval

- Used to measure latency on a system under moderate load
- Two loads:
 - Kernel compile:
 - make -j<ncores*2> bzImage modules
 - hackbench
- Uses cyclictest to measure latency
- Produces XML output with statistical analysis of run data
- git://git.kernel.org/pub/scm/linux/kernel/git/clrkwllms/rteval.git

hwlat_detector

- Kernel module written by Jon Masters used to detect hardware related latencies (e.g. SMIs)
 - debugfs interface
- Uses stop_machine() to poll system clock, looking for gaps where control transferred away from the OS
- Python wrapper in rt-tests package, named hwlatdetect.py, drives module
- Tentative plan is to rewrite hwlatdetect.py functionality as perf sub-command

tuna

- Graphical tool for interactively tuning a running RT system
- Has command line backend, so things done in GUI can be scripted later
- Still under development
 - Python + GTK
 - Should be out in Fedora 12 (already in MRG)
 - git://git.kernel.org/pub/scm/linux/kernel/git/acme/tuna.git

tuna Screenshot

Sock	et 0	Sock	et 1		Socke	et 2		Socket	3		1	IRQ	PID	Policy	Priority	Affinity	Events	Users	-
Filter	CPU Usage	e Filter	CPU	Usage	Filter	CPU	Usage	Filter	CPU	Usage		0	-1		-1	0-63	4338	timer	
	1 0		4	0		2	0		3	0		4	14323	FIFO	85	0-63	13	serial	
	5 0		8	0		6	0		7	0		8	2257	FIFO	85	0-63	0	rtc0	
	9 0		12	0		10	0		11	0		9	1080	FIFO	85	0-63	0	acpi	
	13 0		16	0		14	0		15	0		14	3323	FIFO	85	0-63	44728	libata	
	17 0		20	0	2	18	0		19	0		15	3324	FIFO	85	0-63	0	libata	
	21 0		0	0		22	0		23	0		17	2463	FIFO	85	0-63	50	uhci_hcd:usb5	
												18	2464	FIFO	85	0-63	64	uhci_hcd:usb6	
												19	2465	FIFO	85	0-63	0	uhci_hcd:usb7	
Sock	1 1	Sock	1 1		Socke	1	L. 1	Socket		L.,		23	2330	FIFO	85	0-63	з	ehci_hcd:usb1,uhci_hcd:usb4	
Filter	CPU Usage	-1		Usage	Filter	CPU	Usage		CPU	Usage		46	3125	FIFO	85	0-63	943	megasas	
	24 0		25	0		26	0		27	0		116	2466	FIFO	85	0-63	52	uhci_hcd:usb9	
	28 0		29	0		30	0		31	0		117	2467	FIFO	85	0-63	18371	uhci_hcd:usb10	
	32 0		33	0		34	0		35	0	3	118	2468	FIFO	85	0-63	0	uhci_hcd:usb11	
	36 0		37	0		38	0		39	0		122	2331	FIFO	85	0-63	839	ehci_hcd:usb2,uhci_hcd:usb8	
	40 0		41	0		42	0		43	0		142	3127	FIFO	85	0-63	1225	megasas	
	44 0		45	0		46	0		47	0		212	2469	FIFO	85	0-63	0	uhci_hcd:usb13	
												213	2470	FIFO	85	0-63	59	uhci_hcd:usb14	
Sock	et 8	Sock	et 9		Socke	et 10		Socket	11-			214	2471	FIFO	85	0-63	0	uhci_hcd:usb15	
Filter	CPU Usage	1	1 1	Usage	Filter	CPU	Usage		CPU	Usage		218	2332	FIFO	85	0-63	55	ehci_hcd:usb3,uhci_hcd:usb12	
	48 0	1 🖂	49	39		50	0		51	0		238	3057	FIFO	85	0-63	29489	ioc0	
	52 0		53	26		54	0	II	55	0		2254	12253	FIFO	85	0-63	7	eth0(bnx2)	
	56 0		57	0		58	0		59	0		2255	12252	FIFO	85	0-63	0	eth0(bnx2)	
	60 0		61	0		62	0		63	0		2256	12251	FIFO	85	0-63	21	eth0(bnx2)	
		-										2257	12250	FIFO	85	0-63	6395	eth0(bnx2)	
												2258	12249	FIFO	85	0-63	180	eth0(bnx2)	
	4										•••••								-
PID	Policy	Priority	Aff	inity	VolCtx	dSwitch	n No	nVolCtx	tSwitc	h Co	ommand Line								Ê
1	OTHER	0	0-6	3	5455		964	42		ini	t [5]								
2	OTHER	OTHER 0		0-63		1543		2609		kthreadd									
3	FIFO	FIFO 99		0		986		0		migration/0									
4	FIFO	FIFO 99		0		2		0		posixcputmr/0									
5	FIFO	FIFO 70		0		2		0		sin	q-high/0								
6	FIFO	FIFO 70		0		4228459		0		sin	sirq-timer/0								-
۹																			•

RT Things We Want to Get Upstream

- Finish up threaded IRQ support
 - Lots of drivers need to be evaluated/converted
- Full preemption (sleeping spinlocks)
 - Still working on how to indicate that locks will change behavior based on config options
- More tools
 - tuna
 - rteval
 - perf framework needs extending

Questions?