Realtime In the Enterprise

(definitely not your grandfather's realtime)

Clark Williams
Team Lead, MRG Realtime
Red Hat Inc.

Realtime
Back in the Day...

» Usually about meeting strict timing deadlines

» Special purpose hardware

e Uniprocessor
- Many times a relatively weak 8 or 16-bit processor

Limited RAM

Limited mass storage (usually EPROM)

Serial communications

Single purpose system

/O devices were generally purpose-built for a task

Realtime
Today

* Less about meeting deadlines and more about
reducing the time between an event and the
servicing of that event (latency)

* High-end, general-purpose systems

* Multi-core processors
Gigabytes of RAM
Large mass storage array

High-speed network connections

More use of standardized I/O devices

General Purpose Systems Make RT
Hard to Do

« SMP complicates the scheduler

* Large numbers of interrupts + large numbers of
cores complicate interrupt handling

» Migration costs cause us to lose performance
as number of processor cores rise

* Work is being done on different schedulers and
new ways of mutual exclusion (EDF and RCU)

* RT is a magnifier of existing kernel problems
* “If RT sees it now, mainline will see it in 3-5 years”

Enterprise Realtime Applications

Financial

* Market data (operating on a multicast stream)
* Trading (transaction oriented)

Military

e C®(Command, Control, Communications)

* Navigation (Image recognition)

Multimedia

« Audio recording/playback (millisecond deadlines)
Seismic Analysis

Realtime Applications differ from
Most Regular Applications

* Fairness goes out the window

 Some threads are more important than others

» Realtime priorities used to indicate relative
importance of threads (SCHED_ FIFO)

* Resources are locked down (e.g. mlock(2))
e Systems are partitioned

e Core (or groups of cores) dedicated to applications

 |nterrupt affinity used to move important interrupts
to lightly used core(s)

— Tuna or taskset is useful for this

Issues with RT Linux on General
Purpose Hardware

 Throughput Loss

e Determinism has Its cost

e 10-20% loss over vanilla kernel in network
throughput loads (e.g. netperf)

 Work Is ongoing to identify and remove
performance hotspots

 Unexplained Latencies
e System Management Interrupts (SMIs)

RT Tools

* Many tools being developed for finding/fixing
problems and tuning RT Linux

e perf

e ftrace

* rteval
 hwlat_detector
e tuna

o All of these tools run on mainstream Linux

perf

Interface to kernel Performance Events system

Command line tool with pluggable sub-
commands, similar to 'git"
- perf top — provides updating view of top kernel routines
- perf record — profiles a command
- perf report — analyzes data from a 'perf record' run

- perf annotate — another way to view 'perf record' data
- perf stat — gather perf counter statistics on a command

Main use Is to analyze kernel performance
Kept in kernel source tree: tools/perf

ftrace

* Originally grew from Ingo Molnar's latency-
tracer

« Steven Rostedt generalized it and added
functions

 Many, many tracer's available to gather
different views of kernel execution

* More info in kernel tree in Documents/tracing
» See Steven's talk this afternoon

- git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-2.6-trace.qgit

rteval

* Used to measure latency on a system under
moderate load

e Two loads:

« Kernel compile:
- make -j<ncores*2> bzlmage modules
* hackbench

» Uses cyclictest to measure latency

* Produces XML output with statistical analysis of
run data

o git://git.kernel.org/pub/scm/linux/kernel/git/clrkwlims/rteval.qgit

hwiat_detector

« Kernel module written by Jon Masters used to
detect hardware related latencies (e.g. SMIs)

e debugfs interface

* Uses stop _machine() to poll system clock,
looking for gaps where control transferred away
from the OS

* Python wrapper in rt-tests package, named
hwlatdetect.py, drives module

* Tentative plan is to rewrite hwlatdetect.py
functionality as perf sub-command

tuna

* Graphical tool for interactively tuning a running
RT system

 Has command line backend, so things done in
GUI can be scripted later

 Still under development

 Python + GTK
« Should be out in Fedora 12 (already in MRG)

 git://git.kernel.org/pub/scm/linux/kernel/git/acme/tuna.git

tuna Screenshot

Socket O Socket 1 Socket 2 Socket 3 1=Te] | PID | F'alk:y| Priority | Aﬂini‘tyl Ev\entsl Users
Filter |CPU |Usage | Filter |CPU |Usage | Filter |CPU |Usage | Filter |CPU |Usage | a 1 1 0-63 4338 timer
1 Lo | 4 Lo | 2 Lo | 3 Lo | 4 14323 FIFC 85 0-563 13 serial
B s [] = s [o] s [] = = [8 2257 FFO 85 063 0 10
o [o] 2 [o] 1w [e] o o] s 180 FFo 85 083 O acpi
1w o] 1w [] 1+ [] 15 [o] 14 3323 FIFC 85 063 44728 libata
17 III 20 III 18 III 19 III 15 3324 FIFC 85 0-563 o libata
21 III Q III 22 III 23 III 17 2463 FIFC B5 0-63 50 uhci_hed:usbs
18 2464 FIFQ B5 0-63 64 uheci_hed:usbé
19 2465 FIFD B5 0-63 0 uheci_hed:usbT
Socket 4 Socket 5 Socket 6 Socket 7
23 2330 FIFD 85 0-53 3 ehci_hed:usb1,uhci_hod:usb4
Filter | CPL |Usage | Filter | CPLU |Usage | Filter | CPLU |Usage | Filter | CPL |Usage|
45 3125 FIFD B5 0-563 943 megasas
24|D|25|D| EGIDIEFIDI
116 2466 FIFOD BS5 0-63 52 uhci_hed:usbg
i 117 2467 FIFO 8BS 0-563 18371 uhci_hed:usb10
@ s [5] @ 2« [o] @ =« [od @ s [od K
118 2468 FIFD B85 0-53 0 uhci_hed:usb11
122 2331 FIFD B85 0-63 8349 ehci_hedusb2, uhci_hod:usb8
142 3127 FIFOD B5 0-63 1225 megasas
212 2469 FIFO BS5 0-563 0 uheci_hed:usb13
213 2470 FIFD B85 0-63 59 uhci_hed:usb14
E— E—— E— E—— 214 2471 FIFO BS5 0-563 0 uheci_hed:usb15
Fil‘ter|CF'U|Usage|Fil‘ter|CF'U|Usage|Fil‘ter|CF'U|Usage|Filter|CF"U|Usage| =iE =Esm FAFs oF L=EE £ EUELUERNEEE, MUEL UEE =87
so [o] s1 [o] s2 [o] ss [o] 2256 12251 FIFC 85 063 21 ethobnx)
2257 12250 FIFQ BS5 0-563 6395 eth0(onx2)
D058 12249 FIFD BS 0-63 180 eth0(bnx2)
PID | Palicy | Prricrity | Affinity | Vol bdSwitch | MonWolC bdSwitch | Command Line
1 OTHER 0 0-53 5455 9642 init [5]
2 OTHER 0 0-63 1543 2609 kthreadd
3 FIFC 99 [i] 986 0 migration/0
4 FIFC a9 a 2 a posiocputmrD
5 FIFC 70 [i] 2 0 sirg-highs0
] FIFO 70 0 4228459 0 sirg-timen'

mojc

RT Things We Want to Get
Upstream

* Finish up threaded IRQ support
* Lots of drivers need to be evaluated/converted
* Full preemption (sleeping spinlocks)

 Still working on how to indicate that locks will
change behavior based on config options

e More tools
e funa

* rteval
» perf framework needs extending

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

