Deadline scheduling on Linux and
why it hasn't happened yet.

Peter Zijlstra
Red Hat
peterz@infradead.org



What Is Real-Time?

e Verytast
e Low-Lateney
e Determinism;

* being able to accurately predict what is going to
happen

e Stop the saw when your hand is near, not maybe a
bit late



What's wrong with FIFO?

* |t Is deterministic, very simple scheduling rule:
* The task with the highest priority runs

 However, priorities don't always map well to our
oroblems.

* Priorities don't provide isolation in a usable
fashion.



Problem with Priorities

* |s charging the battery a low or high priority
task?

* The priority Is inv. proportional to the charge level

 How do you map priorities onto two disjoint
applications?



Operating systems and Resource
Management

 The goal of operating systems is to abstract
and manage resources

 Provide isolation between users

* Does the abstraction match the problem
domain

« SCHED FIFO -, fail



What is this Deadline stuff | keep
hearing about?

» A different (task) model for Real-Time
applications

« Each taskt | has:
« WCET e |
 Deadline -d i

e Period -p_|
* Where:e I1<d i<p |
d d
r v r Y
b, !




So what about that?

* |t allows you to specify when something Is
supposed to be done (deadline), how long It'll
take to do it (wcet) and how often you'll need it
(period).

* Allows the operating system to know how much
pending work there is, and reject new jobs If it
sees It can't meet expectations — Admission.

* Provides Isolation between workloads.
 Maps better to most problems.



How do you schedule such a task-

set?
* Earliest Deadline First < Least Laxity First

(EDF) (LLF)

 Schedule the task e Schedule the task that
who's deadline will has least room to still
expire first. make its deadline.

e Runs work as soon as e Runs work as late as
possible. possible.

» Variety of other creative ways.



If Its so neat, why don't we have It?

 More complicated task model

« 3 variables to specify instead of 1

- While providing the deadline is often easy providing the
WCET is a rather difficult problem on its own.

e This little detall called SMP

* Another pesky detail commonly know as Priority
Inversion.



Utilization, Schedulability and
Admittance (EDF-UP)
o Utilizationu 1=e_I/p |
» Schedulability, the full task set is schedulable:
e U=Sumu i1<1

 Admittance, reject jobs when the above would
be violated.



Utilization, Schedulability and
Admittance (GEDF-SMP)

o Utilization limit: U=(mM+ 1) /2
 Which gives: m >>1, U ~50%

» Schedulablility & Admittance, more complex and
Interesting.



Partitioning

* Too much work, 32-cores IS not uncommon

* Not always possible, imagine 3 jobs of u_I =
60% on 2 cores.

* |ts possible to reduce a global algorithm to
partitions, but not the other way around, which
suggests its the wrong abstraction.



Soft Real-Time

Bounded Tardiness
GEDF up to U=m
Can run In Hard-RT idle time

Needs co-operation for
schedulability/admission.



Priority Inversion

Lock(x)
Task A ]7
Task B —— e a—
Task C fumd Y—l
Lock(x) Unlock(x)

 Let A,Band C be a
nigh, med. and low
oriority task.

A blocks on a lock
held by C.

* B preempts C, and
can delay A
iIndefinitely



Priority Inheritance

* Let the lock owner inherit the highest prio of its
block list.

* Bound to static priority scheduling




Generalized Inheritance

Apply the scheduling function to the block-list.

‘urns t
‘urns' t

‘urns't

ne
ne

0

0

ock list into a rungqueue
ock chain into a recursive scheduler

ne cost of Pl into the cost of the
scheduling function — O(log(n))



Deadline Inheritance

e EDF selects tasks on earliest deadline.

* S0 lock contention can get an earlier deadline
stuck behind a later one.

e Have the lock owner inherit the earliest
deadline of the block list.



Bandwidth Inheritance

« Bandwidth enforcement
e |.ock owner without bandwidth

e Consume the bandwidth of the task that
donated its deadline



Proxy Execution

* Turn the Inheritance problem up-side-down
* L eave blocked tasks on the runqueue

* Chain/Proxy blocked tasks to the lock owner



Proxy Execution vs SMP

 |f tasks A and B, running on different CPUSs,
both block on C, then it could happen that both
CPUs end up running C - badness.

* 'migrate’ all blocked tasks to the owner's CPU.

* Reduces the problem to UP
e O(Nn) migration overhead



Proxy Execution vs 10

A blocked on B, which is blocked on 10.

* Need to take A off the runqgueue — O(n)

* Needs a 'wait-list' to put A back when B gets put
back



Deadlines and cgroups

« Control utilization
» Hierarchical accounting
* No need for hierarchical scheduling



Deadline and POSIX

* Outside the SPEC, life iIs good, you get to make
the rules

+ SCHED DEADLINE/SCHED SOFT above
SCHED FIFO

e New Interfaces..

e struct sched param_ex
* sys sched setscheduler _ex()
* sys sched setparam_ex()

e sys sched getparam_ex()



The end!

Questions?



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

