

Deadline scheduling on Linux and
why it hasn't happened yet.

Peter Zijlstra
Red Hat

peterz@infradead.org

What is Real-Time?

● Very Fast
● Low Latency
● Determinism;

● being able to accurately predict what is going to
happen

● Stop the saw when your hand is near, not maybe a
bit late

What's wrong with FIFO?

● It is deterministic, very simple scheduling rule:
● The task with the highest priority runs

● However, priorities don't always map well to our
problems.

● Priorities don't provide isolation in a usable
fashion.

Problem with Priorities

● Is charging the battery a low or high priority
task?
● The priority is inv. proportional to the charge level

● How do you map priorities onto two disjoint
applications?

Operating systems and Resource
Management

● The goal of operating systems is to abstract
and manage resources

● Provide isolation between users
● Does the abstraction match the problem

domain
● SCHED_FIFO → fail!

What is this Deadline stuff I keep
hearing about?

● A different (task) model for Real-Time
applications

● Each task t_i has:
● WCET - e_i
● Deadline - d_i
● Period - p_i

● Where: e_i ≤ d_i ≤ p_i
d

e

p

r

d

e

p

r

So what about that?

● It allows you to specify when something is
supposed to be done (deadline), how long it'll
take to do it (wcet) and how often you'll need it
(period).

● Allows the operating system to know how much
pending work there is, and reject new jobs if it
sees it can't meet expectations – Admission.

● Provides Isolation between workloads.
● Maps better to most problems.

How do you schedule such a task-
set?

● Earliest Deadline First
(EDF)
● Schedule the task

who's deadline will
expire first.

● Runs work as soon as
possible.

● Least Laxity First
(LLF)
● Schedule the task that

has least room to still
make its deadline.

● Runs work as late as
possible.

● Variety of other creative ways.

If its so neat, why don't we have it?

● More complicated task model
● 3 variables to specify instead of 1

– While providing the deadline is often easy providing the
WCET is a rather difficult problem on its own.

● This little detail called SMP
● Another pesky detail commonly know as Priority

Inversion.

Utilization, Schedulability and
Admittance (EDF-UP)

● Utilization u_i = e_i/p_i
● Schedulability, the full task set is schedulable:

● U = Sum u_i ≤ 1

● Admittance, reject jobs when the above would
be violated.

Utilization, Schedulability and
Admittance (GEDF-SMP)

● Utilization limit: U = (m + 1) / 2
● Which gives: m >> 1, U ~ 50%

● Schedulability & Admittance, more complex and
 interesting.

Partitioning

● Too much work, 32-cores is not uncommon
● Not always possible, imagine 3 jobs of u_i =

60% on 2 cores.
● Its possible to reduce a global algorithm to

partitions, but not the other way around, which
suggests its the wrong abstraction.

Soft Real-Time

● Bounded Tardiness
● GEDF up to U=m
● Can run in Hard-RT idle time
● Needs co-operation for

schedulability/admission.

Priority Inversion

● Let A, B and C be a
high, med. and low
priority task.

● A blocks on a lock
held by C.

● B preempts C, and
can delay A
indefinitely

Priority Inheritance

● Let the lock owner inherit the highest prio of its
block list.

● Bound to static priority scheduling

Generalized Inheritance

● Apply the scheduling function to the block-list.
● Turns the block list into a runqueue
● Turns the block chain into a recursive scheduler
● Turns the cost of PI into the cost of the

scheduling function – O(log(n))

Deadline Inheritance

● EDF selects tasks on earliest deadline.
● So lock contention can get an earlier deadline

stuck behind a later one.
● Have the lock owner inherit the earliest

deadline of the block list.

Bandwidth Inheritance

● Bandwidth enforcement
● Lock owner without bandwidth
● Consume the bandwidth of the task that

donated its deadline

Proxy Execution

● Turn the Inheritance problem up-side-down
● Leave blocked tasks on the runqueue
● Chain/Proxy blocked tasks to the lock owner

Proxy Execution vs SMP

● If tasks A and B, running on different CPUs,
both block on C, then it could happen that both
CPUs end up running C → badness.

● 'migrate' all blocked tasks to the owner's CPU.
● Reduces the problem to UP
● O(n) migration overhead

Proxy Execution vs IO

● A blocked on B, which is blocked on IO.
● Need to take A off the runqueue – O(n)
● Needs a 'wait-list' to put A back when B gets put

back

Deadlines and cgroups

● Control utilization
● Hierarchical accounting
● No need for hierarchical scheduling

Deadline and POSIX

● Outside the SPEC, life is good, you get to make
the rules

● SCHED_DEADLINE/SCHED_SOFT above
SCHED_FIFO

● New interfaces..
● struct sched_param_ex
● sys_sched_setscheduler_ex()
● sys_sched_setparam_ex()
● sys_sched_getparam_ex()

The end!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

