
Page 1 of 19

Production process, bug tracking and 
quality assurance of the Linux kernel

Andrew Morton
<akpm@linux-foundation.org>

<akpm@google.com>
Hannover Fair

April 2008



Page 2 of 19

Overview
● Production process

– Release cycle and kernel delivery
– Contributors
– Code flow
– The -mm tree
– The linux-next tree

● QA
– Testing
– Testing and the internet

● Bug reporting
– Email
– Kernel bugzilla
– Shortcomings



Page 3 of 19

Release cycle and kernel delivery
● Linus releases one 2.6.x kernel every 2-3 months
● This cycle is the central "heartbeat" of the kernel 

development and release process
● Linux distribution companies will pick a release from 

this ongoing output and will freeze on it, stabilise it, 
release it as a product and will provide post-release 
updates to it.

● This is the added value which you pay your distributor 
to provide

● The kernel.org team provide a technology.  Distributors 
turn it into a product.

● Most people will get their kernels via a distributor



Page 4 of 19

Release cycle and kernel delivery (cont'd)
● Embedded product developers will often get their 

kernel direct from kernel.org: they too are making a 
product and kernel.org provides that product's base 
technology.



Page 5 of 19

Contributors
● Who are they and why do they work on the kernel.org 

kernel?
● Most contributors are engineers from companies which 

have Linux-related business
– Distributors
– IT hardware companies
– Software companies
– Embedded chip manufacturers (provide hardware input to...)
– Embedded product developers

● Some contributors are unpaid enthusiasts
● Testing and reporting is a contribution as well

– This is one area where the unpaid enthusiasts perhaps 
dominate.



Page 6 of 19

Code flow
● The kernel is divided into "subsystems"

– scsi, USB, locking, memory management, ext3, ia64 
support, documentation, etc, etc.

– There are probably 200-300 identifiable subsystems
– Nearly 100 of the subystems have an identifiable maintainer
– The maintainer writes code as well as taking contributions 

from others
– The maintainer operates a "subsystem tree" for that 

subsystem.
● Usually a git-based tree

– That tree is available for others to test and to develop against 
all the time.



Page 7 of 19

Code flow (cont'd)
● When Linus releases 2.6.X, we have a two-week 

"merge window" in which the subsytem maintainer is 
to merge the ready-to-release part of the subsystem tree 
into Linus's mainline kernel for 2.6.X+1.

● When the merge window ends, Linus declares 2.6.X+1-
rc1.

● We then spend two months stabilising 2.6.X+1-rcY for 
the 2.6.X+1 release.

● At the same time, new code for 2.6.X+2 is 
accumulating in the subsystem trees.



Page 8 of 19

The -mm tree
● While all this code is accumulating in the subsystem 

trees I will periodically merge all of it together and will 
release it as 2.6.X+1-rcY-mmZ.

● People will download and test the -mm tree and will 
report bugs.

● Hopefully they get fixed before the buggy code goes 
into Linus's mainline.

● The main objective of -mm is to avoid breaking Linus's 
tree too much

● It also effectively lengthens the stabilisation window 
from 2 months to as much as 4 months.



Page 9 of 19

The -mm tree (cont'd)
● The -mm tree also gives us visibility into forthcoming 

conflicts between all the subsystem trees.
– So we don't hit major problems during the very short merge 

window.
● The -mm tree also hosts about 100 subsytem trees.  

Most are small, a few are large.
● This is service I provide for subsystem maintainers 

who don't feel a need to run their own git tree
● Some of those subsystem trees don't even have a 

maintainer, so I am effectively taking that role.



Page 10 of 19

The “linux-next” tree
● About 85% of kernel changes flow into mainline via 

the subsystem maintainers' trees.  They are where most 
of the work resides.

● The patches which are hosted in -mm constitute the 
remaining 15%.

● It is a lot of work to merge together all the subsystem 
trees for -mm release, and this work could be 
performed by someone else.

● Stephen Rothwell is now doing that, and I shall soon 
switch the -mm tree to be based on his linux-next tree.

● So hopefully I will only have to perform integration of 
15% of the Linux changes rather than 100%.



Page 11 of 19

Quality Assurance: Testing
● An operating system is like no other software product
● The large variation in hardware, CPU types, BIOS 

implementations and workloads means that the kernel 
developer cannot fully test his code.

● It worked OK on the hardware which he has available
– But there are millions of possible hardware combinations
– Plus hardware and BIOSes are often buggy
– Most kernel bugs are hardware dependent
– Most hardware-dependent bugs cannot be reproduced on the 

hardware which the kernel developer has available.



Page 12 of 19

Quality Assurance: Testing (con't)
● So to test a kernel change, that change needs to be 

executed upon many machines: thousands, tens of 
thousands, to find problems.

● A change needs to be tested by 1000's of humans as 
well – one person's usage pattern will trigger a bug 
which hundreds of others never encountered.

● Several groups have set up kernel testing systems: run 
lots of tests on a few machines.
– These haven't been effective - they just don't find many bugs 

because a "few" machines do not have sufficient coverage.
– It would be better to expend resources on fixing more of the 

bugs which are reported by the testers.



Page 13 of 19

Quality Assurance: Testing and the internet
● All of this explains why the large and widespread 

community of testers is so important to kernel 
development.  We cannot test our own code!

● So we have a very rapid and open "release early, 
release often" philosophy.

● Much of the kernel development system is built around 
this.

● We are utterly dependent upon our testers.  If people 
were not to download and test new kernels and report 
problems, the whole project would fail.

● I am very aware of this and I do attempt to ensure that 
we cater to our testers as well as we can.



Page 14 of 19

Bug reporting: email
● Most bugs are reported via email.  They should be 

reported to the linux-kernel mailing list and/or to the 
subsystem-specific mailing list. 

● Individual developers should be cc'ed, if they are 
known.
– Reporters often get the routing wrong but that's OK - people 

will help to redirect the report appropriately (often I do this)
● Once a bug is reported, developers should (and 

sometimes do) start working on getting it fixed.  



Page 15 of 19

Bug reporting: email (cont'd)
● Often this will require additional help from the 

reporter, because only the reporter has the hardware 
upon which the bug can be reproduced.
– We'll request extra information
– We'll send patches and request testing
– We may ask the reported to perform a bisection search 

through the kernel patch series to identify which patch 
caused the bug.



Page 16 of 19

Bug reporting: bugzilla
● The kernel also has a bugzilla bug-tracking system.
● It is more appropriate for tracking bugs which have 

been present for a while.
● We prefer that bugs get fixed quickly via a short email 

interaction, but that doesn't always happen.
● Often people will report bugs via bugzilla which we 

would have preferred be reported via email.
– But that's OK.  I screen all bugzilla reports and will ensure 

that they are made known to the appropriate developers in 
the way which is appropriate to the particular bug and to the 
way in which that development team prefers to work.



Page 17 of 19

Bug reporting: bugzilla (cont'd)
● I also will track emailed bug reports (from linux-kernel 

only) and will ask that they be recorded in bugzilla if 
they haven't been fixed after 3-6 months or so.



Page 18 of 19

Bug reporting: shortcomings
● Many bug reports just get lost.

– There is no identifiable maintainer
– There is a maintainer, but he's asleep
– We don't respond quickly enough and the reporter will 

disappear
● He found a workaround
● He went back to an old kernel
● He obtained new hardware
● He switched to Windows

● Every six months or so I will send out queries to 
400-500 separate emailed bug reports
– Ask the originator to raise a bugzilla report if the problem 

still exists
– Many were fixed - Many many reporters simply don't reply 

at all.  Probably they found a workaround.



Page 19 of 19

Bug reporting: shortcomings
● I think we're losing a large number of valid bug reports 

this way.
● Each one is a lost opportunity to improve Linux


	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

