


Native mainline Linux: fit for
embedded and real-time systems

EMBEDDED LINUX

� What is real-time and how is it measured? As
generally agreed, it is not an average fast re-
sponse that makes a system real-time compliant
but the reliability that a defined response in-
terval is not exceeded under whatever circum-
stances. A system, for example, that reliably
responds to external signals within 30 minutes
is a real-time system whereas another system,
that relies on a timely response within 30 mi-
croseconds but fails once in a year, is not.

In order to determine the real-time capabilities
of a system, an external signal is applied re-
peatedly to a controller input such as a digital
input line or a handshake line of a serial or par-
allel communication controller. The analysis re-
quires that a few lines of code are inserted into
the beginning of the respective interrupt serv-
ice routine and into the initial part of a user
space program waiting for this interrupt. These
lines of codes are written in such a way that a
pulse is generated at an output device. This
pulse can then be measured along with the
input trigger using an oscilloscope. In addition,
the respective interrupt line is also monitored.

The interval between the input trigger and the
corresponding level change of the interrupt line
is called “gate latency” or “controller latency”.
The interval between the input trigger and the

start of the interrupt service routine is called
“interrupt latency”, and the interval between the
input trigger and the execution of the user
space program is called “overall latency”, “pre-
emption latency”, or simply “latency” (figure 2).
Normally, a large number of single measure-
ments is taken over several hours while gener-
ating a realistic system load, and the longest
measured overall latency is taken as the final re-
sult. This is then called “worst-case latency”. To
gain a better overview, the data points are best
displayed graphically in a latency histogram
(figure 3).

Initially, the Linux operating system was adopt-
ed primarily as a server platform - probably due
to its support of generally available and inex-
pensive hardware in combination with its su-
perior network capabilities and run-time
stability. At a later stage, support for architec-
tures other than x86 was added so the use of
Linux could have been extended immediately to
embedded systems. However, embedded sys-
tems often require real-time capabilities which
Linux as a server operating systemwas never in-
tended to provide. In fact, in a 2001 survey pub-
lished in April 2002 as a Venture Development
Corporation Whitepaper (http://linuxde-
vices.com/articles/AT6328992055.html), the
most important factor inhibiting Linux adop-

tion by respondents planning to use Linux was
the item“real-time limitations”. At this time, it
was a common understanding that a real-time
operating system must be conceived from the
very beginning as such and that every single
component must be designed with all aspects of
real-time execution in mind. Thus, retrofitting
real-time capabilities into the native mainline
Linux was deemed impossible. As a conse-
quence, several Linux real-time projects were
started that used the dual-kernel approach. This
approach replaces the Linux kernel by a small
real-time kernel to which all interrupts are sent
and which controls the entire system.One of its
tasks is a modified Linux kernel; this enables ex-
ecution of Linux user space programs and thus
provides binary Linux compatibility of the en-
tire system (figure 4).

Examples of solutions using this approach are
RTLinux, RTAI, and Xenomai; they have been
used repeatedly and successfully in recent years
in a large number of industrial applications.
RTLinux, RTAI, and Xenomai offer, similarly to
the RT-Preempt patches, a POSIX compatible
API to access real-time related functionality.
Xenomai, in addition, comes with a collection of
other APIs (called “skins”). They greatly facili-
tate the migration from proprietary real-time
operating systems. In the foreseeable future, it is

By Carsten Emde, Open Source Automation Development Lab,

and Thomas Gleixner, Linutronix

When Linux was born on
August 1, 1991, nobody

expected that 15 years later the
scale of supported hardware

would range from tiny micro-
controllers up to large multi-

processor mainframes, or that
Linux would become a

real-time operating system.

Figure 1. Linux Fedora 7 system
running a total of seven virtual
systems simultaneously

June 2007 2



3 June 2007

well conceivable that Xenomai will adopt the
RT-Preempt approach explained below and
provide additional functionality on top of the
real-time capablemainline Linux kernel. In par-
allel, the mainline Linux evolved as well. A first
important step was to replace the O(n) sched-
uler by IngoMolnar's O(1) scheduler. This new
scheduler was already merged into the devel-
opment Linux 2.5 kernel tree in 2002 and be-
came the standard scheduler in Linux 2.6
introduced in December 2003. It ensures that
the time needed to schedule is fixed and deter-
ministic irrespective of the number of active
tasks - an important prerequisite towards real-
time performance. Another important step
which was also added to the development ker-
nel 2.5 and became readily available in 2.6 was
to enable scheduling during execution of cer-
tain parts of the kernel. This feature is called
kernel pre-emption; it prevents a low-priority
process from blocking a high-priority process
while the former is executing a kernel call. Ini-
tially, only small portions of the kernel code
were made interruptible but they have been
extended continuously.

Due to the very nature of the kernel tasks, there
will always be a certain part of the kernel code
that must be executed exclusively, and thus re-
quires locking against other processes. Such
mutual exclusion is done using so-named mu-
texes; but a general problem is, again, that a

low-priority process executing a kernel function
under locking conditions may block a high-pri-
ority process that is about to execute the same
kernel function. This phenomenon is called pri-
ority inversion, and one of the solutions is to
bequeath the priority level to the mutex and let
it execute under the same priority as the calling
process. This special mutex variant that is
called Priority Inheritance Mutex (abbreviated
PI Mutex) was implemented for use in the
Linux kernel.

In addition to kernel code, drivers and specif-
ically their interrupt service routine may also
cause latencies. In consequence, to further re-
duce the overall latency, a mechanismmust be
found to enable scheduling during execution of
the interrupt service routines. This may not be
meaningful during its initial part when hard-
ware is accessed more frequently, e.g. to ac-
knowledge the interrupt and to read and write
the various data and status registers of a par-
ticular controller. But it may be very effective
during the remaining stages of the interrupt
service routine where hardware accesses occur
less frequently. This feature is called interrupt
threading.

Precise timing in real-time systems requires
timers with a resolution in the range of mi-
croseconds. The Linux system clock, however,
could only be set to an interval of 1, 4 or 10mil-
liseconds corresponding to 1000, 250 and 100
Hz, respectively. Several coding attempts to in-
crease the system clock failed, since clock fre-
quencies above 1000 Hz did not scale. It was,
therefore, decided, to separate the timers need-
ed for high-resolution timing purposes from
the system clock timers and to introduce a new
feature called high-resolution timers (“hrtimer”
subsystem). This subsystem now also con-
tains the feature “dynamic tick”; it allows to
completely disable the periodic tick when the
system is idle and is used to safe battery power
in mobile systems. Until kernel release 2.6.18,
only theO(1) scheduler and a certain level of ker-
nel pre-emptionwere part of themainline kernel.

The other features, such as PImutexes, high-res-
olution timers and interrupt threading,were only
available when the kernel was patched with the
“RT-Preempt” patch downloaded from Ingo
Molnar's repository at RedHat http://people.red-
hat.com/mingo/realtime-preempt/. The various
elements of this patch described above were de-
veloped over the last couple of years by IngoMol-
nar and Thomas Gleixner with support from
many kernel developersworldwide.Therewas al-
ways hope that the RT-Preempt patch would be
integrated intomainline Linux one day.But con-
vincing Linus Torvalds thatmaking Linux a real-
time operating system would do no harm, but
greatly enhance its usability,was not an easy task.
Fortunately, there were an increasing number of
arguments to make Linux real-time compliant -
notonly for industrial automationprojects but also
for standard server and desktop Linux systems:
� Audio and video mixing and recording
� Reliable timestamps in financial and
commercial transactions

� Voice over IP and streaming video services.

At the occasion of the Ottawa kernel summit in
July 2006, Linus Torvalds finally accepted
merging the first part of the RT-Preempt
patches and agreed to gradually enter the other
components into mainline.As of kernel version
2.6.21, approximately 60% of the RT-Preempt
patches (complete kernel preemption, PI
mutexes and the high-resolution timers) are
already available in mainline Linux. It is ex-
pected that most of the rest will have followed
until the end of 2007.

Linux goes Virtualisation
Virtualisation of an entire computer requires an
additional level of privilege (the “hypervisor”
privilege) to ensure that the virtual machine
monitor can control both the system and user
level of a virtual machine and also that the vir-
tual machine cannot interfere with the activities
of the host system or another virtual machine.
Up to about one year ago, this additional priv-
ilege level was realised mainly in software such
as products provided by VMware Inc. (Palo
Alto, USA). However, most of the newer x86
processors from Intel and AMD provide the re-
quired hypervisor privilege level in hardware
which greatly simplifies the design of the virtual
machine monitor. The related CPU flag is
called vmx (Virtual Machine eXtension) in Intel
and svm (Secure Virtual Machine) in AMD
processors, respectively.

In October 2006,Avi Kivity posted a Linux char-
acter device driver that allows to manage a vir-
tual system bymeans of I/O control commands.
In addition, he provided a modified version of
the qemu emulator where the emulator was re-
placed by the appropriate kvm commands
(http://sourceforge.net/projects/kvm/).The orig-

EMBEDDED LINUX

Figure 2. The various elements of the overall or pre-emption latency

Figure 3. Example of latency data presenta-
tion in a histogram. The vertical green bar
marks the worst-case latency.



June 2007 4

EMBEDDED LINUX

inal qemu emulator was developed by Fabrice
Bellard (http://fabrice.bellard.free.fr/qemu/).
Probably because of its elegant design, excellent
code quality andminimum interference with the
kernel, Linus Torvalds decided only twomonths
after its initial submission to merge kvm into
mainline Linux, and it was first released in kernel
version 2.6.20 on February 4, 2007.

An example of a Linux system that uses the
kvm driver and the qemu emulator to simulta-
neously run a total of seven virtual systems is
given in Figure 1. None of the virtual systems
needed any modification prior to be installed
under kvm. The performance of the virtual sys-
tems is not different from that of the host sys-
tem as long as straight CPU code is executed,
e.g. during execution of Dhrystone or Whet-
stone benchmarks. I/O operations, however,
have a reduced performance, since the data
must be transfered twice - first from the virtu-
al system via the virtual PCI bus to the host sys-

tem and then from the host system through the
physical PCI bus to the peripheral device. The
hard disk transfer rate of the system shown in
figure 1, for example, amounts to about 68
MByte/s in the physical Fedora system and to
about 36MByte/s in the virtual Fedora systems.

In comparison to other virtualisation solutions,
kvm has the advantage that it is part of main-
line Linux, and will therefore be continuously
developed and adapted to other kernel features.
Of special interest is a real-time system running
a kvm virtual system with preserved real-time
capabilities of the host system. This would allow
to use a single computer hardware for machine
control and graphical user interface - even if the
two functions require two different operating
systems. As a consequence, system reliability
would increase while costs would decrease.

The advent of open source software makes it
possible for the first time for different and even

competitive companies to share their efforts
and develop together base components of the
operating system. This common effort, how-
ever, could be more effective if an organisation
were available to synchronise these activities.
The Open Source Automation Development
Lab (OSADL) was founded for this purpose
(http://www.osadl.org). OSADLmember com-
panies are active in the field of industrial au-
tomation such as machine, machine tool and
equipment manufacturers, computer hard-
ware and software manufacturers and software
service providers. The membership fee is
primarily used to delegate the development of
machine and automation software compo-
nents requested by a majority of the OSADL
members. Current projects, among others, are:
Linux RT-Preempt patches, industrial I/O
framework, migration tools, upstream sub-
mission of Linux kernel components, making
kvm real-time compliant, real-time Ethernet
drivers for Linux. �

Figure 5. The “single-kernel approach” to realize a real-time Linux systemFigure 4. The “dual-kernel approach” to realize a real-time Linux system

Open Source Automation Development Lab

OSADL eG
Homagstr. 3-5
D-72296 Schopfloch
Germany
Phone: +49(7443)13-3073
Fax.: +49(744313-8-3073
E-Mail: info@osadl.org


