
POWERLINK and Real-Time Linux: A Perfect Match for Highest

Performance in Real Applications

Josef Baumgartner

Bernecker + Rainer Industrie-Elektronik Ges.m.b.H

B & R Strasse 1, 5142 Eggelsberg, Austria

josef.baumgartner@br-automation.com

Stefan Schoenegger

Bernecker + Rainer Industrie-Elektronik Ges.m.b.H

B & R Strasse 1, 5142 Eggelsberg, Austria

Stefan.Schoenegger@br-automation.com

Abstract

In the automation industry many discussions around the various Industrial Ethernet concepts like
POWERLINK, Profinet and EtherCAT are based on theoretical performance studies. This paper will
outline the in reality achievable performance of the open-source POWERLINK technology operating on a
standard x86 PC with real-time Linux and its potential application scenarios. The evaluation will include
a study on the synchronization quality as well as on the resulting CPU load for large scale applications
generated by the network protocol.

1 Introduction

Ethernet has been the standard networking technol-
ogy in the home and office environment for years.
In the automation industry, the conventional field
busses are still the dominant communication tech-
nology. This is because standard Ethernet could
not provide the deterministic behaviour required by
many industrial applications. In the meantime there
are several ethernet based fieldbusses available on the
market. Whereas some provide only soft-realtime ca-
pabilities, like PROFINET or EtherNet/IP, some of
them are able to fullfill hard real-time requirements
needed for industrial applications.

One of these hard real-time Industrial Ethernet
protocols is POWERLINK [11]. The availability of
the openPOWERLINK network stack for the Linux
operating system makes it very easy to implement
a software based industrial control application on
top of an standard PC running Linux. However,
to provide sufficient accuracy for the network tim-
ing the operating system must provide some kind

of real-time capabilities. Therefore, the Realtime
Preemption Patch (RT-Preempt) provided by Ingo
Molnar [7] is an ideal base to implement a determin-
istic POWERLINK master (Managing Node) using
Linux.

Whereas most performance values for other eth-
ernet based fieldbusses are very theoretical, this pa-
per shows the real cycle times which could be reached
using openPOWERLINK on a real-time Linux plat-
form. The system load created by the protocol stack
is analyzed and the accuracy of the POWERLINK
network synchronisation is evaluated.

2 POWERLINK

2.1 Communication Principle

POWERLINK is a strict, deterministic real-time
protocol based on Fast Ethernet (100 MBit) [1].
Time-isochronous transfer of data is supported along
with asynchronous communication between network

1



nodes; a part of network bandwidth is reserved for
this. Figure 1 shows a POWERLINK communica-
tion cycle.

FIGURE 1: POWERLINK cycle

A POWERLINK device can be a managing node
(MN) or a controlled node (CN). A POWERLINK
network has exactly one MN. This regulates activity
on the network. All other devices in the network are
CNs. The SoC is sent as a multicast and can be
received and processed by all other POWERLINK
stations in the network. No application data is trans-
ported in the SoC, it is only used for synchronization.

Immediately after transmitting the SoC, the MN
addresses each CN in the network with a PReq (poll
request). Each CN responds with a PRes (poll re-
sponse). The output data designated for a CN is
transmitted in the PReq. All stations are addressed
in order by the MN with a PReq. Immediately upon
receiving the PReq, the addressed station responds
with a PRes. This frame is sent as multicast and
can therefore be received by the MN as well as by all
other CNs in the network. Therefore, the PRes can
not only send input data from the CN to the MN, but
also allows cross-communication among the CNs. Di-
rect cross-communication allows the times for data
exchange between stations to be reduced consider-
ably, since the data need not be copied in the MN.

A CN only transmits when it receives a directly
addressed request (PReq) from the MN. The MN
waits for the response from the CN. This prevents
collisions on the network and enables deterministic
timing.

A fixed time is reserved in the network cycle for
asynchronous data. Asynchronous data differs from
cyclic data in that it need not be configured in ad-
vance. Asynchronous data is generated on-demand
by a POWERLINK station. Examples are visualiza-
tion data, diagnostic data, etc. One asynchronous
frame can be sent per POWERLINK cycle. The
CNs can signal the MN in the poll response frame
that they would like to send asynchronous data. The
MN determines which station is allowed to send, and
shares this information in the SoA (Start of Asyn-
chronous) frame. Any Ethernet frame can be sent as
an asynchronous frame (ARP, IP, etc.). However, a

maximum length (MTU = Maximum Transfer Unit)
must not be exceeded.

2.2 PollResponse Chaining

The POWERLINK protocol supports an additional
mode called PollResponse Chaining. Instead of re-
questing the CNs sequentially through PReq frames,
the CNs are requested alltogether by the PResMN
frame which is sent as multicast. The data, usually
sent by the MN in the PReq frames, is mapped into
the PResMN frame of the MN. This increases per-
formance if many nodes with small amount of pro-
cess data are connected, because instead of sending
many small packets only one packet containing the
data for all CNs needs to be sent. In the conven-
tional POWERLINK cycle a CN is only allowed to
send a PRes frame after receiving its PReq frame.
With PRes Chaining this rule is obsolete. Now the
PRes frame is sent time triggered. Each CN is config-
ured by the MN to send its PRes frame at a specific
point in time. It is still possible to use conventional
PReq/PRes nodes in combination with PResChain-
ing nodes. Figure 2 shows a POWERLINK cycle
with both PRes Chaining and conventional nodes.
PollResponse Chaining is specified in [2].

FIGURE 2: POWERLINK cycle with Poll-

Response Chaining

2.3 Synchronization Parameters

Because of the POWERLINK communication princi-
ple there is one critical timing parameters in a POW-
ERLINK communication cycle, the SoC Jitter.

The MN generates the SoC frame to start a new
POWERLINK cycle. For a software solution the ac-
curacy of the SoC generation is mainly determined
by the operating system and its network stack. A
high-resolution timer is required to provide an accu-
rate cycle timing. Additionally the delay generated
in the network driver from receiving the packet un-
til it is sent out to the network determines the cycle
quality.

2



FIGURE 3: POWERLINK SoC timing

3 Linux

The requirements of industrial automation systems
generate very high demands on the operating sys-
tem. For this purpose, POWERLINK was mainly
implemented on real-time operating systems such as
VxWorks in the past. As the real-time capabilities
of the Linux operating system were enormously en-
hanced in the last years, it grew up to a comparable
alternative platform for implementing a POWER-
LINK MN as a baseline for a competitive automation
target.

3.1 Realtime Preemption Patch

The standard Linux kernel only meets soft real-time
requirements but there are several real-time exten-
sions available for Linux right now. One of them is
the Realtime Preemtpion Patch (RT-Preempt) devel-
oped by Ingo Molnar. Unlike other Linux real-time
extensions RT-Preempt doesn’t use a micro-kernel
but brings hard real-time capabilities directly into
the Linux kernel. The big advantage of this solu-
tion is that the user can use his standard linux tools
for development, using the POSIX API for his ap-
plications and doesn’t need to lern special real-time
APIs.

3.2 High Resolution Timers

Precondition for an accurate SoC timing in a POW-
ERLINK MN is a very accurate system timer.
The high-resolution timers introduced by Thomas
Gleixner are part of the Linux kernel since 2.6.16.
The new timer system does no longer depend on
the periodic tick of the operating system and allows
nanoseconds resolution. However, the resolution de-
pends on the available timer hardware of the sys-
tem. On an Intel X86 architecture there are differ-
ent clocksources available (hpet, tsc, acpi pm) which
provide a usable timer resolution in the microsecond
range.

3.3 Interrupt Load

Because the network load for POWERLINK is very
high and many small packages will be transferred
across the network the interrupt load is very high.
Therefore, effective interupt handling is required in
the operating system. Furthermore, the performance
could be enhanced if the hardware provides interrupt
throttling and the network driver is designed to sup-
ports this function.

3.4 openPOWERLINK Stack

The openPOWERLINK stack is a POWERLINK
stack developed by SYS TEC electronic. SYS TEC
published the POWERLINK stack under the Open-
Source BSD license[11]. openPOWERLINK con-
tains all functionalities and services required for im-
plementing a POWERLINK MN and CN. It runs
on Linux and other operating systems and plat-
forms. Although there are Linux solutions available
for other Ethernet based fieldbusses, these are mostly
Linux drivers for proprietary hardware. With the
openPOWERLINK stack a pure software based so-
lution is available which runs on a standard PC and
no proprietary hardware is needed.

Figure 4 shows the software architecture of the
openPOWERLINK stack. The Linux implementa-
tion of the openPOWERLINK stack runs completely
in kernel space. The interface to the user space ap-
plication is provided by the EPL API Layer.

FIGURE 4: openPOWERLINK software

architecture

3



To provide maximum performance the open-
POWERLINK stack does not use the Linux net-
work drivers but provides its own optimized network
drivers.

4 Performance Evaluation

In our evaluation we analyzed the lowest POWER-
LINK cycle times which could be achieved on a Linux
POWERLINK MN with the current openPOWER-
LINK stack and how much system load it generates.
Additionally we measured the quality of the POW-
ERLINK timing on the network.

4.1 Test Environment

The following test setup was used for the evaluation:

• MN: APC810 industrial PC

• CNs: B&R X20 BC0083 (X20 DI4371, X20
DO4322)

• B&R POWERLINK Analyzer X20 HB8815

Figure 5 shows the testsytem with three bus con-
trollers connected to the MN.

FIGURE 5: POWERLINK Test System

4.1.1 POWERLINK MN

The POWERLINK MN test systems were imple-
mented on B&R APC810 industrial PCs.[3] We used
two differently equipped PCs to compare the results
of a high-end industrial PC with a solution in the
range of current embedded platforms.

High-End Industrial PC

The first APC810 was equipped with a Intel
Core2Duo U7500 dual core processor running at 1.06

GHz, 1 GByte DDR2 PC2-5300 DRAM and a 40GB
harddisk drive. The Intel 945GME chipset contains
the Graphics Media Accelerator GMA 950. The on-
board network interface based on a Realtek 8111B
Gigabit Ethernet adapter was used for the network
stress tests. The POWERLINK network was con-
nected through the second onboard Intel 82573L
based Ethernet controller.

Embedded PC

The second APC810 was equipped with a Intel
Celeron M 423 processor. The processor clock was re-
duced to 533MHz to simulate the processing power of
an embedded system. The remaining hardware con-
figuration was the same as with the first APC810.

Software

The installed operating system was a 32-bit version
of Ubuntu 10.04LTS Desktop running a 2.6.31.12-
rt21 kernel. The current openPOWERLINK net-
work stack version 1.7 was installed.

4.1.2 POWERLINK CNs

For the POWERLINK CNs, B&R X20 BC0083
bus controllers [4] were used. A digital input
modul X20DI4371 [5] and a digital output modul
X20DO4322 [6] was connected to each bus controller.
The DI4371 module is equipped with four digital in-
puts, the DO4322 module is equipped with four dig-
ital outputs. In contrast to other systems a B&R
POWERLINK CN is not restricted to a few I/O
ports. If additional I/O was needed, one would typi-
cally add additional I/O modules to one node. Up to
253 I/O modules could be connected to a single bus
controller. As we would like to evaluate the perfor-
mance on differently sized networks we used a chang-
ing amount of bus controllers and connected only one
digital input and one digital output module. The
PResMN frame from the MN contains the data for
the digital outputs. The PRes frames from the CNs
contain the data of the digital inputs and some ad-
ditional status information. Table 1 shows the size
of the payloed for the differently sized networks.

Number of CNs 3 10 20 40

Input size in Bytes
(Sum of all CNs)

18 60 120 240

Output size in Bytes 3 10 20 40

TABLE 1: Payload Size of test system

4



4.1.3 POWERLINK Analyzer

Due to the limited accuracy, network timing mea-
surment with WireShark was not sufficient. There-
fore, a B&R POWERLINK analyzer was connected
in order to get high quality network timing measure-
ments. The implementation of a special MAC con-
troller (openMAC) in a FPGA makes it possible for
the POWERLINK analyzer to measure timestamps
of network frames with a resolution of 20ns.

4.2 Cycle Time and System Load

To evaluate which cycle times could be achieved and
how much system load the POWERLINK stack gen-
erates with differently sized networks we connected a
changing amount of CNs to the POWERLINK MN
and measured the system load. Table 2 and 3 show
the results of the system load measurement.

Number of CNs
3 10 20 40

250 µs 37% N/A N/A N/A
500 µs 18% 28% 43% N/A
1 ms 8% 14% 21% 39%
2 ms 3% 5 % 9% 18%
5 ms < 1% 1 % 4% 6%
10 ms < 1% < 1% < 1% 2%

TABLE 2: System Load Measurement,

High-End PC

Number of CNs
3 10 20 40

250 µs 50% N/A N/A N/A
500 µs 25% 29% 50% N/A
1 ms 11% 14% 23% 41%
2 ms 5% 7% 11% 19%
5 ms < 1% 2% 3% 7%
10 ms < 1% 1% 1% 3%

TABLE 3: System Load Measurement, Em-

bedded PC

Cycle times of 250 µs could be reached on both
systems. The measured system load is the load of all
POWERLINK threads on a single core. This means
that the overall system load on the dual core system
is much less and leaves enough processing power for
applications.

4.3 SoC Timing Evaluation

4.3.1 Methodology

We measured the SoC timing accuracy while the sys-
tem was stressed with different stress tests. Figure 5
shows the test system which was used for the mea-
surements. The following stress tests were applied:

1. Idle
The first measurement was done on an idle sys-
tem as a reference for the different stress tests.

2. CPU load
For the CPU stress test, the tool cpuburn was
used [9]. It is designed to load X86 CPUs as
heavily as possible for the purposes of system
testing.

3. Hard Disk I/O Load The tool dd was used
to read and write large amounts of data from
and to the hard disk drive.

4. USB I/O Load
As for the hard disk, dd was used on an USB
drive to produce USB I/O load.

5. Network Load
Heavy network stress was caused by an exter-
nal flood ping on the first Ethernet interface.

6. Scheduling load
Heavy process scheduling load was caused by
hackbench [10]. It spawns over a hundred pro-
cesses which are communicating by sending sig-
nals to each other.

7. Miscellaneous Load
To cause miscellaneous system load a linux ker-
nel compilation was started.

4.3.2 Results

The following section shows the results of the SoC
jitter measurements.

High-End System, Intel Core2Duo

The following test parameters were applied:

5



Reference Cycle Time: 500 µs
Measured Cycles: 10 · 106

Clock Source: hpet
Linux Kernel: 2.6.31.12-rt21

Stress Tests Min Cycle Max Cycle Deviation

Idle 460.3 µs 548.8 µs 48.8 µs
CPU 474.6 µs 525.9 µs 25.9 µs
Hard Disk I/O 451.2 µs 552.6 µs 52.6 µs
USB I/O 443.5 µs 556.5 µs 56.5 µs
Network 438.1 µs 560.4 µs 61.9 µs
Scheduling 447.4 µs 553.2 µs 53.2 µs
Miscellaneous 445.7 µs 552.4 µs 54.3 µs

TABLE 4: SoC Jitter, Intel Core2Duo

IDLE CPU HDD USB NET SCHED MISC

44
0

46
0

48
0

50
0

52
0

54
0

56
0

Stress Tests

C
yc

le
 T

im
e 

(µ
s)

−
60

−
40

−
20

0
20

40
60

P
er

io
di

c 
Ji

tte
r 

(u
s)

FIGURE 6: SoC Jitter, Intel Core2Duo

Embedded System, Intel Celeron

The following test parameters were applied:

Reference Cycle Time: 500 µs
Measured Cycles: 10 · 106

Clock Source: hpet
Linux Kernel: 2.6.31.12-rt21

Stress Tests Min Cycle Max Cycle Deviation

Idle 396.1 µs 597.4 µs 103.9 µs
CPU 473.2 µs 532 µs 32 µs
Hard Disk I/O 400.3 µs 603.2 µs 103.2 µs
USB I/O 397.2 µs 609.2 µs 109.2 µs
Network 456.8 µs 543 µs 43.2 µs
Scheduling 463.7 µs 533.1 µs 36.3 µs
Miscellaneous 402.5 µs 600.5 µs 100.5 µs

TABLE 5: SoC Jitter, Intel Celeron

IDLE CPU HDD USB NET SCHED MISC

40
0

45
0

50
0

55
0

60
0

Stress Tests

C
yc

le
 T

im
e 

(µ
s)

−
10

0
−

50
0

50
10

0

P
er

io
di

c 
Ji

tte
r 

(u
s)

FIGURE 7: SoC Jitter, Intel Celeron

Conclusion

The measured SoC jitter is in the expected range. On
the high-end system a maximum deviation of 61.9 µs
could be reached. On the embedded system a max-
imum deviation of 109.2 µs could be reached. How-
ever, it was not clear why the jitter was so high on
an idle system and gets smaller if the CPU is heavily
loaded.

5 Conclusion and Future Work

The performance evaluation showed that the Linux
operating system together with RT-Preempt is
an ideal platfrom for implementing a high-quality
POWERLINK MN. The high-resolution timers en-
sure a very high cycle time accuracy which is suffi-
ciant for many industrial applications. However, it
is not clear why we get the best results for the SoC
jitter measurement when the CPU is heavily loaded.
This needs further investigation.

The cycle time could be lowered down to 250 µs
which allows the implementation of industrial sys-
tems which require very low cycle times, such as mo-
tion control systems. The generated system load is
low enough to implement small systems using an em-
bedded platform or medium systems by using high-
end industrial PCs. Due to the measured values
there is evidence that even larger networks could be
realized without problems. We will continue testing
with larger networks and other architectures in the
future to provide comprehensive performance values.

With the openPOWERLINK stack an Open-
Source solution is available for Linux which allows

6



everyone to implement a cost effective industrial con-
trol solution on top of a standard x86 PC. The cur-
rent implementation of the openPOWERLINK stack
implements its own proprietary network interface
driver. Whereas this assures the maximum perfor-
mance it limits the stack to use one of the few net-
work cards, supported at the moment. To avoid im-
plementing drivers for the huge amount of network
cards available on the market, the design of the stack
should be changed to use standard Linux network
drivers. This may require some optimizations in the
network subsystem like preallocated SKBs or a opti-
mized traffic shaper to get the needed performance
for a deterministic real-time Ethernet protocol. Ad-
ditionally this whould assure compatibility with fu-
ture kernel versions.

B&R will continously drive the further develop-
ment of the openPOWERLINK stack on Linux and
its long term goal will be to bring POWERLINK
functionality into the official kernel sources enabling
everyone using a standard Linux machine to use it
for industrial control applications.

References

[1] EPSG Draft Standard 301, Ethernet POW-

ERLINK, Communication Profile Specification,
2008, Ethernet POWERLINK Standardisation
Group, V 1.1.0

[2] EPSG Working Draft Proposal 302-C, Ethernet

POWERLINK, Part C: PollResponse Chaining,

2009, Ethernet POWERLINK Standardisation
Group, V 0.0.3

[3] APC 810 User’s Manual, Version 1.20, October
2009, Bernecker + Rainer Industrie-Elektronik
Ges.m.b.H, Austria

[4] X20 System User’s Manual, Version 2.10,

9.6 BC0083, Bernecker + Rainer Industrie-
Elektronik Ges.m.b.H, Austria

[5] X20 System User’s Manual, Version 2.10, 9.6

DI4371, Bernecker + Rainer Industrie-Elektronik
Ges.m.b.H, Austria

[6] X20 System User’s Manual, Version 2.10,

9.6 DO4322, Bernecker + Rainer Industrie-
Elektronik Ges.m.b.H, Austria

[7] The RT Wiki, CONFIG PREEMPT RT

Patch, https://rt.wiki.kernel.org/index.php/
CONFIG PREEMPT RT Patch

[8] The RT Wiki, High resolution timer de-

sign notes, https://rt.wiki.kernel.org/index.php/
High resolution timer design notes

[9] The cpuburn homepage,
http://pages.sbcglobal.net/redelm/, Robert
Redelmeier

[10] Hackbench homepage,
http://devresources.linux-
foundation.org/craiger/hackbench/

[11] openPOWERLINK Protocol Stack Source,
http://openpowerlink.sourceforge.net/

7


