LithOS: a ARINC-653 guest operating for XtratuM

M. Masmano, Y. Valiente, P. Balbastre, I. Ripoll and A. Crespo
Instituto de Informética Industrial, Universidad Politécnica de Valencia (Spain)
{mmasmano, yvaliente, pbalbastre, iripoll, alfons}@ai2.upv.es
J.J. Metge
CNES (Toulouse, France)
jean-jacques.Metge@cnes.fr

Abstract

The ARINC 653 APEX (Application/Executive), also referred to as the ARINC 653 API, is a software
specification for space and time partitioning in Safety-critical avionics Real-time operating systems. This
interface provides the services to build partitioned systems and has been used successfully in avionic
systems. Now, it has been a focus of attention in other sectors that are defining its own standards based
on the Integrated Modular Avionics (IMA) concepts and are taking as reference the ARINC-653 standard.

XtratuM is a hypervisor for real-time systems that has been designed following the safety and security
criteria for partitioned systems. XtratuM provides a virtual machine to execute partitions that have been
para-virtualised. In this paper, we present LithOS | a real-time guest operating system, which executes
as a XtratuM partition, that provides the ARINC-653 API. We describe the services provided by LithOS
and some additional features that have been included in the API. Finally, an evaluation of the LithOS

performance is shown.

Keywords: ARINC-653 , RTOS, partitioned systems, para-virtualisation.

1 Introduction

The technological innovation in the computer indus-
try has driven to the availability of new high-speed
processors, an increasing computing power, mem-
ory sizes and low cost on-chip memory. Accelerated
computing is a framework that drives to use these
resources in the integration of many applications,
hence the interest to enable multiple applications,
to share a single processor and memory, protected in
time and space. In order to fully exploit the perfor-
mance improvements of modern processors in safety-
critical applications, it is advantageous to enable the
integration of applications at multiple levels of criti-
cally and security on the same processing resource.

Partitioned software architectures represent the
future of secure systems. They have evolved to fulfill
security and avionics requirements where predictabil-
ity is extremely important. The separation kernel
proposed in [?] established a combination of hard-
ware and software to allow multiple functions to be
performed on a common set of physical resources
without interference.

The MILS (Multiple Independent Levels of Se-
curity and Safety) initiative is a joint research ef-
fort between academia, industry, and government to

develop and implement a high-assurance, real-time
architecture for embedded systems. The technical
foundation adopted for the so-called MILS architec-
ture is a separation kernel. Also, the ARINC-653
[?] standard uses these principles to define a baseline
operating environment for application software used
within Integrated Modular Avionics (IMA), based on
a partitioned architecture.

The closed requirements in aeronautical indus-
try with the space industry has done the ARINC-
653 standard a good candidate to solve the problems
present in the aerospace sector. It provides a stan-
dard environment independent from the implemen-
tation and the underlying hardware and offers to the
developers an clean and portable interface to develop
portable applications.

The importance of virtualisation is growing ev-
ery day, particularly it is gaining considerable inter-
est in the embedded domain. Virtual machine (or
hypervisor) technology can be consider the most se-
cure and efficient way to build partitioned systems.
XtratuM is a hypervisor which allows to execute sev-
eral applications according to the Integrated Modu-
lar Avionics(IMA) concept. XtratuM implements a
partitioned based architecture which provides pro-
tection to safety critical applications. The increased

importance of the ARINC-653 and the IMA concept
prompts for a replacement of the non-standard Xtra-
tuM ’s API with a standard specification.

This paper presents the architecture of LithOS |
a new real-time operating system for developing par-
tition applications on top of XtratuM , which pro-
vides an Application Interface(API) compliant with
the ARINC-653 specification.

2 The ARINC-653 specifica-
tion

ARINC-653 specification[?] provides a standarized
interface between the OS within IMA and the ap-
plication software which specifies the interface and
the behavior of the API services but leaves imple-
mentation details to OS developers.

In this way, the Application Execution(APEX)
not only standarizes the definition of services, but
also the interface of the underlying OS. There-
fore, the ARINC-653 specification defines an inde-
pendent interface of hardware and Operating Sys-
tem(OS) and provides significant benefits: portabil-
ity, reusability, modularity and integration of soft-
ware building blocks.

The IMA partitioning concept emerges for pro-
tection and separation among applications from the
spatial and temporal point of views. Spatial isola-
tion protects the memory of a partition. A partition
cannot acces memory out of the scope of its own
memory specified on partition configuration. Tem-
poral isolation means only one application at a point
of time has acces to the system resources, whereas
is not possible to an application run when another
application is running.

One key aspect is that all resources have to be
clearly specified at the building time by means of a
configuration file (CF). This CF specify the number
of partitions, memory allocation of partitions, parti-
tion schedule, ports and channels, etc.

2.1 Services

The ARINC-653 specification describes the complete
set of services. This list of services identifies the min-
imum functionality provided by the OS to the appli-
cations and defined in the ARINC-653 Part 1:

e Partition management: The main concept of
the ARINC-653 is partitioning. A partition is
an execution environment with separate mem-
ory space and strictly protected time, without
affecting another partition on any way, accord-
ing to the IMA architecture. Partitions are

scheduled according to a cyclic scheduler which
is specified in the configuration file.

All resources used by a partition (processes,
blackboards, semaphores, ports, ...) have to
be defined at system configuration time and
created and initialised during the initialisation
phase of the partition. Once all resources have
been allocated, the partition can execute a
mode change to NORMAL.

The mandatory services basically provide
mechanisms for getting the state of the par-
tition and requesting a change to its operating
mode.

Process management: A partition comprises
one or more processes that interact dinamically
to provide the partition functionality. Pro-
cesses are the execution unit within a partition
of ARINC-653 . Processes can be periodic and
aperidic and have associated a priority. The
scheduler works according a fixed-priority pre-
emptive policy.A process with an higher cur-
rent priority can preempt the running process.

These services permit to manage the processes
in the partition in a way that satisfies the re-
quirements of the application. The processes
are only visible inside the partition.

Time management: is the basic module to
manage time in the OS and ensure hard real-
time requirements are met. Time management
module uses the hardware timers to read the
current time and provide the time requests.
Applications solicit the time management ser-
vices in one or another way. An application
may solicit a time-out, delay, periodicity, pro-
cess scheduling...Each partition runs for a spec-
ified duration, the OS provides time slicing for
partition scheduling.

Inter-partition communication: This module
denes the communication mechanism between
two or more partitions. The inter-partition
communication method is via messages. A
port allows a specific partition to writte and
read messages from a channel, between a source
and a destination port, specified in the con-
figuration data. Channels, ports, maximum
message size and maximum number of mes-
sages are completely defined at system con-
figuration time. These services include Sam-
pling Port and Queuing Ports. In the sampling
mode, each new instance of a message over-
writes the current message. The destination
partition only can access to the latest message.
In the queuing mode, messages are queued and

therefore a new instance of a message do not
overwrite previous ones.

e Intra-partition communication: These services
dene the mechanisms used for communication
and synchronization between processes within
the same partition. Blackboards and buffers
are provided for intra-partition communica-
tion. Both support the communication of a sin-
gle message between multiple source and des-
tination, but only buffers allow message queu-
ing. Semaphores and events are provided for
intra-partition synchronization. Semaphores
are commonly used to protect resources from
a concurrent access. Events are used to con-
trol processes flux. Processes wait for an event
until the contidition occurs.

e The health monitoring: the health monitor is
the mechanism proposed by the ARINC-653
to reporting and monitoring error. The error
handling is the highest priority process, when
a fault takes place it is invoked. The health
monitor may ignore the fault and log it or call
the error handler to manage the error which
defines how the partition should respond.

The ARINC-653 specification Part 2 [?] defines
several additional services as extended. One of these
services, developed in Lithos and defined in the stan-
dard as Multiple Module Scheduler, is related to the
ability to extend the single static module schedule
by several scheduling plans defined in the configu-
ration file and the posibility to change the current
scheduling plan.

3 XtratuM

XtratuM is a hypervisor for real-time embedded sys-
tems that provides virtualised services to the parti-
tions and manages their execution environment[?, ?,
?, 7, ?]. XtratuM virtualises the essential hardware
devices (memory, timers and interrupts) to execute
concurrently several OSes, such as LithOS .

As we have seen, the ARINC-653 standard is
based on a partitioned architecture and, therefore,
partitioning is the main concept in the standard.
XtratuM provides the partition concept as an execu-
tion environment virtualised to be executed on top
of the hypervisor. Partition developement on top of
XtratuM requires to write the code to be executed
inside of the partition. The hypervisor takes con-
trol of the system at boot time and initialises the
hardware, then the partition code is started. This
partition code can be:

e An application compiled to be executed on a
bare-machine.

e A real-time operating system and its applica-
tions.

e A general purpose operating system and its ap-
plications.

XtratuM is not a standard hypervisor but some
parts are very closed to the functionalities defined in
the ARINC-653 specification. The hypervisor pro-
vides the ARINC-653 partition management, inter-
partition communications, health monitor, schedul-
ing policy and other functionalities to accurately
been adapted to the ARINC-653 standard.

The services provided by XtratuM are sum-
marised in the next table:

Time management Partition management

XM_get_time XM_halt_partition

XM_set_timer XM_halt_system

TRQ management XM.idle_self

XM_enable_irgs XM_reset_partition

XM_disable_irgs XM_reset_system

XM_mask_irq XM_resume_partition

XM_unmask_irq XM_shutdown_partition

XM_request_irq XM_suspend_partition

Interpartition Comm. XM_system_get_status

XM_create_queuing_port XM_partition_get_status

XM_create_sampling_port Health Monitoring

XM_get_queuing_port_status XM_hm_open
XM_get_sampling_port_status XM_hm_read
XM_read_sampling_message XM_hm_status
XM_receive_queuing_message Tracing

XM_send_queuing_message XM_trace_event

XM_write_sampling_message XM_trace_open

Memory management XM_trace_read

XM_get_physmem_map XM_trace_status

TABLE 1: XtratuM hypercalls

4 Lithos Overview

LithOS is a para-virtualised guest operating system
which provides the primitives to create the system re-
sources (blackboards, buffers, events, semaphores...)
and the mechanisms to create threads, timers and the
process scheduler. This is a non-standard interface
designed for the efficient and accurate development
of standards which define the OS personality.

LithOS implements the process concept pre-
sented in the ARINC-653 standard which is not
present in XtratuM . Processes may operate con-
currently in order to satisfy the application require-
ments. LithOS adds the multi-process support, the
communication between processes and the process
scheduler. LithOS uses the services provided by
XtratuM to complete the mechanisms required to de-
velop application based on ARINC-653 .

Partition management

Health monitoring

GET_PARTITION_STATUS

REPORT_APPLICATION_MESSAGE

SET_PARTITION_MODE

CREATE_ERROR_-HANDLER

Process management

GET_ERROR_STATUS

CREATE_PROCESS

RAISE_APPLICATION_ERROR

SET_PRIORITY

Blackboard management

SUSPEND_SELF

CREATE_BLACKBOARD

SUSPEND DISPLAY_BLACKBOARD
RESUME READ_BLACKBOARD
STOP_SELF CLEAR_BLACKBOARD
STOP GET_BLACKBOARD_ID
START GET_BLACKBOARD_STATUS

DELAYED_START

Buffer management

LOCK_PREEMPTION

CREATE_BUFFER

UNLOCK_PREEMPTION

SEND_BUFFER

GET_MY_ID

RECEIVE_BUFFER

GET_PROCESS_ID

GET_BUFFER_ID

GET_PROCESS_STATUS

GET_BUFFER_STATUS

Time management

Event management

TIMED_WAIT CREATE_EVENT
PERIODIC_WAIT SET_EVENT
GET_TIME RESET_EVENT
REPLENISH WAIT_EVENT

Inter-partition communication

GET_EVENT._ID

CREATE_SAMPLING_PORT

GET_EVENT_STATUS

WRITE_SAMPLING_-MESSAGE

Semaphore management

READ_SAMPLING_MESSAGE

CREATE_SEMAPHORE

GET_SAMPLING_PORT_ID

WAIT_SEMAPHORE

GET_SAMPLING_PORT_STATUS

SIGNAL_SEMAPHORE

CREATE_QUEUING_PORT

GET_SEMAPHORE_ID

SEND_QUEUING_MESSAGE

GET_SEMAPHORE_STATUS

RECEIVE_QUEUING_MESSAGE

Multiple schedule

GET_QUEUING_PORT._ID

SET_MODULE_SCHEDULE

GET_QUEUING_PORT_STATUS

GET_MODULE_SCHEDULE_STATUS

TABLE 2:

The LithOS architecture supports partitioning in
accordance with the IMA philosophy. Spatial par-
titioning is ensured by the partitions with its own
data and context, and by the configuration file which
defines each partition memory area. Temporal parti-
tioning is ensured by a cyclic priority scheduler which
is periodically repeated. The order of execution is
defined statically in the configuration file.

4.1 Lithos Architecture

The LithOS architecture is shown in Figure [l The
XtratuM layer provides an execution environment
which furnish a set of services, such as partition man-
agement, time management, inter-partition commu-
nication and health monitor.

LithOS implements the services to provide mul-
tiprocessing and internal mechanisms for synchon-
isation and communication among processes. The
services related to partition management and inter-
partition communication are built from the basic ser-
vices provided by XtratuM . Health monitoning and
tracing facilities are implemented using the XtratuM
services.

LithOS services

Partition n

/) A_RI_)NC—GE‘}_3 Proce;se_s _ \
1 I X |
ARINC-653 API

Semaphores
Buffers

Inter-partition Comm.|
Blackboard

Events | Pr_m:ess l\ingt Partition Mngt}
\ Time Mngt Health Monitor

ypercall Int ce

LithOS
~

o
FIGURE 1: LithOS
Architecture

Next table shows the services implemented by
LithOS .

Partition management The standard defines ba-
sic services related to the partition such as set
the partition mode or get the partition status.

The set partition mode permits to restart the
current partition (COLD or WARM RESET).
The standard does not defines a partition iden-
tification allowing the services to manage other
partitions (i.e. reset, start, stop, shutdown).
In addition, the access to the status of other
partitions is not considered either.

Process management These services are entirely
implemented by LithOS to offer complete the
ARINC-653 specification. So, a LithOS par-
tition can create a set of processes (tasks or
threads in other nomenclature) that permit to
design multi-process applications.

There is a clear differentiation between the par-
tition initialisation phase (COLD or WARM
RESET state) and the execution phase (NOR-
MAL state). System resources (processes,
ports, blackboards, ...) can only be created
during the initialisation phase.

Time management LithOS uses the basic services
provided by XtratuM to retrieve the current
time or arm a timer. Internally, LithOS imple-
ments a timer data structure (heap structure)
to build as many timers as needed by the appli-
cation. The clock granularity is 1 nanosecond.

Inter-partition communication The inter-
partition communication mechanisms (ports
and channels) defined in XtratuM were in-
spired in the ARINC-653 specification. So,
these services are used directly by LithOS ’
internal processes.

Intra-partition communication LithOS layer
implements the services to communicate and
synchronise processes.

Inter-process communication is conducted via
buffers and blackboards which can support the
communication of a single message type be-
tween multiple source and destination pro-
cesses. Buffers are stored using a queue disci-
pline whereas blackboards only store a message.

Inter-process synchronisation is conducted by
using semaphores and events. Semaphores are
counting semaphores and are used to control
the access to shared resources. Events are syn-
chonisation mechanisms which allow notifica-
tion of an occurrence of a condition to processes
which may wait for it. An event is composed
of a bi-valued state variable (up and down).

Health monitoring (HM) XtratuM defines a HM
service inspired in the ARINC-653 HM.
Through the configuration file, the predefined

HM_events are associated to predefined ser-
vices. Some of them can be propagated to the
faulty partition. LithOS provide the services to
install an exception handler process which is in
charge of manage the raised exceptions. Appli-
cation based exceptions can be defined, raised

and managed using the services provided by
LithOS .

4.2 Extended services

LithOS implements the multiple module schedule de-
fined in ARINC-653 Part 2, "Extended Services”.
This service permits to extend the single and static
module scheduler to several scheduling plans. Plans
are identified by means of a plan identifier. When
XtratuM starts the partition execution, the plan
identified as ”0” is set as the current plan. A parti-
tion with the appropriated rights can request a plan
change which, if accepted, is effective at the end of
the current major frame (MAF).

The system architect can define as many plans
as needed. A partition with the appropriated rights
is in charge of conduct the system to the plan needed
at each moment. Initially, plans are related to the
system modes. Plan 0 is defined as the initialisation
schedule plan. In this mode, partitions are initialised
and the internal resources are created and initialised.
One of the partitions with system attributes is in
charge of the mode change requests. Plan 1 is con-
sidered as Maintenance mode. By default, this is the
plan executed when a health monitor event selects
as action a mode change. Plan 2 and next ones are
operational modes. The system architect can define
as many modes as needed for the system operation.
Figure@shows the relation of the schedule plan man-
agement and the partition status.

Boot

Normal

Suspend) Halt

FIGURE 2:
plan

Multiple

Next XML code shows an example of a multiple
schedule definition:

<CyclicPlanTable>
<Plan id="0" majorFrame="100ms” >
<Slot id="1" start="20ms"
duration="20ms” partitionld="0" />
<Slot id="2" start="40ms”
duration="20ms” partitionld="1"/>
<Slot id="3" start="60ms”
duration="20ms” partitionld="2"/>
<Slot id="4" start="80ms”
duration="20ms” partitionld="3"/>
</Plan>
<Plan id="1" majorFrame="200ms” >
<Slot id="0" start="0ms”
duration="10ms” partitionld="0"/>
<Slot id="1" start="10ms"
duration="150ms” partitionld="3"/>
</Plan>
<Plan id="2" majorFrame="100ms” >
<Slot id="0" start="0ms”
duration="10ms” partitionld="0"/>
<Slot id="1" start="20ms”
duration="30ms” partitionld="1"/>
<Slot id="2" start="50ms”
duration="40ms” partitionld="2"/>
</Plan>
<Plan id="3" majorFrame="30ms” >
<Slot id="0" start="0ms"
duration="5ms” partitionld="0"/>
<Slot id="1" start="10ms"
duration="10ms” partitionld="1"/>
<Slot id="2" start="20ms"
duration="10ms” partitionld="2"/>

</Plan>
< /CyclicPlanTable>

4.3 Non-portable services

ARINC-653 lacks of some services that can be considered rele-
vant for partitioned systems. In order to cover these services,
LithOS defines a set of non-portable services which are not
included in the standard. These services are mainly related to
partition and time management.
Partition management
e GET_PARTITION_ID_SELF_NP : Provides informa-
tion about the partition identifier. System partitions.
e GET_PARTITION_INFO_NP : Provides information
about the state of other partitions. System partitions.

e SUSPEND_PARTITION_NP : Suspends the execution
of a partition. System partitions.

e RESUME_PARTITION_NP : Resumes the execution of
a suspended partition. System partitions.

e STOP_PARTITION_NP : Stops the execution of a par-
tition. System partitions.

e RESET_PARTITION_NP : Performs a reset (cold or
warm) of other partition. System partitions.

e SHUTDOWN_PARTITION_NP Requests for the
shutdown of a partition. System partitions.

e GET_SLOT_STATUS_NP : Provides the current slot
information: slot identifier, duration, slot attributes.
All partitions.

Time management

e TIMED_ABS_WAIT_NP : Allows the process to sus-
pend itself until the specified time

e GET_EXEC_CLOCK_NP : Obtains the local clock of
the partition

e SECONDS : Returns a time variable with a specified
number of seconds

e MILLISECONDS : Returns a time variable with a spec-
ified number of milliseconds

e MICROSECONDS : Returns a time variable with a
specified number of microseconds

5 Memory model

XtratuM builds a flat memory map for each LithOS partition.
The address map of the partition is specified in the configura-
tion file.

At build time, the amount of memory space required by
the partition as well as the partition resources are allocated
from the partitions memory. Associated to each LithOS par-
tition, there is a local configuration file which specifies the
maximum number of local resources allocated to the parti-
tion: number of processes, blackboards, semaphores, events,
buffers, blackboards and the maximum sizes of messages and
maximum number of messages to be sotred (buffers).

6 Partition scheduling

Partitions are scheduled under a multi-plan schedule. Each
plan schedule is a sequence of slots which details the slot iden-
tifier, partition, slot attributes, offset with respect to the MAF
origin and slot duration.

When a LithOS partition is scheduled, the internal pro-
cess scheduling is applied. This second scheduling level is a
fixed priority scheduling policy as defined in the ARINC-653
standard.

7 Evaluation

LithOS has been validated according to the coverage of the
official specification [?]. The ARINC-653 specification Part 1
defines the mandatory services and describes the invocation of
those services and the data structures. The LithOS tests have
been defined to prove the interface behavior is in compliance
with the ARINC-653 specification.

7.1 Conformance tests

Conformance or functional tests are specification-based and
are designed to analyse the specification and the behavior of
Lithos. The scope of the conformance tests is demonstrate
compliance of the API behavior and determine whether the
system meets with the ARINC-653 standard.

These tests can be grouped according to the functionality
described in:

e Behaviour tests: These tests, also called stress tests,
are oriented to analyse the behavior of Lithos when a
system resource exceeds the system limit creation and
validates the OS system response under this situation.
These tests determine the system robustness in terms
of extreme load and determine the performance if the
current load goes well above the expected maximum.

e Definitions tests: These tests are designed to check
the libraries, services and attributes provided by the
API (Application Programming Interface). The vari-
ables defined in Lithos are instantiated to every possi-
ble value.

e Interfaces tests: These tests are designed to judge the
operation of a system under normal and abnormal con-
ditions, which will be defined, and make sure the re-
sults are the expected in order to affirm the correctness
of implementation. These procedures evaluate features
like the ability of the OS to catch errors and the re-
action under a specific error condition(return code and
error handler). These tests contain intentionally in-
jected errors to simulate error situations and prove if
their behaviour is the expected by the specification.

7.2 Performance tests

Performance or non-functional tests measure the quality of
the system, such as overhead or performance. A complete
performance evaluation of LithOS has been carried out by
using as target the LEON3 processor at 50 MHz. Next ta-
ble shows some of these measures. All time measures are in
micro-seconds.

Service Avg | Min | Max | SDev
Process context switch 114 11 12 0.36
GET_PARTITION_STATUS 5.26 5 6 0.26
SET_PARTITION_MODE 12.58 12 12 0.04
CREATE_PROCESS 89.20 88 89 2.54
CREATE_SEMAPHORE 16.25 15 17 0.11
CREATE_BUFFER 18.00 18 18 0.02
CREATE_BLACKBOARD 15.75 15 17 0.27
LOCK_PREEMPTION 11.00 10 12 0.12
UNLOCK_PREEMPTION 24.00 23 25 0.18
DISPLAY_BLACKBOARD (16b) 58.50 58 59 0.11
DISPLAY_BLACKBOARD (64b) 70.25 70 71 0.16
READ_BLACKBOARD (16b) 13.00 12 14 0.22
READ_BLACKBOARD (64b) 19.50 19 20 0.11
SEND_BUFFER (16b) 36.50 36 37 0.13
SEND_BUFFER (64b) 48.00 47 49 0.14
RECEIVE_BUFFER(16b) 44.50 44 45 0.13
RECEIVE_BUFFER(64b) 51.00 50 52 0.09
WAIT_SEMAPHORE 10.50 10 11 0.22

TABLE 3: LithOS service measurements

Inter-partition communication using ports and channels
are not shown due to that these services are performed by
XtratuM . In [?] the reader can find these measurements.

7.3 Footprint

Table Bl shows the footprint values of a LithOS partition. The
table details the bss increment depending on the number of
resources defined and the size of the data.

code 58 Kb
data 8 Kb
bss 16 Kb
Processes 8 KB * Number of processes (size
of the stack)
Events 32 B * Number of events
Semaphores 40 B * No of semaphores
Blackboards | 44 B * No of blackboards * Size of
message
Buffers 172 B * No of buffers * No of mes-
sages * Size of message
TABLE 4: Footprint measurements.

8 Conclusions

In this paper we presented LithOS , a guest real-time oper-
ating system ARINC-653 compliant for partitioned systems

based on XtratuM . LithOS provides the partition manage-
ment, intra-partition and inter-partition communication, time
management and health monitoring services according to the
specification.

LithOS provides the concept of skin as a thin layer im-
plementing a specific standard to be used on top of the archi-
tecture LithOS /XtratuM . The skin concept is completely
integrated in LithOS and can be selected at configuration
time, although, it has been described as a different layer. The
ARINC-653 skin focuses on current developement performed
on the ARINC-653 standard, in order to add flexibility and
portability to the applications and provide the whole benefits
of the ARINC-653 standard.

LithOS includes the multiple schedule services in order to
deal with multimode systems. This service follows the stan-
dard defined as extended services.

Additionally, LithOS includes a set of services that are
not included in the standard for partition management. These
services are provided by XtratuM and are offered as services in
LithOS . These services are labelled as non-portable in order
to emphasise its non portability.

Finally, a performance evaluation of LithOS has been in-
cluded to ensure the correctness of the behavior. Tests cases
are currently validated by means of the ARINC-653 Part 3 in
the standard and the services provided by LithOS are verified
in conformity with the ARINC-653 Part 1. The performance
evaluation includes the measurement of some of the imple-
mented services.

References

[1] Avionics Application Software Standard Interface
(ARINC-653), March 1996. Airlines Electronic Eng.
Committee.

[2] Avionics Application Software Standard Interface

(ARINC-653). PART 3 CONFORMITY TEST SPECI-
FICATION, October 2006 2006. Airlines Electronic Eng.
Committee.

[3] Avionics Application Software Standard Interface
(ARINC-653). PART 2 EXTENDED SERVICES |,
January 2007 2007. Airlines Electronic Eng. Committee.

[4] M. Masmano, I. Ripoll, and A. Crespo. Introduction to
XtratuM. 2005.

[5] M. Masmano, I. Ripoll, and A. Crespo. An overview of
the XtratuM nanokernel. In Proceedings of the Workshop
on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT), 2005.

[6] M. Masmano, I. Ripoll, A. Crespo, and J.J. Metge. Xtra-
tum: a hypervisor for safety critical embedded systems.
In Eleventh Real-Time Linux Workshop, Dresden (Ger-
many), 28-30 September 2009.

[7] M. Masmano, I. Ripoll, A. Crespo, J.J. Metge, and P. Ar-
beret. Xtratum: An open source hypervisor for TSP em-
bedded systems in aerospace. In DASIA 2009. DAta Sys-
tems In Aerospace., May. Istanbul 2009.

[8] M. Masmano, I. Ripoll, S. Peir6, and A. Crespo. Xtratum
for leon3: an open source hypervisor for high integrity sys-
tems. In European Conference on Embedded Real Time
Software and Systems. ERTS2 2010., Toulouse (France),
19-21 May 2010.

[9] John Rushby. Design and verification of secure systems.
volume 15, pages 1221, Pacific Grove, California, Dec
1981.

	Introduction
	The ARINC-653 specification
	Services

	XtratuM
	Lithos Overview
	Lithos Architecture
	Extended services
	Non-portable services

	Memory model
	Partition scheduling
	Evaluation
	Conformance tests
	Performance tests
	Footprint

	Conclusions

