
Long-term monitoring of apparent latency in PREEMPT RT Linux

real-time systems

Carsten Emde

Open Source Automation Development Lab (OSADL) eG
Aichhalder Str. 39, 78713 Schramberg, Germany

C.Emde@osadl.org

Abstract

The real-time wakeup latency tracer (wakeup rt) in conjunction with the wakeup latency histogram
(CONFIG WAKEUP LATENCY HIST) is part of the Linux kernel trace subsystem. It monitors pro-
cesses that have the highest priority of the system throughout their entire wakeup processing and do not
share this priority with any other concurrently running or scheduled process. Thus, this tracer should be
able to continuously monitor a system’s worst-case latency. However, in a situation where interrupts are
disabled, the timer interrupt to enqueue a process is already late, but the latency between enqueuing and
wakeup still may be normal. In this case, an erroneously low latency would be recorded.

To overcome this limitation and to create a true recording of the apparent latency of every single
wakeup procedure, an additional tracer was implemented. This tracer determines the offset between the in-
tended timeout and the real timeout of the timer interrupts; the CONFIG MISSED TIMER OFFSETS HIST
configuration item is used to enable this tracer.

When implementing the two tracers, care was taken to minimize the introduced performance penalty.
The combination of the real-time wakeup latency tracer with the timer offset tracer allows to contin-

uously monitor a real-time system during its entire life-time in such a way that every single violation of
the scheduling deadline would be registered. This makes it possible to ensure real-time capabilities even
in systems where path analysis is no longer feasible.

1 Path analysis vs. latency

monitoring

There is no doubt that path analysis is the ”Gold
Standard” of determining a system’s worst case la-
tency and, thus, is providing the most important
characteristic of a real-time operating system. The
procedure appears to be simple: Find the longest
code path during which the system is irresponsive
to asynchronous external events, lookup the number
of processor cycles of every assembly instruction of
this path, calculate their sum and divide the result
by the clock frequency. State-of-the-art processors of
the year 2010, however, are less well suitable for path
analysis, since a particular assembly instruction may
take any number of cycles. This is due to

• BIOS interference through system manage-

ment interrupts (SMIs)

• instruction and data caches that may need to
be flushed and filled before an instruction can
be fetched or data can be loaded

• microcode patches that may modify the dura-
tion of a particular assembly instruction

In addition, path analysis is virtually impossible in
general-purpose operating systems with a large code
basis such as Linux.

As an alternative, the apparent worst-case la-
tency of a system can be determined empirically.
This is often done independently from a given
project, e.g. in the lab under artificial load con-
ditions. A signal generator is connected to a dig-
ital input line to trigger repeated interrupts, and a
user space application with real-time priority is wait-

1

ing for this input line and signals the beginning of
program execution via a (preferably non-interrupt
driven) digital output line. The time difference be-
tween sending the input trigger and receiving the
output signal reflects an individual latency value.
Such measurements are typically performed repeat-
edly during a day or even a week, and the longest
observed latency is taken as the result of the mea-
surement. If the hardware-induced latency is known
and the configuration of the system does not change,
a somewhat simpler software procedure can be em-
ployed by measuring the latency of cyclic timer in-
terrupts. This is best done using the cyclictest [1]
program that was developed for this purpose and
is part of the popular rt-tests suite [2]. Command
line options of cyclictest allow to pin a measurement
thread to a particular core of multi-core processors
and to run one thread per core.

However, there are a number of shortcomings of
such recordings:

• The load condition may not reflect the actual
load of the production system

• The system configuration may not reflect that
of the production system

• Rarely occuring latencies are not detected

• Other input controllers may suffer from longer
latencies

It would, therefore, be preferable to continuously
monitor each and every wakeup sequence of all real-
time tasks in the running system under production
conditions. This measurement may even be enabled
during the entire life-time of the system. If, for ex-
ample, during a 10-year recording period, no wakeup
sequence was detected that exceeded the specified
deadline, the system can truly be considered, at least
retrospectively, as real-time compliant.

2 Equipping the Linux kernel

with a continuous latency

monitoring subsystem

Version 2.6.33-rt29 of the Linux PREEMPT RT
real-time patches already contains two important
components that are needed for the continuous
monitoring of latencies: Wakeup latency (CON-
FIG WAKEUP LATENCY HIST) and missed timer
offsets (CONFIG MISSED TIMER OFFSETS HIST):

1. Wakeup latency: To determine the effec-
tive wakeup latency, the kernel stores the time
stamp when a process is enqueued, and takes
a second time stamp shortly before control is
passed to this process. The difference between
these two time stamps is then taken as wakeup
latency and entered into a histogram with a
granularity of 1 µs and a range from 0 to 10.24
ms. Such latencies may not necessarily re-
flect a system’s worst case latency, since the
process in question may be preempted by an-
other one with a higher priority or may fail
to be scheduled in time, since another pro-
cess with the same priority is already running.
Therefore, two different variables are created,
latencies of real-time processes that had
the highest priority of the system throughout
the entire wakeup procedure and latencies of

other processes that may have been inter-
rupted during scheduling. The latter is called
”sharedprio” wakeup latency.

2. Missed timer offsets: Whenever a timer is
expiring, the difference between the intended
expiration time and the actual time is cal-
culated and entered into another histogram
with the same granularity and range as above.
This variable is called ”missed timer offsets”.
The Linux kernel stores this value along with
other task variables for later use, if both CON-
FIG WAKEUP LATENCY HIST and CON-
FIG MISSED TIMER OFFSETS HIST are
configured and enabled.

2.1 Timer and wakeup latency

Simply measuring the interval between en-
queueing and wakeup, however, may not be
appropriate in cases when a process is sched-
uled as a result of a timer expiration, since the
timer already may have missed its deadline.
This may happen in a situation when inter-
rupts are disabled temporarily. After the inter-
rupts are re-enabled, enqueing takes place and
may result in an apparently normal wakeup
latency. To also consider such latencies that
are based on a delayed timer expiration, a
new latency variable was added: Timer and

wakeup latency. For this purpose, a third
histogram, again with the same granularity and
range as above, is made available. Whenever
a wakeup was the result of a timer expiration,
the timer offset is added to the wakeup la-
tency and entered into this histogram. There
is no separate configuration item, since this

2

histogram is configured implicitly when both
CONFIG WAKEUP LATENCY HIST and
CONFIG MISSED TIMER OFFSETS HIST
are enabled in the Linux kernel. As of October
2010, this histogram is not yet available in the
PREEMPT RT real-time patches but sched-
uled for inclusion in one of the next releases.
The variable is called ”timerandwakeup”.

2.2 Configuraton and activation

of latency recording

By default, any histogram recording is disabled
at boot time. Therefore, the two items CON-
FIG WAKEUP LATENCY HIST and CON-
FIG MISSED TIMER OFFSETS HIST may
be configured without any relevant performace
penalty. To enable them at runtime, a non-zero
value must be written to the related variables
in the ”enable” subdirectory of the latency his-
tograms, e.g.

cd /sys/kernel/debug/tracing/latency_hist

echo 1 >enable/wakeup

echo 1 >enable/missed_timer_offsets

echo 1 >enable/timerandwakeup

2.3 Tracing of affected processes

In order to provide some insight into the possi-
ble impact of a prolonged latency, the process
ID and name of the affected process, its pri-
ority and latency are recorded in the variable
”max latency-CPUx” of the histogram subdi-
rectory.

2.4 Resetting the latency his-

tograms

To clear the histograms, the reset variable is
provided. If, for example, it is desired to clear
all histogram data, the following procedure can
be used:

cd /sys/kernel/debug/tracing/latency_hist

for i in ‘find . | grep /reset$‘

do

echo 1 >$i

done

3 Continuous recording

and graphical display

The Munin monitoring framework [3] that
is based on Tobias Oetiker’s Round Robin
Database Tool [4] was used to visualize the
continuous recording of a system’s worst-case
latency. By default, a sample is taken every
five minutes and the highest recorded latency is
entered into the database. Thereafter, the his-
togram is reset. The following example record-
ings have been obtained on a uniprocessor and
a 4-core hyperthreaded system that underwent
regular system load generation and stimulated
latency recordings. More specifically, cyclictest
runs were started at 7 a.m. and 7 p.m. and
lasted for about six hours. Load generation
was started at 9 a.m. and 9 p.m. and was only
halted when the latency recording was finished.
The uniprocessor test board was equipped with
an AMD Athlon 64 processor 2800+ [5], the
multi-core board was running an Intel i7 Ne-
halem 975 @3333 MHz [6]. The Linux kernel
version was 2.6.33.7-rt29.

3.1 Wakeup latency

The recording in Figure 1 was obtained in a
uniprocessor system and represents consecutive
wakeup latency maxima of 5-min intervals.

FIGURE 1: Example of a 30-hour record-
ing of the wakeup latency

Since no raw data are used for input but la-
tency maxima of a given time frame had been
calculated, the derived results in the columns
labeled ”Min:” and ”Avg:” are irrelevant; the
only relevant result is the maximum of con-
secutive 5-min maxima at the rightmost col-
umn labeled ”Max:”. Under idle conditions,
the latency of the examined processor has a
somewhat larger variability than under load;
its maximum is 25.58 µs.

3

3.2 Missed timer offsets

Figure 2 displays continuously recorded offsets
of expired timers (same time interval as in Fig-
ure 1).

FIGURE 2: Example of a 30-hour record-
ing of missed timer offsets

When the system is idle, the timer interrupts
are executed nearly always in time. Under
load, the timer deadline is missed by up to
59.26 µs. However, this delay does not nec-
essarily represent a relevant latency, since the
particular process may not be the one and only
real-time process.

3.3 Timer and wakeup latency

The newly provided combined timer and
wakeup latency recording is presented in Fig-
ure 3 (again same time interval as above).

FIGURE 3: Example of a 30-hour record-
ing of timer and wakeup latency

Under idle conditions, the 5-min latency max-
ima of the examined processor do not exceed 30
µs. During load period #1 and #2, the largest
recorded latencies increase to about 60 and 45
µs, respectively.

3.4 Timer and wakeup latency of

a multi-core processor

Figure 4 contains the newly provided combined
timer and wakeup latency recording (same as

in Figure 3) in an 8-way (hyperthreaded 4-core)
processor.

FIGURE 4: Example of a 30-hour record-
ing of timer and wakeup latency of a multi-
core processor

As the latency is recorded separately per core,
specific differences between the various cores
can be detected. They are mostly related to the
various interrupts that are assigned and pinned
to a particular core. Such recordings may help
to further increase the real-time performance of
the system by selecting the core with the low-
est latency for the most demanding real-time
task. In the above example, core #1 reveals
the highest (36.28 µs) and core #3 the low-
est (19.98 µs) latency. The additional variable
”latencyall” records the maximum latency of
the various cores at every latency sample and
is used to compare various processors to each
other. It is determined by the Munin plugin
and unrelated to the kernel functionality.

3.5 User-space latency of a

uniprocessor determined by

cyclictest

4

FIGURE 5: Example of a 6-hour unicpro-
cessor latency plot

The latency histogram in Figure 5 was recorded
during the second load period of Figure 1 to 3.
It is based on a total of 100,000,000 wakeup
sequences generated with the cyclictest call:

cyclictest

-l100000000 -m -a0 -t1 -n \

-p99 -i200 -h200 -q

The maximum detected latency amounts to 50
µs which is in good accordance to the latency of
45 µs obtained using continuous latency moni-
toring (second load period in Figure 3).

3.6 User-space latency of a multi-

core processor determined by

cyclictest

FIGURE 6: Example of a 6-hour multi-
core processor latency plot

The latency histogram in Figure 6 was also
recorded during the second load period as de-
picted in Figure 1 to 3. It is also based on
a total of 100,000,000 wakeup sequences; this
time, the following cyclictest call was used:

cyclictest -l100000000 -m -Sp99 -d0 \

-i200 -h200 -q

The maximum detected latency amounts to 34
µs which is in good accordance to the latency of
32 µs obtained using continuous latency mon-
itoring (second load period in Figure 3). The
responsible CPU core #1 was detected accord-
ingly as the source of this latency.

4 Testing the reliability

of the continuous latency

recording

Before the results of the continuous latency
recording can be used and trusted, they must
be verified against an established procedure.
Therefore, continuous monitoring was installed
and enabled on a wide variety of systems
and the results compared with latency mea-
surements obtained from repeated runs of the
cyclictest utility on the same system. The con-
tinuously recorded timer and wakeup latency
values and the latency measured with cyclictest
were plotted against each other and evaluated
using linear regression; an example is given in
Figure 7. Latency injection using artifical in-
terrupt and preemption blocking was used to
generate a sufficiently large range of system la-
tencies.

1251007550250
Internal latency (μs)

Y = 4.82 + .970 × X (N: 607115)

Continuous latency recording

Cyclictest
latency

(μs)

0

25

50

75

100

125

FIGURE 7: Comparison of continuously
monitored latency with cyclictest latency

This plot shows a typical correlation of the two
methods to determine a system’s latency. It is
based on a total of 607,115 data pairs. The
regression line

Y = 4.82 + .970 ∗ X

yields a small intercept which indicates that
the continuously monitored latency underesti-
mates the cyclictest results on average by 4.82
µs. This is due to the context switch from sys-
tem to user space that the continuous recording

5

cannot assess. In addition, continuous mon-
itoring tends to underestiate small latencies.
Large latencies, however, are relatively well
correlated.

5 OSADL quality assur-

ance of the PREEMPT RT

Linux kernel patches

The continuous latency recordings and the
cyclictest histograms are part of the OS-
ADL quality assurance program ot the PRE-
EMPT RT Linux kernel and are publicly avail-
able on the Internet [7]. The systems under
test are hosted in special OSADL test racks
and form the OSADL QA farm. The above
demonstrated uniprocessor and multi-core pro-
cessors are located in rack #2/slot #3 and rack
#1/slot #4, respectively. The other rack slots
host many more popular systems that are also
continuously tested to ensure production qual-
ity of the PREEMPT RT Linux real-time ker-
nel patches.

6 Conclusion

A method was developed to continuously mon-
itor the apparent worst-case latency of a Linux
PREEMPT RT real-time system. It is based
on the existing monitoring of timer expiration
offsets and wakeup latencies. The two vari-
ables are combined and entered into another
latency histogram called ”timerandwakeup”.
The newly created variable was compared with
the existing cyclictest method. The observed
slight underestimation of the latency was ex-
pected, since the latency recording from ker-
nel space is unable to determine the time to
finish the context switch and start execution
is user space. Besides this, there was a good
correlation between the two methods. Since
continuous recording of the apparent latency
does not create any major impact on the sys-
tem performance, it is recommeded to enable
this newly available histogram at least during
development. In addition, it is even possible
to leave continuous latency monitoring enabled
under production conditions. This may help to
document the system’s long-term performance
and also to trace a possible misbehavior, if a
violation of the real-time capabilities is sus-
pected.

References

[1] https://rt.wiki.kernel.org/index.php/Cyclictest

[2] http://git.kernel.org/?p=linux/kernel/git/clrkwllms/rt-tests.git;a=summary

[3] http://munin-monitoring.org/

[4] http://www.mrtg.org/rrdtool/index.en.html

[5] http://www.amd.com/us/products/desktop/processors/athlon/Pages/AMD-athlon-processor-for-
desktop.aspx

[6] http://ark.intel.com/Product.aspx?id=37153

[7] https://www.osadl.org/QA/

6

