
ARM TrustZone as a Virtualization Te
hniquein Embedded SystemsTorsten Frenzel, Adam La
korzynski, Alexander Warg and Hermann HärtigTe
hnis
he Universität DresdenDepartment of Computer S
ien
e01062 Dresden, Germany{frenzel, adam, warg, haertig}�os.inf.tu-dresden.deAbstra
tVirtualization starts to gain tra
tion in the embedded world as methods to enfor
e isolation areneeded to
ope with the ever-growing
omplexity of modern systems. Originating from desktop andserver systems, existing virtualization solutions have their fo
us on ri
h fun
tionality su
h as migrationand
he
k-pointing while real-time fun
tionality is of little interest. In
ontrast, in embedded systems thisfun
tionality is dispensable while the ability to support real-time workloads has to be retained. So far,virtualization on ARM - the arguably predominant ar
hite
ture for embedded systems - was impeded bythe la
k of proper ar
hite
tural support. In this paper, we show how TrustZone, an extension originallymeant to boost se
urity,
an also be used to �ll that gap and provide en
apsulation in real-time
ons
ioussystems. We evaluate a minimally modi�ed Linux on top of a real-time
apable mi
rokernel in terms ofengineering and runtime
osts. The results show that it is possible to improve the performan
e
omparedto existing solutions and preserve realtime properties for appli
ations.1 Introdu
tionToday, embedded systems su
h as smartphones han-dle valuable
ontent, like sensitive data from a banka

ount and other personal information as timing
riti
al resour
e su
h as network
onne
tions. Theyalso run a growing number of appli
ations and areable to dynami
ally download new software. Conse-quently, se
urity-sensitive and realtime-sensitive ap-pli
ations and potentially mali
ious appli
ations oflow trustworthiness share the same platform.An important
riterion for the vulnerability ofse
urity-sensitve appli
ations is the size of theirTrusted Computing Base (TCB). It
onsists of allhardware and software
omponents they have totrust for their fun
tionality. A small TCB for su
happli
ations and servi
es is favourable be
ause ithelps to redu
e the number of vulnerabilities that
an be atta
ked. Redu
ing the size of the TCB isa
hieved by isolating
omponents at software level,hardware level and a
ombination of both.The spe
i�
ation of the Trusted Mobile Plat-form [11℄ is an attempt to address the se
urity re-

quirements for mobile and embedded platforms. Itdes
ribes a generi
 hardware and software ar
hite
-ture enri
hed with proto
ols to a

ess se
ure ser-vi
es. The spe
i�
ation de�nes di�erent se
urity
lasses with spe
i�
 isolation properties and require-ments for their TCBs. For example, a highest se
u-rity
lass devi
e requires hardware-enfor
ed isolationand a TCB
onsisting of a veri�ed and trusted mi-
rokernel for se
urity-sensitive appli
ations.ARM TrustZone [13℄ has been designed to enabletrusted mobile platforms by providing two hardware-isolated exe
ution domains. The se
ure-world do-main supports the prote
ted exe
ution of se
urity-sensitive software, while the normal-world domainenables the en
apsulated exe
ution of less
riti
alsoftware. The hardware ar
hite
ture prote
ts these
urity-sensitve software not only against atta
ksfrom normal-world software but also from physi
alatta
ks, su
h as the sni�ng of bus transa
tions. Fur-thermore, TrustZone aims to provide high perfor-man
e for a

ess to physi
al resour
es for normal-world
omponents as well as se
ure-world
ompo-nents, while redu
ing the
osts for dupli
ated hard-1

ware.TrustZone imposes few restri
tions on the soft-ware sta
k of either world. This enables third-partydevelopers to integrate their own se
urity solution.While there exists a referen
e implementation for aTrustZone software ar
hite
ture [7℄, no results arepubli
ly available that evaluate the TrustZone ar
hi-te
ture with regards to the performan
e overhead.This paper intends to
lose this gap as it reports re-sults of implementing an open se
urity ar
hite
ture,
alled Nizza [18℄, on the TrustZone platform.As with TrustZone, Nizza is designed to sup-port minimized TCBs for se
urity-sensitive appli
a-tions. The software ar
hite
ture isolates generi
 op-erating systems and their appli
ations from se
urity-sensitive appli
ations using system virtualization. Asmall realtime kernel or hypervisor implements thevirtualization layer and a multi-server OS providesa

ess to hardware and software resour
es. The ker-nel
an host isolated, budgeted realtime appli
ationsand virtual ma
hines with �xed priorities.This work makes the following
ontributions: (1)We show how TrustZone
an be used to implementa
omplex se
urity ar
hite
ture that fa
ilitates theexe
ution of isolated realtime appli
ations in embed-ded systems using an approa
h that is similar to fullvirtualization. (2) We
ompare this approa
h withregards to the software-development e�ort to imple-ment this solution and the performan
e and laten
ywith pure paravirtualization and native exe
ution.To this end, we provide in Se
tion 2 a bird's eyeview on the hardware and software
omponents ofthe TrustZone ar
hite
ture. In Se
tion 3 we outlinethe Nizza se
urity ar
hite
ture applied as a Trust-Zone software sta
k and introdu
e two importantvirtualization te
hniques for se
urity ar
hite
tures.In Se
tion 4, we des
ribe in detail our design andimplementation of using the TrustZone hardware ar-
hite
ture as a basis for the Nizza software ar
hi-te
ture. Se
tion 5 provides an evaluation regardingthe
hanges to the en
apsulated operating systemand the performan
e overhead and of our TrustZone-based virtualization solution. Se
tion 6 dis
usses re-lated work and Se
tion 7
on
ludes.2 ARMTrustZone Ar
hite
tureTrustZone restri
ts the a

ess to se
urity-sensitive
omponents by intro
uding a virtual split throughthe hardware in the system. The approa
h requiresmodi�
ations in the pro
essor
ore as well as the

platform. The ar
hite
ture is a

ompanied by a pro-posed software ar
hite
ture that re�e
ts the split ap-proa
h.2.1 HardwareA pro
essor with TrustZone extension provides twovirtual pro
essors establishing two se
urity domains:the se
ure world and normal world. The pro
es-sor
an swit
h from one world to the other usinga dedi
ated and
ontrolled me
hanism, that requiresa se
ure-world software
omponent,
alled the mon-itor. Furthermore, all hardware
omponents in thesystem, su
h as memory and devi
es, are
on�guredas normal-world or se
ure-world a

essible. This
an be a
hieved by adding TrustZone-aware
ompo-nents that enfor
e the se
urity poli
ies in the system,su
h as memory
ontrollers [14℄ and spe
ial prote
-tion
ontrollers [10℄. The hardware split restri
ts thea

ess rights of the normal world to normal-worldresour
es, while the se
ure world
an a

ess all re-sour
es.The world in whi
h the pro
essor is
urrentlyrunning determines its se
urity state 1. Wheneverthe pro
essor exe
utes a read or write instru
tionto a

ess a resour
e, the
orresponding bus transa
-tion is tagged with the se
urity state of the pro
es-sor. This way it is propagated through the systemand enables peripheral
omponents of the platformto
he
k whether or not an a

ess to a resour
e isvalid. All
omponents that are involved in satisfyingthis request
an verify the se
urity state. Whenevera peripheral
omponent itself issues a bus transa
-tion, this operation is tagged with the se
urity stateof the
omponent whi
h also prevents DMA atta
ks.The delivery of interrupts is also
ontrolled bythe se
ure world, whi
h
on�gures if a spe
i�
 inter-rupt is delivered to the
urrent world or to the moni-tor software. TrustZone de�nes two models for inter-rupt delivery. The �rst model uses one interrupt
on-troller that is programmed by the se
ure world onlyand requires the monitor to de
ide to whi
h worldan interrupt is routed. The se
ond model uses aTrustZone-aware interrupt
ontroller [12℄ whi
h pro-vides two virtual interrupt
ontrollers similar to thetwo virtual pro
essors. This enables the platformto route interrupts to the
on�gured world withoutintervention of the monitor software.A TrustZone-enabled platform
onsists of theTrustZone-enabled pro
essor
ore with additionalon-
hip se
ure
omponents, su
h as tightly
oupledmemory,
rypto modules, RAM and boot ROMs. If1The ar
hite
ture refers to this as the NS-bit. 2

the system bus is se
urity-aware further se
ure pe-ripheral
omponents
an be added, su
h as SDRAM,�ash and ROM. The partitioning of the platform
an be hard-wired or re
on�gurable using spe
ialplatform-dependent me
hanisms.2.2 SoftwareThe designers of TrustZone had a
lear perspe
tive ofthe software ar
hite
ture in mind, whi
h extends thehardware ar
hite
ture's philosophy into the softwarelayers on top. This software ar
hite
ture
onsistsof normal-world
omponents, in
luding a generi
 op-erating system and its appli
ations a

essing onlynormal-world hardware, and se
ure-world
ompo-nents. The se
ure-world software
an range from asmall servi
e or en
ryption layer �tting into on-
hipmemory to a
omplex operating system with its ap-pli
ations.
FIGURE 1: TrustZone
omplex softwarear
hite
tureFigure 1 shows a
omplex software ar
hite
tureas outlined by the ARM engineers [15, 25℄. It has ageneri
 OS and appli
ations running in the normalworld. The generi
 OS
an a

ess the se
ure-worldservi
es using TrustZone a

ess drivers whi
h in turn
all the TrustZone monitor software to swit
h to these
ure world. The se
ure software sta
k
onsists ofa se
ure kernel, se
ure drivers, trusted appli
ationsand the monitor. The se
ure kernel
ontains driversfor se
ure devi
es and hosts se
ure servi
es togetherwith further devi
e spe
i�
 tasks. Trusted appli
a-tions
an run either dire
t on top of the se
ure servi
elayer or are isolated by a trusted interpreter, su
h asa Java virtual ma
hine. In addition to these
ompo-nents a se
ure boot loader is required to bootstrapand measure the software sta
k.The monitor performs the swit
hes between these
ure world and normal world. Its provides fun
-tionality that is similar to a
ontext swit
h in oper-ating systems, ensuring that the state of the worldthat the pro
essor is leaving is saved, and the state

of the world the pro
essor is swit
hing to is restored.Normal-world entry to the monitor is only possiblevia interrupts, external aborts or an expli
git
all,referred to as monitor
all 2. The se
ure world
anenter the monitor without restri
tions when runningin privileged mode, in addition to the available ex-
eption me
hanisms.As TrustZone is a pure se
urity ar
hite
ture itmakes no statement and poses no restri
tions on wi
hside realtime
omponents should run.For the
ommuni
ation between both worldsTrustZone de�nes several APIs: a Generi
 API witha simple message-passing interfa
e, an extensible Se-
urity Channel API for well-known servi
es and APIsfor spe
i�
 se
urity modules. The APIs de�ne aremote-pro
edure-
all standard to open
onne
tionsfrom the normal world to the se
ure world.3 Nizza Ar
hite
tureThe Nizza se
urity ar
hite
ture shown in Figure 2minimizes the TCB for se
urity-sensitive appli
a-tions using a small multi-server operating systemwith unprivileged
omponents and the isolation ofnon-se
ure
omponents from se
urity-sensitive
om-ponents. A mi
rokernel enfor
es isolation between
omponents in the system and provides fast and
on-trolled
ommuni
ation between them. On top, de-privileged servers, su
h as a �le system, a se
ure GUIand resour
e managers, as well as drivers provide asmall servi
e layer. Non-se
ure and se
urity-sensitiveappli
ations
an a

ess these servi
es, whi
h mediateand
ontrol the a

ess to physi
al resour
es.
FIGURE 2: Nizza se
urity and realtime ar-
hit
tureThe Nizza ar
hite
ture
losely resembles the
omplex software ar
hite
ture as des
ribed in theprevious se
tion with a split in two worlds sepa-rated by the mi
rokernel. In the se
ure world theservi
e layer manages the platform and multiplexesresour
es among both worlds. The normal world
on-sists of the generi
 OS and its appli
ations.2The privileged instru
tion is
alled SMC. 3

Although the Nizza ar
hite
ture is very similar tothe TrustZone's
omplex software ar
hite
ture thereare di�eren
es. The trusted interpreter as shown inFigure 1 is not required be
ause isolation betweenappli
ation is provided by separate address spa
es.Furthermore the Nizza ar
hite
ture does allow to en-
apsulate many generi
 OSes on the same platform,whi
h is not intended by the TrustZone ar
hite
ture.Nizza has built-in support for realtime appli
ations,whi
h in
ludes the low-laten
y preemptible kernelwith a stati
 priority s
heduling s
heme and periodi
exe
ution and budgeting of realtime appli
ations.Se
urity ar
hite
tures su
h as Nizza use virtual-ization to en
apsulate and isolate OSes and their ap-pli
ations, ex
luding them from the TCB of se
urity-sensitive and realtime appli
ations. We �rst de-s
ribe a paravirtualization ar
hite
ture, an approa
hthat is
ommonly used in embedded system, and af-terwards we des
ribe full virtualization ar
hite
turewith hardware assistan
e.Paravirtualization Paravirtualization modi�es
riti
al parts of the deprivileged kernel of the virtu-alized OS. Platform-spe
i�

omponents are adaptedto the interfa
e of the virtualizing kernel usingsour
e-
ode modi�
ations.A paravirtualized kernel needs modi�
ations inthe system-
all interfa
e and all platform-spe
i�
parts that intera
t with the hardware, like memorymanagement, and interrupt handling. For example,page-table modi�
ations are translated into resour
e-delegation requests and interrupts are signalled tothe paravirtualized kernel as messages. All system
alls from the appli
ation to the paravirtualized ker-nel need to be mediated by the hypervisor, whi
h
an
ause serious performan
e degradation.Paravirtualization has low hardware require-ments; any pro
essor that supports isolation by ad-dress spa
es
an be used to implement this virtu-alization solution. However, the e�ort required toadapt a kernel
an be high.XenLinux[16℄ and L4Linux [20℄ are examples ofparavirtualized kernels. In this work L4Linux servesas a referen
e to
ompare our new approa
h with re-garding the performan
e and software-developmente�ort.Full Virtualization Full virtualization runs thedeprivileged kernel of the virtualized OS withoutany modi�
ations. The hardware traps sensitive andprivileged instru
tions to the virtualizing OS. Thisenables the virtualizing OS to emulate these instru
-

tions and virtualize the hardware resour
es. Fullvirtualization ar
hite
tures require a virtual ma
hinemonitor (VMM) that
ontrols the virtualized OS andprovides the virtual hardware environment.This approa
h relies on hardware assistan
e toredu
e the number of traps and avoid serious perfor-man
e degradation. Sin
e the early seventies main-frame vendors [19℄ and in re
ent years, server anddesktop pro
essor vendors [22, 1℄ have implementedvirtualization extensions. Su
h extensions split thephysi
al pro
essor into two virtual pro
essors, one forthe virtualized OS and one for the virtualizing OS.The exe
ution of the virtualized OS is
ontrolled bythe virtualizing OS. It initiates a swit
h to the vir-tualized OS and enfor
es a swit
h ba
k on
riti
alevents, su
h as the o

urren
e of interrupts and pagefaults.
FIGURE 3: Mi
rokernel-based hypervisorar
hite
tureA mi
rokernel-based virtualization ar
hite
turewith full virtualization support as shown in Figure 3splits the VMM into two parts. A small privilegedhypervisor
ontains the me
hanism to
ontrol ands
hedule virtualized OSes inside a virtual ma
hine(VM). An unprivileged VMM provides the virtualhardware environment for the virtualized OS.This approa
h minimizes size of the privileged
omponent, the hypervisor, that
ontributes to theTCB of se
urity-sensitive appli
ations. The VMMdoes not add to the size of the TCB of se
urity-sensitive appli
ations be
ause it runs unprivileged inits own address spa
e. However, this separation re-quires additional
ommuni
ation between the hyper-visor and the VMM, whi
h
an de
rease the perfor-man
e of the virtualized OS.4 Full Virtualization withTrustZoneAs stated in the previous se
tion,
urrent te
hniquesfor mobile and embedded devi
es to en
apsulateOSes in se
urity ar
hite
tures, like paravirtualiza-tion, require a high development e�ort. The Trust-Zone hardware ar
hite
ture dire
ts the fo
us towards4

an approa
h similar to full virtualization solutions.TrustZone allows to run an operating system en
ap-sulated in the normal world with only minor modi�-
ations and under
ontrol of a software layer in these
ure world.4.1 Ar
hite
tureFigure 4 shows the Nizza se
urity ar
hite
ture ap-plied to TrustZone as outlined in Se
tion 3
ombinedwith the full virtualization approa
h. The normalworld
ontains the normal-world OS and its appli
a-tions. The normal-world OS uses a

ess drivers tosend requests to the se
ure world and has driversto a

ess normal-world devi
es dire
tly. The se-
ure world
ontains the monitor, the se
ure kerneland the se
ure-world OS with se
ure appli
ations.The se
ure-world OS
onsists of unprivileged
ompo-nents, su
h as se
ure devi
e drivers and se
ure ser-vi
es.This ar
hite
ture
ontains the realtime-
apablehypervisor and the VMM as new
omponents derivedfrom the full virtualization s
enario. The hypervisor
onsists of the TrustZone monitor software and these
ure kernel, whi
h are tightly
oupled inside these
ure privileged
omponent. This integration intoone
omponent is justi�ed by the fa
t that there isno isolation between the se
ure-privileged pro
essormodes and the monitor pro
essor mode. The hyper-visor is responsible for the separation of the normalworld and the se
ure world and to swit
h betweenboth worlds on request. The VMM provides a vir-tual platform for the exe
ution of the normal-worldOS inside the virtual ma
hine. It re
eives requestsfrom the normal-world OS and mediates them to se-
urity servi
es or se
ure drivers.
FIGURE 4: Nizza software ar
hite
ture ap-plied to TrustZoneOur ar
hite
ture requires a
ore with TrustZoneextension and the stati
 or dynami
 partitioning ofmemory into a se
ure and a normal area. We usethe simple interrupt model with one se
ure interrupt

ontroller. All other devi
es are se
ure by default,but the generi
 OS
an get dire
t a

ess to a spe
i�
devi
e if the platform
an be
on�gured that way.We des
ribe the hypervisor and the VMM whi
hdrive the normal-world OS and the interfa
e for thenormal-world OS to a

ess normal-world and se
ure-world resour
es.4.2 Hypervisor ComponentThe hypervisor as the only
omponent of the se
ure-world OS running in privileged mode enfor
es iso-lation and se
urity poli
ies. It is based on a mi-
rokernel design and o�ers abstra
tions and me
ha-nisms to run a multi-server operating system next toa normal-world OS. It provides the following fun
-tionality:
• Tasks and Threads. Tasks are address spa
esproviding spatial isolation for servi
es, se
uredrivers and appli
ations. Threads are enti-ties of exe
ution running inside a task and ares
heduled preemptively.
• Virtual ma
hine (VM). A VM
onsists of a vir-tual pro
essor, a memory partition and a set ofa

essible devi
es. The
reation of a new VMestablishes a shared-memory region,
alled VMstate, that stores the normal-world pro
essorstate and is a

essible by the
reating task.
• Communi
ation
hannels. Threads
an sendmessages to and re
eive messages from otherthreads and the hypervisor.To fa
ilitate the exe
ution of the normal-world OS,the hypervisor
ontains the monitor software thatperforms the swit
h to the normal world,
allednormal-world entry, and the swit
h ba
k to the se-
ure world on events su
h as monitor
alls and inter-rupts,
alled normal-world exit.To trigger a normal-world entry, a thread sends amessage to the VM. The hypervisor loads the
urrentpro
essor state from the VM state, enables the mem-ory partition and swit
hes to normal-world pro
essormode. On normal-world exit the hypervisor savesthe normal-world pro
essor state in the VM state,disables the memory partition, swit
hes to se
ure-world pro
essor mode and passes exe
ution to the
alling thread, whi
h in turn
an examine the newpro
essor state.5

4.3 Unprivileged VMM ComponentA

ording to the ar
hite
ture the VMM is an ap-pli
ation
onsisting of a task with a thread runninginside. The purpose of the VMM is to provide thevirtual platform for the normal-world OS shown inFigure 5. It
onsists of a set of virtual devi
e models.We only summarize the fun
tionality of the virtualdevi
es be
ause a detailed des
ription of every devi
einterfa
e is beyond the s
ope of this work.

FIGURE 5: VMM devi
e ar
hite
ture.The virtual interrupt
ontroller re
eives virtualinterrupt requests triggered by virtual devi
es. Thenormal-world OS
an sele
tively enable or disable in-terrupts. A virtual interrupt that is enabled and as-serted is inje
ted into the normal-world OS as soonas possible. The virtual timer devi
e is able to pe-riodi
ally generate virtual interrupts. Serial devi
es,blo
k devi
es, network devi
es and framebu�er de-vi
es implement hardware-like interfa
es to ex
hangedata between the normal-world OS and the se
ure-world OS. A virtual devi
e
an have a
ommuni
a-tion
hannel to a ba
kend in the servi
e layer, su
has a devi
e driver or a se
ure servi
e.The VMM handles requests from the normal-world OS and events from the ba
kends. Currently,a normal-world OS
an request two servi
es usingmonitor
alls:
• Read or write to a virtual devi
e. The VMMsele
ts the
orresponding virtual devi
e of thevirtual bus using the provided address. Thevirtual devi
e modi�es its state a

ording tothe passed parameters and returns a result.
• Go to idle mode. The VMM suspends the ex-e
ution of the normal-world OS until a virtualinterrupt is inje
ted.If the VMM re
eives an event from a ba
kend
ompo-nent it exe
utes the handler of the
onne
ted virtualdevi
e. Furthermore, the hypervisor passes hardware

interrupts from normal-world devi
es to the virtualinterrupt
ontroller.In both
ases the exe
ution of the normal-worldOS is suspended by the hypervisor and the normal-world pro
essor state is saved into the VM state. TheVMM has a

ess to the VM state and memory par-tition of the normal-world OS. It
an inspe
t andmodify the state to read parameters, to pass returnvalues, and to inje
t interrupts. At the end of therequest handling, the VMM sends a message to thehypervisor to initiate a normal-world entry with thenew normal-world pro
essor state.4.4 Normal-world OSThe normal-world OS,
alled TZ-Linux, runs insidethe normal-world of the TrustZone platform. It hasa

ess to the
on�gured normal-world memory parti-tion and to normal-world devi
es. It
ontains a

essdrivers that send requests to the virtual devi
e mod-els in the VMM. The minimal
on�guration of a

essdrivers for the virtual platform that the VMM pro-vides
onsists of an interrupt driver, a driver for thevirtual timer and a serial driver to enable
onsoleinput and output for normal-world OS.4.4.1 A

ess to Normal-world Devi
esThe normal-world OS
an a

ess a devi
e dire
tlyif the hardware platform or se
ure-world OS
on�g-ure the devi
e as normal-world a

essible. In this
ase, all read and write operations to and from thedevi
e are allowed and require no intervention of these
ure-world OS ex
ept for the interrupt delivery. In-terrupts from the
orresponding devi
e are routedthrough the se
ure-world OS be
ause the normal-world OS
annot a

ess the se
ure interrupt
on-troller. Figure 6 shows the interrupt routing fromthe non-se
ure devi
e to the normal-world OS.

FIGURE 6: A

ess path and interrupt rout-ing for dire
t devi
e a

ess by the normal-world OS.6

The routing of interrupts to the normal-world OSis performed in �ve steps: First, the interrupt fromthe non-se
ure devi
e is signalled to the se
ure in-terrupt
ontroller. Se
ond, the interrupt
ontrollertriggers an interrupt and the pro
essor traps intothe hypervisor. If the normal world is
urrently a
-tive, the monitor
ode in the hypervisor performs anormal-world exit and then delivers the interrupt asa message to the VMM. Third, the VMM inje
ts avirtual interrupt into the virtual interrupt
ontrollerand sets the virtual interrupt-pending signal insidethe VM state if the virtual interrupt is unmasked.Fourth, the VMM sends a message to the hyper-visor. Fifth, the hypervisor restores VM state andperforms the normal-world entry whi
h delivers thevirtual interrupt.After inje
tion of the virtual interrupt thenormal-world OS a

esses the virtual interrupt
on-troller to read the pending interrupt number, to maskand to unmask the interrupt.4.4.2 A

ess to Se
ure-world Devi
esThe normal-world OS
annot a

ess se
ure resour
esdire
tly. Instead, it uses an a

ess driver that sendsrequests to the VMM in the se
ure world. The VMMinterprets the requests and exe
utes the
orrespond-ing a
tions or mediates them to se
ure drivers andse
ure servi
es a

ordingly. The VMM has
ompletea

ess to the state of normal-world OS and
an ver-ify that the request is valid a

ording to a spe
i�edse
urity poli
y. Furthermore the normal-world OS
annot a

ess se
ure resour
es that are not presentin the VMM as virtual devi
es. That means thatthe
on�guration of the virtual devi
e environmentwith the
ommuni
ation
hannels to se
ure servi
esand drivers impli
itly restri
ts the environment forthe normal-world OS.

FIGURE 7: A

ess path for indire
t devi
ea

ess.A

ess to a se
ure devi
e is not as fast as a

ess tonon-se
ure devi
es be
ause it involves
ommun
ation

between the normal-world OS and the se
ure-worldOS. Figure 7 shows the
ontrol �ow from TZ-Linuxto a se
ure devi
e. whi
h generally involves the fol-lowing �ve steps:1. The a

ess driver in the normal-world OS is-sues a request to the VMM in the se
ure-worldOS.2. The hypervisor saves the normal-world pro
es-sor state into the VM state and sends a messageto the VMM.3. The VMM sele
ts the virtual devi
e and han-dles the read or write request. For example, it
an send another message to a se
ure driver inthe servi
e layer or it passes data to an en
ryp-tion servi
e.4. After �nishing the request the VMM sends areply message to the hypervisor.5. The hypervisor restores the normal-world pro-
essor state from the VM state and initiatesthe normal-world entry.Similar to this sequen
e, interrupts are routedthrough the VMM as explained for the normal-worlddevi
e a

ess.As already explained, virtual devi
es have a
om-muni
ation
hannel to the se
ure
omponent thatprovides the servi
e. As an example, we des
ribehow TZ-Linux a

esses a se
ure network devi
e usinga virtual network devi
e inside the VMM. The TZ-Linux kernel
ontains a network a

ess driver that
ommuni
ates with with a virtual network devi
e in-side the VMM to a

ess a se
ure network devi
e. Thevirtual network devi
e is
onne
ted to the se
ure net-work driver. To send a pa
ket the network a

essdriver sends a request to the virtual network devi
e,whi
h in turn passes the pa
ket the se
ure networkdriver. Re
eive operations are e�
iently handled us-ing a ring bu�er, shared between TZ-Linux and theVMM. If the se
ure network driver re
eives a pa
ketit stores it in the next empty slot of the ring bu�er.The network a

ess driver is noti�ed after a su

ess-ful re
eive operation by a virtual interrupt. It re-moves full slots from the ring bu�er and allo
atesnew empty slots. For the performan
e ben
hmarksin this paper we pla
ed the network driver inside theVMM avoiding additional message passing betweenthe VMM and the network driver and redu
ing the
opy overhead for network pa
kets.7

4.5 ImplementationWe built a prototype to verify and evaluate our de-sign. During the implementation we investigated the
apabilities and limitations of TrustZone to
ontrolthe normal-world OS. As remarked earlier, Trust-Zone has features that are
omparable with alreadyexisting virtualization extensions of other hardwarear
hite
tures. The se
ure-world OS is able to
ontrolthe exe
ution of the normal-world OS. The philos-ophy of TrustZone strives to minimize the intera
-tions between normal world and se
ure world. Thisapproa
h has performan
e bene�ts, however it alsolimits the virtualization
apabilities as illustrated bythe following examples.The dete
tion of events o

urring inside thenormal-world OS is limited by the hardware be
ausemost
ontrol registers of the pro
essor are bankedfor both worlds. This restri
ts the ability of these
ure-world OS to virtualize pro
essor features forthe normal-world OS, su
h as the register
ontain-ing the number of physi
al pro
essors or registersof debugging features. As another example, re
entpro
essor versions provide an instru
tion that is exe-
uted in order to wait for an interrupt and indi
atesthat the OS is in an idle state 3. The dete
tion ofthe exe
ution of su
h an instru
tion by the normal-world OS enables the se
ure-world OS to s
heduleother work. However, the ability to trap this in-stru
tion is not supported. In TZ-Linux we repla
edthe
riti
al instru
tion with a spe
ial request to theVMM to solve this problem.The partitioning of physi
al memory as providedby the hardware is su�
ient to en
apsulate the OSinside the normal world, however it is not transpar-ent. The normal-world OS has to know the physi
almemory partition it
an use in the system. Changesin the
on�guration of the memory partitioning re-quire a relo
ation of the normal-world OS. Further-more this partitioning s
heme does not allow �negrained resour
e
ontrol as provided by the MMU be-
ause the a

ess poli
y has to be enfor
ed by externalmemory
ontrollers using
oarse-grained regions.Devi
e virtualization using trap-and-emulate ispossible but is limited to external devi
e memory.The normal-world OS
an trigger external aborts 4by a

essing se
ure or invalid devi
e memory. Su
haborts trap dire
tly in the monitor if the se
ure-worldOS has this feature enabled. This me
hanism
ouldbe used to emulate a

ess to devi
es. However, su
haborts
an be impre
ise with respe
t to the program

�ow 5, whi
h means that the pro
essor does not waitfor the
ompletion of the instru
tion. Therefore, these
ure-world OS has no
han
e to re
onstru
t thewritten value be
ause the normal-world pro
essorstate has
hanged irreversibly sin
e the instru
tionwas exe
uted.Multiplexing two or more OSes inside the normalworld is supported by our design. It requires
arefulhandling of shared hardware resour
es, su
h as pro-
essor registers, memory,
a
hes and TLBs. We en-
ountered the maintenan
e of the TLB as an unsolv-able problem. The TLB distinguishes normal-worldand se
ure-world entries, but
annot separate en-tries from di�erent normal-world OSes. That meansone normal-world OS
an use entries from anothernormal-world OS and break the en
apsulation. Toavoid this
ase a TLB �ush is required before the a
-tivation of another normal-world OS. A

ording tothe TrustZone spe
i�
ation the monitor should beable to perform this task. However during our testswe were not able to a
hieve the desired behaviour,whi
h remains as an open question.Finally, re
ent pro
essor
ores add support forinterrupt virtualization. The pro
essor shadows theinterrupt �ag when it exe
utes in the normal worldand enters the monitor even if the normal world hasinterrupts disabled. Furthermore a virtual interruptregister is available to aid the inje
tion of virtual in-terrupts from the se
ure world.5 EvaluationTo evaluate the TZ-Linux approa
h we
ompare therequired software-engineering e�ort of this work withL4Linux. We measured the performan
e in
ompari-son with L4Linux and a non-virtualized Linux usingmi
ro-ben
hmarks and arti�
ial workloads and ana-lyzed the virtualization overhead for TZ-Linux.Hardware Currently the following ARM
ores in-
lude a TrustZone extension: the ARM1176JZ(F)-S,and all pro
essors from the Cortex-A series, su
h asthe Cortex-A5, Cortex-A8 and Cortex-A9.Looking for a suitable hardware platform for theevaluation was a troubling experien
e. For exam-ple, some platforms do not allow the exe
ution ofown
ode inside the se
ure world. Rather, theseplatforms e�e
tively lo
k the se
ure world after theboot pro
ess, su
h as the OMAP3EVM[5℄ and the3The instru
tion is
alled w�.4An external abort is an ex
eption generated by a

essing external devi
e memory.5Whether an abort is pre
ise or impre
ise is determined by the attributes of the memory mapping of the normal-world OS.8

Beagleboard[2℄. All other platforms with TrustZonesupport known to us la
k the ability to
on�gurememory and devi
es into se
ure-world and normal-world a

essible. Instead all resour
es of the plat-form are normal-world a

essible.Therefore we made the assumption that addi-tional TrustZone-aware
omponents, su
h as a mem-ory prote
tion
ontroller or prote
tion
ontroller forperipherals
an be added to a platform to enfor
e these
urity poli
y. This assumptions does not a�e
t thesoundness of the design and still allows us to evaluatethe prototype implementation.For the following evaluation, we
hose the Re-alView Platform Baseboard with two Cortex-A9CPUs (RealView/PBX) and 100 Mhz
lo
k fre-quen
y. At a later stage we had the possibility touse an NVIDIA Tegra2 evaluation system, equippedwith a dual-
ore Cortex-A9 CPU. The ben
hmarkswere run with enabled
a
hes.Software The TZ-Linux and L4Linux are basedon a Linux kernel of version 2.6.31. For the ben
h-marks Linux was
on�gured with a 128MB memorypartition and a periodi
 timer interrupt of 10 mil-lise
onds. The performan
e measurements were
on-du
ted with the
y
le-a

urate performan
e
ounterof the pro
essor. As a base line we used an unmod-i�ed Linux,
alled non-virtualized Linux, that runswith the same
on�guration but has dire
t a

ess toall hardware resour
es.5.1 Software-Engineering E�ortWe
ount the number of
hanges that are required torun TZ-Linux on a virtual platform
ompared to thenumber of
hanges for a
ompletely paravirtualizedL4Linux kernel. We use sour
e lines of
ode (SLOC)as a metri
 be
ause it
an be easily
al
ulated andis used in the software development
ommunity toquantify the amount of development.TZ-Linux L4LinuxInterrupt
ontroller 67 250Timer devi
e 84 70Memory Management 0 1100Pro
essor Management 0 200System
alls 0 100Total 151 1720TABLE 1: Comparison of modi�
ations inSLOC required in TZ-Linux and in L4Linux tovirtualize the platform.

First, we examine the required
hanges to modifythe Linux kernel in order to run as a normal-worldOS and a paravirtualized OS. Table 1 shows the re-sults for TZ-Linux and L4Linux in terms of SLOC. In
omparison to L4Linux, TZ-Linux requires approxi-mately one tenth of modi�
ations be
ause the mem-ory management and pro
essor management need noadaption.Se
ond, we
ompare the size of the devi
e modelsof the TZ-Linux VMM with the size of similar de-vi
e models of the Qemu emulator [17℄ for the ARMRealview platform. Table 2 shows that the size ofthe devi
e models to support TZ-Linux is about onetenth the size
ompared to the Qemu devi
e models.For referen
e the �gure shows also the size of thea

ess drivers in TZ-Linux that are
o-developed forthe virtual devi
es in the VMM.Qemu devi
e TZ-Linux devi
e TZ-Linux driverInterrupt
ontroller 584 103 67Timer devi
e 228 72 84Serial devi
e 214 130 180Blo
k devi
e 3500 67 210Network devi
e 500 210 320Total 5026 582 861TABLE 2: Comparison of similar devi
emodels in SLOC in the TZ-Linux VMM andthe Qemu VMM.A

ording to our metri
, the software-development e�ort to implement a virtual platformis
onsiderably smaller than paravirtualizing the OSor providing support for a real hardware platform.There are mainly two reasons for the small
odesize of virtual drivers and devi
es. First, the inter-fa
e between both is optimized for e�
ient parame-ter passing and simpli�ed state transition. Se
ond,the fun
tionality is tailored without
onsidering anylega
y support.The hypervisor
ontains the monitor softwareand the fun
tion to send a message to the VMMwhi
h
ontribute to the TCB of se
urity-sensitiveappli
ations. The amount of this
ode is approxi-mately 200 SLOC and mu
h smaller than the size ofthe VMM.5.2 Performan
eIn this se
tion, we
ompare the performan
e of TZ-Linux with a non-virtualized Linux and L4Linux us-ing the LMben
h [23℄ mi
ro-ben
hmark tool and arti-�
ial workloads. Furthermore, we analyze the virtu-9

alization overhead for our ar
hite
ture. The ben
h-marks are
ondu
ted using the RealView PBX board.5.2.1 Ben
hmarksFigure 8 shows the performan
e of arithmeti
 oper-ations normalized to the exe
ution time of a non-virtualized Linux. As expe
ted, there is only in-signi�
ant overhead visible in TZ-Linux as well asL4Linux.
TZ−Linux,
L4Linux,
Linux

 0%

 20%

 40%

 60%

 80%

 100%

 120%

bit add mul div mod

P
er

ce
nt

ag
e

no
rm

al
iz

ed
 to

 L
in

ux

FIGURE 8: LMben
h3: Comparison ofarithmeti
 operations with the exe
ution timenormalized to Linux.Figure 9 shows the performan
e of sele
ted sys-tem
alls normalized to the non-virtualized Linux.As expe
ted, TZ-Linux has a insigni�
ant overheadaround 2 per
ent. L4Linux has large overheads (from200 to 1750 %) be
ause system
alls are interposedby the virtualizing OS.

FIGURE 9: LMben
h3: Comparison ofsystem
all performan
e with the exe
utiontime normalized to Linux.To measure the behaviour of TZ-Linux underhigh pressure we use three workloads with di�erent
hara
teristi
s: a
ompute intensive workload thatde
odes an audio �le, an IO-intensive workload thatdownloads a �le from the lo
al network using thewget
ommand, and a mixed workload that
ompiles

the jpeg library. In all s
enarios the Linux has dire
ta

ess to a network devi
e and uses a network-based�lesystem to laun
h the appli
ations and a

ess thedata. Furthermore, we measure the
on�guration asdes
ribed in Se
tion 4.4.2,
alled TZ-Linux/se
ure.The network driver inside the VMM a

esses the net-work devi
e and TZ-Linux uses an a

ess driver tosend and re
eive network pa
kets. Figure 10 showsall ben
hmarks with the performan
e normalized tothe non-virtualized Linux. We measured the timespent in kernel mode and in user mode to pointout their di�erent
hara
teristi
s. A high kernel-mode ratio indi
ates a high number of user-kernelintera
tions. While user-mode a
tivity dominatesthe audio-de
oding ben
hmark, kernel-mode a
tivitydominates the �le-download ben
hmark.
kernel−mode
user−mode,

 0%

 20%

 40%

 60%

 80%

 100%

 120%

 140%

 160%

T
Z

−
Li

nu
x

L4
Li

nu
x

Li
nu

x

T
Z

−
Li

nu
x/

se
cu

re

T
Z

−
Li

nu
x

L4
Li

nu
x

Li
nu

x

T
Z

−
Li

nu
x/

se
cu

re

T
Z

−
Li

nu
x

L4
Li

nu
x

Li
nu

x

T
Z

−
Li

nu
x/

se
cu

reP
er

ce
nt

ag
e

no
rm

al
iz

ed
 to

 L
in

ux

audio decoding compile file downloadFIGURE 10: Comparison of workloadswith the exe
ution time normalized to Linux.The performan
e of the audio-de
oding ben
h-mark is nearly the same for all versions of Linux be-
ause few user-kernel intera
tions are required. Inthe
ompile ben
hmark, L4Linux has 30% more over-head than TZ-Linux be
ause it involves a high num-ber of system
alls. In the third ben
hmark TZ-Linux has an overhead about 23% and L4Linux hasan overhead of roughly 40%
ompared to the non-virtualized Linux. This indi
ates that the routing ofnetwork interrupts through as se
ure-world OS dom-inates the observed performan
e degradation.For TZ-Linux/se
ure the performan
e degrades
ompared to TZ-Linux with dire
t network a

essdepending on the generated network tra�
 by theben
hmark. There are two reasons for this perfor-man
e degradation. First, TZ-Linux/se
ure has tomake a request to the VMM for every send and re-
eive operation. Se
ond, the se
ure network driverinside the VMM requires additional
ontext swit
hesfrom the hypervisor to the VMM.10

5.2.2 Virtualization OverheadWe examine the measured overhead for TZ-Linux inmore detail. The total overhead depends on the vir-tualization overhead and
on
urrent a

ess to sharedresour
es, su
h as
a
hes and TLB, by the normalworld and the se
ure world. The virtualization over-head is determined by the time to handle one normal-world exit and the number of normal-world exits forthe spe
i�
 workload during the measurement pe-riod.Phase Des
ription RealView Tegra21 Normal-world exit 8 0.92 Msg from HV to VMM 4.25 1.23 Request handling 14 - 26 4 - 84 Msg from VMM to HV 4.25 1.25 Normal-world entry 8 0.9Total 38.5 - 50.5 8.2 - 12.2TABLE 3: Exe
ution time in mi
rose
ondsfor the phases of a request from the normal-world OS (Msg: Message, HV: Hypervisor)As dis
ussed in Se
tion 4.4.2 the handling of arequest from the normal-world OS
an be separatedinto �ve phases. Table 3
ontains the average exe
u-tion time of every phase measured with mi
ro ben
h-marks. The time spent in the VMM to handle therequest varies depending on the sele
ted virtual de-vi
e.
 interrupts
 monitor call

 0

 500

 1,000

 1,500

 2,000

au
di

o−
de

co
di

ng

co
m

pi
le

fil
e−

do
w

nl
oa

d

au
di

o−
de

co
di

ng

co
m

pi
le

fil
e−

do
w

nl
oa

d

N
um

be
r

of
 e

xi
ts

TZ−Linux TZ−Linux with secure networkFIGURE 11: Average number of normal-world exits during a period of 1 se
ondFigure 11 shows the average number of normal-world exits for period of 1 se
ond. There are two dif-ferent types of normal-world exits that
an o

ur inour ar
hite
ture: interrupts and monitor
alls fromthe normal-world OS.The audio-de
oding ben
hmark, whi
h is
om-pute intensive has the fewest number of normal-worldexits. The periodi
 inje
tion of timer interrupts isthe only required intera
tion between normal-world

OS and se
ure-world OS. The number of exits in-
reases for the other two workloads be
ause addi-tionally network interrupts need to be handled morefrequently.The number of normal-world exits due to inter-rupts is higher for TZ-Linux with dire
t a

ess to thenon-se
ure network devi
e
ompared to TZ-Linuxwith se
ure network devi
e espe
ially for the �le-download ben
hmark. This fa
t indi
ates a higherservi
e rate for network interrupts for the �rst
on-�guration.
 network
 timer

 0

 50

 100

 150

 200

 250

 300

 350

 400

au
di

o−
de

co
di

ng

co
m

pi
le

fil
e−

do
w

nl
oa

d

au
di

o−
de

co
di

ng

co
m

pi
le

fil
e−

do
w

nl
oa

dN
um

be
r

of
 in

je
ct

ed
 v

irt
ua

l i
nt

er
ru

pt
s

TZ−Linux TZ−Linux with secure networkFIGURE 12: Average number of inje
tedinterrupts during a period of 1 se
ondFigure 12 shows the average number of inje
tedvirtual interrupts during a period of one se
ond. Twotypes of interrupts
an be inje
ted in this setup: in-terrupts for the virtual timer devi
e and interruptsrouted for the network devi
e. Network interrupts inTZ-Linux with indire
t a

ess to the se
ure networkdevi
e are generated by a su

essful re
eive opera-tion by the virtual network devi
e inside the VMM.The number of timer interrupts is �xed in all threeworkloads be
ause they are generated with a
on-stant period of 10 millise
onds. However, the num-ber of network interrupts depends on the workload ofthe ben
hmark. The audio-de
oding ben
hmark re-quires no network a

ess, while in the �le-downloadben
hmark network interrupts dominate.TZ-Linux with a se
ure network devi
e hasfewer virtual network interrupts inje
ted
omparedto the �rst
on�guration indi
ating a lower networkthroughput. For a detailed des
ription of the reasonsthat
ause the observed performan
e degradation ad-ditional examinations are required.5.3 Laten
yIn order to study the laten
y of an appli
ation thathas timely requirements we measured the time thatpasses in order to deliver an external event su
h asan interrupt.11

The laten
y depends mainly on two fa
tors: thelength of the
riti
al path to deliver the interrupt andthe availability of
riti
al resour
es that are sharedwith other
omponents in the system. The �rst fa
-tor heavily depends in whi
h world the
omponent isrunning be
ause it determines the length of the
rit-i
al path. The se
ond fa
tor determines the numberof
a
hes and TLB misses that o

ur in the pathof the interrupt delivery of the realtime appli
ation.(We do not
onsider memory as a s
ar
e resour
e inour s
enarios.)First we examine the laten
y of realtime appli
a-tions running the se
ure world and then look at thelaten
y for normal-world realtime appli
ations. Allmeasurements are
ondu
ted with a Tegra2 board.5.3.1 Se
ure-World Realtime Appli
ationsFor a se
ure-world realtime appli
ation only the hy-pervisor is involved in order to deliver the interruptusing a message. Furthermore, if the system is run-ning in the normal world an additional world swit
his required.
50 150 250 350 450 550 650 750 850 950

0

30

60

50 150 250 350 450 550 650 750 850 950
0

6

12

50 150 250 350 450 550 650 750 850 950
0

6

12

(c) Secure-world realtime application with concurrent normal-world application

(b) Secure-world realtime application with concurrent secure-world application

[10 ns]

[10 ns]

[10 ns]

(a) Secure-world realtime application without concurrent applications

wcet

wcet

wcet

acet

acet

acet

50 150 250 350 450 550 650 750 850 950

(b) Secure-world realtime application with world switch

[10 ns]

wcetacet

FIGURE 13: Laten
y to deliver an inter-rupt event to a se
ure-world realtime appli
a-tion.Figure 13 shows the distribution of the laten
yin four di�erent s
enarios. S
enario (a) measures thelaten
y without any resour
e pressure nor normal-world appli
ation. It servs as a baseline for the others
enarios. S
enario (b) in
reases the length of theinterrupt path by adding a small normal-world ap-pli
ation beside the realtime appli
ation. S
enario(
) runs a
on
urrent se
ure-world appli
ation that
onsumes as mu
h
a
he and TLB resour
es as pos-sible. S
enario (d) runs a
on
urrent normal-worldappli
ation that is
onsuming resour
es.The �rst s
enario measures the laten
y of the in-terrupt path without pressure on TLB and
a
hes.The interrupt is delivered from the hypervisor to the

realtime appli
ation with a message resulting in la-ten
ies of 1.5 mi
rose
onds for the average
ase and3.4 mi
rose
onds for the worst
ase. The se
ond s
e-nario enfor
es a world swit
h in order to deliver theinterrupt. The laten
y in
reases by 2 mi
rose
onds,both, for the average and the worst
ase. In thethird s
enario another se
ure-world appli
ation
on-tents on TLB and
a
he resour
es. In
onsequen
ethe average and worst-
ase time in
rease to 3.7 mi-
rose
onds and 7.2 mi
rose
onds respe
tively when
ompared to the �rst s
enario. In the last s
enarioa normal-world appli
ation
ontents on the sharedresour
es. This further in
reases the laten
y as anadditional world swit
h is required in order to de-liver the interrupt. The added laten
y is roughly theexe
ution time of a world swit
h in
omparison withthe third s
enario.5.3.2 Normal-World Realtime Appli
ationsIf the realtime appli
ation is running in the TZ-Linuxthe laten
y to deliver an event in
reases
omparedto a se
ure-world appli
ation be
ause the VMM ispart of the interrupt path as shown in Figure 6. Forthe following dis
ussion we assume that the priori-ties of all software
omponents are
on�gured withthe highest priority. For example, that means theVMM
annot be preempted by another appli
ationwith a higher priority in the system.
1200 1600 2000 2400 2800 3200 3600 4000

0

2

4

6

8

10

1200 1600 2000 2400 2800 3200 3600 4000
0

2

4

6

8

10

12

14

(a) Normal-world realtime application

[10 ns]

[10 ns]

(b) Normal-world realtime application with concurrent secure world application

wcet

wcetacet

acet

FIGURE 14: Laten
y to deliver an inter-rupt event to a normal-world realtime appli
a-tion under two di�erent load s
enarios.Figure 14 shows the distribution of the laten
y intwo di�erent s
enarios. S
enario (a) measures the la-ten
y of the interrupt path without resour
e pressurefor the normal-world realtime appli
ation. S
enario(b) runs a
a
he and TLB �ooder workload in these
ure world to
onsume as mu
h resour
es as possi-ble.The intention of the �rst s
enario is to measurethe 'pure' laten
y of the interrupt for the normal-world appli
ation without
ontention on resour
es.12

The diagram shows the distribution of the exe
utiontime to deliver a timer interrupt to the TZ-Linuxkernel. The average exe
ution time is around 20 mi-
rose
onds while the measured worst-
ase exe
utiontime is 2750 mi
ose
onds. The high laten
y is
ausedby the interrupt routing for normal-world interrupts.Two se
ure-world
omponents are involved during in-terrupt delivery, the hypervisor and the VMM. In-terrupt inje
tion takes pla
e in several phases as de-s
ribed in Se
tion 4.4.1 with a worst
ase exe
utiontime of ea
h phase shown in Table 3. Due to the im-plementation of the interrupt
ontroller model in theVMM there is an additional exit beside the exit forthe host interrupt, whi
h a
knowledges the interrupt.So there are two exits required for one interrupt de-livery.In the se
ond s
enario another se
ure-world ap-pli
ation
onsumes a mu
h as
a
he and TLB as pos-sible. The VMM (and therefore the normal-worldOS) have a higher priority than the se
ure-world ap-pli
ation avoiding starvation. The measured aver-age
ase and worst
ase time are
onsiderable longerthan in the �rst s
enario. Even we have no detailedknowledge of the exe
ution time of ea
h phase thereasonable assumption is that
a
he and TLB set anorder of magnitude large than in the se
ure-worldrealtime appli
ation s
enario.In
on
lusion, the virtualization overhead as wellas shared resour
e
ontention in
rease the measuredlaten
y and worst
ase time in reasonable ways forrealtime workload running in the normal world.6 Related WorkTo the best of our knowledge this work is the �rstpubli
ation that examines and evaluates the
apa-bilities and limitations of virtualization support ofthe TrustZone ar
hite
ture in the embedded systemsresear
h
ommunity.Trusted Logi
 [7℄ develops the Trusted Foun-dations Software that is deployed as referen
eimplementation for se
ure world
omponents inTrustZone-enabled systems. The goal is to o�er a se-
ure environment and a
ommon framework for theintegration se
ure software development. Operatingsystems running in the normal world
an
all se
ureservi
es using the Trusted Foundations API.Winter [26℄ instantiated a Linux systems in thenormal world and an SE-Linux system in the se
ureworld. Both Linux instan
es
ommuni
ate using de-vi
e model similar to the one presented here. How-ever there is no performan
e evaluation available.

Yan-ling [27℄ des
ribes a system with an SE-Linux system in the normal world providing isola-tion for se
ure
omponents on top and a

essing these
ure-world OS using the provided TrustZone API.As the system is not implemented an evaluation ismissing.The work of Sangorrin et. al. [24℄ des
ribes asimilar ar
hite
ture as presented in this paper run-ning a small realtime OS in the se
ure world and aLinux-based OS in the non-se
ure world. However,realtime appli
ations in the se
ure OS are not iso-lated and
an
ompromise the
omplete system.There is a large number of
losed-sour
e produ
tsavailable that support isolation of system-level
om-ponents in
luding operating systems. Green Hills[3℄ uses a se
urity ar
hite
ture that employs Trust-Zone te
hnology to assist virtualization. Paravirtu-alization te
hniques are applied by solutions su
h asPikeOS [6℄, OKL4 [4℄, Trango [9℄ and VirtualLogix[8℄. Until today all requests regarding informationabout the design or the performan
e or requests toevaluate the software were not su

essful, so that a
omparison is not possible.Xen[16℄ is popular virtualization solutions fordesktop and server systems. The Xen hypervisor hasbeen ported to ARMv5 ar
hite
ture and uses par-avirtualization to virtualize a normal-world OS [21℄.The numbers for the LMben
h ben
hmark presentedindi
ate lower overhead than L4Linux shows but arestill an order of magnitude higher than measured forTZ-Linux.7 Con
lusionsThis paper presented an approa
h based on full vir-tualization using TrustZone to isolate an operatingsystem as needed in state-of-the-art se
urity ar
hi-te
tures. The use of TrustZone's virtualization
apa-bilities resulted in a mu
h lower number of required
hanges to the Linux as a normal-world OS (about153 lines of
ode) as
ompared to a paravirtualizationapproa
h. The devi
e drivers and models needed forthe implementation of the platform are in the orderof 900 sour
e lines of
ode. The resulting perfor-man
e overhead ranges from barely measurable toup to 20% depending on the
hara
teristi
s of theworkloads. The realtime
apabilities of the systemstrongly favor se
ure realtime appli
ations while notex
lude the exe
ution non-se
ure realtime appli
a-tions. We think that this work provides a baseline forup
oming virtualization
apabilities of future ARM
ores.13

8 A
knowledgementsWe would like to thank the European Commision forsupporting us through the 7th Framework Programwith the proje
ts TECOM 6 and eMuCo 7.Referen
es[1℄ AMD Virtualization (AMD-V) Te
hnology. Lo-
ated at: http://www.amd.
om.[2℄ BeagleBoard. Lo
ated at: http://beagleboard.org/.[3℄ INTEGRITY Se
ure Virtualization.http://www.greenhillssoftware.
om/news/20091021_ARM_TrustZone_Solution.html.[4℄ OKL4 Homepage. Lo
ated at: http://www.ok-labs.
om.[5℄ OMAP3EVM Evaluation Platform . Lo
atedat: http://fo
us.ti.
om/do
s/toolsw/folders/print/tmdsevm3530.html.[6℄ Pikeos homepage. Lo
ated at: http://www.sysgo.
om/.[7℄ Trusted Logi
 Homepage. Lo
ated at: http://www.trusted-logi
.
om/.[8℄ Virtual Logix Homepage. Lo
ated at: http://www.virtuallogix.
om.[9℄ VMWare Homepage. Lo
ated at: http://www.VMWare.
om.[10℄ Prime
ell infrastru
ture ambaTM 3 trustzoneTMprote
tion
ontroller, November 2004.[11℄ Trusted mobile platform software ar
hite
turedes
ription, O
tober 2004.[12℄ AmbaTM 3 trustzoneTM interrupt
ontroller,September 2008.[13℄ ARM Se
urity Te
hnology Building a Se
ureSystem using TrustZone Te
hnology, 2009.[14℄ Trustzone address spa
e
ontroller (tz
-380)te
hni
al referen
e manual, Mar
h 2010.[15℄ Tiago Alves and Don Felton. Trustzone: Inte-grated hardware and software se
urity, 2004.[16℄ Paul Barham, Boris Dragovi
, Keir Fraser,Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-bauer, Ian Pratt, and Andrew War�eld. Xenand the Art of Virtualization. In Pro
eedings

of the 19th ACM Symposium on Operating Sys-tem Prin
iples (SOSP), pages 164�177, BoltonLanding, NY, O
tober 2003.[17℄ Fabri
e Bellard. QEMU, a Fast and PortableDynami
 Translator. USENIX, 2005.[18℄ Hermann Härtig, Mi
hael Hohmuth, NormanFeske, Christian Helmuth, Adam La
korzynski,Frank Mehnert, and Mi
hael Peter. The nizzase
ure-system ar
hite
ture. In In IEEE Collab-orateCom 2005. IEEE Press, 2005.[19℄ E. C. Hendri
ks and T. C. Hartmann. Evolutionof a virtual ma
hine subsystem. IBM Syst. J.,18(1):111�142, 1979.[20℄ M. Hohmuth. Linux-Emulation auf einemMikrokern. Master's thesis, TU Dresden, Au-gust 1996. In German; with English slides.Available from URL: http://os.inf.tu-dres-den.de/�hohmuth/prj/linux-on-l4/.[21℄ Joo-Young Hwang, Sang-Bum Suh, Sung-KwanHeo, Chan-Ju Park, Jae-Min Ryu, Seong-YeolPark, and Chul-Ryun Kim. Xen on arm: Sys-tem virtualization using xen hypervisor for arm-based se
ure mobile phones. pages 257 �261,jan. 2008.[22℄ Intel Corporation. Intel Virtualization Te
hnol-ogy Spe
i�
ation for the IA-32 Intel Ar
hite
-ture, April 2005.[23℄ L. M
Voy and C. Staelin. lmben
h: Portabletools for performan
e analysis. In USENIX An-nual Te
hni
al Conferen
e, pages 279�294, 1996.[24℄ Daniel Sangorrin, Shinya Honda, and HiroakiTakada. Dual operating system ar
hite
ture forreal-time embedded systems. July 2010.[25℄ P. Wilson, A. Frey, T. Mihm, D. Kershaw, andT. Alves. Implementing embedded se
urity ondual-virtual-
pu systems. Design Test of Com-puters, IEEE, 24(6):582 �591, nov.-de
. 2007.[26℄ Johannes Winter. Trusted
omputing buildingblo
ks for embedded linux-based arm trustzoneplatforms. In STC '08: Pro
eedings of the 3rdACM workshop on S
alable trusted
omputing,pages 21�30, New York, NY, USA, 2008. ACM.[27℄ Xu Yan-ling, Pan Wei, and Zhang Xin-guo. De-sign and implementation of se
ure embeddedsystems based on trustzone. Embedded Softwareand Systems, Se
ond International Conferen
eon, 0:136�141, 2008.6http://te
om-proje
t.eu/7http://emu
o.eu/ 14

15

