
ARM TrustZone as a Virtualization Tehniquein Embedded SystemsTorsten Frenzel, Adam Lakorzynski, Alexander Warg and Hermann HärtigTehnishe Universität DresdenDepartment of Computer Siene01062 Dresden, Germany{frenzel, adam, warg, haertig}�os.inf.tu-dresden.deAbstratVirtualization starts to gain tration in the embedded world as methods to enfore isolation areneeded to ope with the ever-growing omplexity of modern systems. Originating from desktop andserver systems, existing virtualization solutions have their fous on rih funtionality suh as migrationand hek-pointing while real-time funtionality is of little interest. In ontrast, in embedded systems thisfuntionality is dispensable while the ability to support real-time workloads has to be retained. So far,virtualization on ARM - the arguably predominant arhiteture for embedded systems - was impeded bythe lak of proper arhitetural support. In this paper, we show how TrustZone, an extension originallymeant to boost seurity, an also be used to �ll that gap and provide enapsulation in real-time onsioussystems. We evaluate a minimally modi�ed Linux on top of a real-time apable mirokernel in terms ofengineering and runtime osts. The results show that it is possible to improve the performane omparedto existing solutions and preserve realtime properties for appliations.1 IntrodutionToday, embedded systems suh as smartphones han-dle valuable ontent, like sensitive data from a bankaount and other personal information as timingritial resoure suh as network onnetions. Theyalso run a growing number of appliations and areable to dynamially download new software. Conse-quently, seurity-sensitive and realtime-sensitive ap-pliations and potentially maliious appliations oflow trustworthiness share the same platform.An important riterion for the vulnerability ofseurity-sensitve appliations is the size of theirTrusted Computing Base (TCB). It onsists of allhardware and software omponents they have totrust for their funtionality. A small TCB for suhappliations and servies is favourable beause ithelps to redue the number of vulnerabilities thatan be attaked. Reduing the size of the TCB isahieved by isolating omponents at software level,hardware level and a ombination of both.The spei�ation of the Trusted Mobile Plat-form [11℄ is an attempt to address the seurity re-

quirements for mobile and embedded platforms. Itdesribes a generi hardware and software arhite-ture enrihed with protools to aess seure ser-vies. The spei�ation de�nes di�erent seuritylasses with spei� isolation properties and require-ments for their TCBs. For example, a highest seu-rity lass devie requires hardware-enfored isolationand a TCB onsisting of a veri�ed and trusted mi-rokernel for seurity-sensitive appliations.ARM TrustZone [13℄ has been designed to enabletrusted mobile platforms by providing two hardware-isolated exeution domains. The seure-world do-main supports the proteted exeution of seurity-sensitive software, while the normal-world domainenables the enapsulated exeution of less ritialsoftware. The hardware arhiteture protets theseurity-sensitve software not only against attaksfrom normal-world software but also from physialattaks, suh as the sni�ng of bus transations. Fur-thermore, TrustZone aims to provide high perfor-mane for aess to physial resoures for normal-world omponents as well as seure-world ompo-nents, while reduing the osts for dupliated hard-1



ware.TrustZone imposes few restritions on the soft-ware stak of either world. This enables third-partydevelopers to integrate their own seurity solution.While there exists a referene implementation for aTrustZone software arhiteture [7℄, no results arepublily available that evaluate the TrustZone arhi-teture with regards to the performane overhead.This paper intends to lose this gap as it reports re-sults of implementing an open seurity arhiteture,alled Nizza [18℄, on the TrustZone platform.As with TrustZone, Nizza is designed to sup-port minimized TCBs for seurity-sensitive applia-tions. The software arhiteture isolates generi op-erating systems and their appliations from seurity-sensitive appliations using system virtualization. Asmall realtime kernel or hypervisor implements thevirtualization layer and a multi-server OS providesaess to hardware and software resoures. The ker-nel an host isolated, budgeted realtime appliationsand virtual mahines with �xed priorities.This work makes the following ontributions: (1)We show how TrustZone an be used to implementa omplex seurity arhiteture that failitates theexeution of isolated realtime appliations in embed-ded systems using an approah that is similar to fullvirtualization. (2) We ompare this approah withregards to the software-development e�ort to imple-ment this solution and the performane and latenywith pure paravirtualization and native exeution.To this end, we provide in Setion 2 a bird's eyeview on the hardware and software omponents ofthe TrustZone arhiteture. In Setion 3 we outlinethe Nizza seurity arhiteture applied as a Trust-Zone software stak and introdue two importantvirtualization tehniques for seurity arhitetures.In Setion 4, we desribe in detail our design andimplementation of using the TrustZone hardware ar-hiteture as a basis for the Nizza software arhi-teture. Setion 5 provides an evaluation regardingthe hanges to the enapsulated operating systemand the performane overhead and of our TrustZone-based virtualization solution. Setion 6 disusses re-lated work and Setion 7 onludes.2 ARMTrustZone ArhitetureTrustZone restrits the aess to seurity-sensitiveomponents by introuding a virtual split throughthe hardware in the system. The approah requiresmodi�ations in the proessor ore as well as the

platform. The arhiteture is aompanied by a pro-posed software arhiteture that re�ets the split ap-proah.2.1 HardwareA proessor with TrustZone extension provides twovirtual proessors establishing two seurity domains:the seure world and normal world. The proes-sor an swith from one world to the other usinga dediated and ontrolled mehanism, that requiresa seure-world software omponent, alled the mon-itor. Furthermore, all hardware omponents in thesystem, suh as memory and devies, are on�guredas normal-world or seure-world aessible. Thisan be ahieved by adding TrustZone-aware ompo-nents that enfore the seurity poliies in the system,suh as memory ontrollers [14℄ and speial prote-tion ontrollers [10℄. The hardware split restrits theaess rights of the normal world to normal-worldresoures, while the seure world an aess all re-soures.The world in whih the proessor is urrentlyrunning determines its seurity state 1. Wheneverthe proessor exeutes a read or write instrutionto aess a resoure, the orresponding bus transa-tion is tagged with the seurity state of the proes-sor. This way it is propagated through the systemand enables peripheral omponents of the platformto hek whether or not an aess to a resoure isvalid. All omponents that are involved in satisfyingthis request an verify the seurity state. Whenevera peripheral omponent itself issues a bus transa-tion, this operation is tagged with the seurity stateof the omponent whih also prevents DMA attaks.The delivery of interrupts is also ontrolled bythe seure world, whih on�gures if a spei� inter-rupt is delivered to the urrent world or to the moni-tor software. TrustZone de�nes two models for inter-rupt delivery. The �rst model uses one interrupt on-troller that is programmed by the seure world onlyand requires the monitor to deide to whih worldan interrupt is routed. The seond model uses aTrustZone-aware interrupt ontroller [12℄ whih pro-vides two virtual interrupt ontrollers similar to thetwo virtual proessors. This enables the platformto route interrupts to the on�gured world withoutintervention of the monitor software.A TrustZone-enabled platform onsists of theTrustZone-enabled proessor ore with additionalon-hip seure omponents, suh as tightly oupledmemory, rypto modules, RAM and boot ROMs. If1The arhiteture refers to this as the NS-bit. 2



the system bus is seurity-aware further seure pe-ripheral omponents an be added, suh as SDRAM,�ash and ROM. The partitioning of the platforman be hard-wired or reon�gurable using speialplatform-dependent mehanisms.2.2 SoftwareThe designers of TrustZone had a lear perspetive ofthe software arhiteture in mind, whih extends thehardware arhiteture's philosophy into the softwarelayers on top. This software arhiteture onsistsof normal-world omponents, inluding a generi op-erating system and its appliations aessing onlynormal-world hardware, and seure-world ompo-nents. The seure-world software an range from asmall servie or enryption layer �tting into on-hipmemory to a omplex operating system with its ap-pliations.
FIGURE 1: TrustZone omplex softwarearhitetureFigure 1 shows a omplex software arhitetureas outlined by the ARM engineers [15, 25℄. It has ageneri OS and appliations running in the normalworld. The generi OS an aess the seure-worldservies using TrustZone aess drivers whih in turnall the TrustZone monitor software to swith to theseure world. The seure software stak onsists ofa seure kernel, seure drivers, trusted appliationsand the monitor. The seure kernel ontains driversfor seure devies and hosts seure servies togetherwith further devie spei� tasks. Trusted applia-tions an run either diret on top of the seure servielayer or are isolated by a trusted interpreter, suh asa Java virtual mahine. In addition to these ompo-nents a seure boot loader is required to bootstrapand measure the software stak.The monitor performs the swithes between theseure world and normal world. Its provides fun-tionality that is similar to a ontext swith in oper-ating systems, ensuring that the state of the worldthat the proessor is leaving is saved, and the state

of the world the proessor is swithing to is restored.Normal-world entry to the monitor is only possiblevia interrupts, external aborts or an expligit all,referred to as monitor all 2. The seure world anenter the monitor without restritions when runningin privileged mode, in addition to the available ex-eption mehanisms.As TrustZone is a pure seurity arhiteture itmakes no statement and poses no restritions on wihside realtime omponents should run.For the ommuniation between both worldsTrustZone de�nes several APIs: a Generi API witha simple message-passing interfae, an extensible Se-urity Channel API for well-known servies and APIsfor spei� seurity modules. The APIs de�ne aremote-proedure-all standard to open onnetionsfrom the normal world to the seure world.3 Nizza ArhitetureThe Nizza seurity arhiteture shown in Figure 2minimizes the TCB for seurity-sensitive applia-tions using a small multi-server operating systemwith unprivileged omponents and the isolation ofnon-seure omponents from seurity-sensitive om-ponents. A mirokernel enfores isolation betweenomponents in the system and provides fast and on-trolled ommuniation between them. On top, de-privileged servers, suh as a �le system, a seure GUIand resoure managers, as well as drivers provide asmall servie layer. Non-seure and seurity-sensitiveappliations an aess these servies, whih mediateand ontrol the aess to physial resoures.
FIGURE 2: Nizza seurity and realtime ar-hittureThe Nizza arhiteture losely resembles theomplex software arhiteture as desribed in theprevious setion with a split in two worlds sepa-rated by the mirokernel. In the seure world theservie layer manages the platform and multiplexesresoures among both worlds. The normal world on-sists of the generi OS and its appliations.2The privileged instrution is alled SMC. 3



Although the Nizza arhiteture is very similar tothe TrustZone's omplex software arhiteture thereare di�erenes. The trusted interpreter as shown inFigure 1 is not required beause isolation betweenappliation is provided by separate address spaes.Furthermore the Nizza arhiteture does allow to en-apsulate many generi OSes on the same platform,whih is not intended by the TrustZone arhiteture.Nizza has built-in support for realtime appliations,whih inludes the low-lateny preemptible kernelwith a stati priority sheduling sheme and periodiexeution and budgeting of realtime appliations.Seurity arhitetures suh as Nizza use virtual-ization to enapsulate and isolate OSes and their ap-pliations, exluding them from the TCB of seurity-sensitive and realtime appliations. We �rst de-sribe a paravirtualization arhiteture, an approahthat is ommonly used in embedded system, and af-terwards we desribe full virtualization arhiteturewith hardware assistane.Paravirtualization Paravirtualization modi�esritial parts of the deprivileged kernel of the virtu-alized OS. Platform-spei� omponents are adaptedto the interfae of the virtualizing kernel usingsoure-ode modi�ations.A paravirtualized kernel needs modi�ations inthe system-all interfae and all platform-spei�parts that interat with the hardware, like memorymanagement, and interrupt handling. For example,page-table modi�ations are translated into resoure-delegation requests and interrupts are signalled tothe paravirtualized kernel as messages. All systemalls from the appliation to the paravirtualized ker-nel need to be mediated by the hypervisor, whih anause serious performane degradation.Paravirtualization has low hardware require-ments; any proessor that supports isolation by ad-dress spaes an be used to implement this virtu-alization solution. However, the e�ort required toadapt a kernel an be high.XenLinux[16℄ and L4Linux [20℄ are examples ofparavirtualized kernels. In this work L4Linux servesas a referene to ompare our new approah with re-garding the performane and software-developmente�ort.Full Virtualization Full virtualization runs thedeprivileged kernel of the virtualized OS withoutany modi�ations. The hardware traps sensitive andprivileged instrutions to the virtualizing OS. Thisenables the virtualizing OS to emulate these instru-

tions and virtualize the hardware resoures. Fullvirtualization arhitetures require a virtual mahinemonitor (VMM) that ontrols the virtualized OS andprovides the virtual hardware environment.This approah relies on hardware assistane toredue the number of traps and avoid serious perfor-mane degradation. Sine the early seventies main-frame vendors [19℄ and in reent years, server anddesktop proessor vendors [22, 1℄ have implementedvirtualization extensions. Suh extensions split thephysial proessor into two virtual proessors, one forthe virtualized OS and one for the virtualizing OS.The exeution of the virtualized OS is ontrolled bythe virtualizing OS. It initiates a swith to the vir-tualized OS and enfores a swith bak on ritialevents, suh as the ourrene of interrupts and pagefaults.
FIGURE 3: Mirokernel-based hypervisorarhitetureA mirokernel-based virtualization arhiteturewith full virtualization support as shown in Figure 3splits the VMM into two parts. A small privilegedhypervisor ontains the mehanism to ontrol andshedule virtualized OSes inside a virtual mahine(VM). An unprivileged VMM provides the virtualhardware environment for the virtualized OS.This approah minimizes size of the privilegedomponent, the hypervisor, that ontributes to theTCB of seurity-sensitive appliations. The VMMdoes not add to the size of the TCB of seurity-sensitive appliations beause it runs unprivileged inits own address spae. However, this separation re-quires additional ommuniation between the hyper-visor and the VMM, whih an derease the perfor-mane of the virtualized OS.4 Full Virtualization withTrustZoneAs stated in the previous setion, urrent tehniquesfor mobile and embedded devies to enapsulateOSes in seurity arhitetures, like paravirtualiza-tion, require a high development e�ort. The Trust-Zone hardware arhiteture direts the fous towards4



an approah similar to full virtualization solutions.TrustZone allows to run an operating system enap-sulated in the normal world with only minor modi�-ations and under ontrol of a software layer in theseure world.4.1 ArhitetureFigure 4 shows the Nizza seurity arhiteture ap-plied to TrustZone as outlined in Setion 3 ombinedwith the full virtualization approah. The normalworld ontains the normal-world OS and its applia-tions. The normal-world OS uses aess drivers tosend requests to the seure world and has driversto aess normal-world devies diretly. The se-ure world ontains the monitor, the seure kerneland the seure-world OS with seure appliations.The seure-world OS onsists of unprivileged ompo-nents, suh as seure devie drivers and seure ser-vies.This arhiteture ontains the realtime-apablehypervisor and the VMM as new omponents derivedfrom the full virtualization senario. The hypervisoronsists of the TrustZone monitor software and theseure kernel, whih are tightly oupled inside theseure privileged omponent. This integration intoone omponent is justi�ed by the fat that there isno isolation between the seure-privileged proessormodes and the monitor proessor mode. The hyper-visor is responsible for the separation of the normalworld and the seure world and to swith betweenboth worlds on request. The VMM provides a vir-tual platform for the exeution of the normal-worldOS inside the virtual mahine. It reeives requestsfrom the normal-world OS and mediates them to se-urity servies or seure drivers.
FIGURE 4: Nizza software arhiteture ap-plied to TrustZoneOur arhiteture requires a ore with TrustZoneextension and the stati or dynami partitioning ofmemory into a seure and a normal area. We usethe simple interrupt model with one seure interrupt

ontroller. All other devies are seure by default,but the generi OS an get diret aess to a spei�devie if the platform an be on�gured that way.We desribe the hypervisor and the VMM whihdrive the normal-world OS and the interfae for thenormal-world OS to aess normal-world and seure-world resoures.4.2 Hypervisor ComponentThe hypervisor as the only omponent of the seure-world OS running in privileged mode enfores iso-lation and seurity poliies. It is based on a mi-rokernel design and o�ers abstrations and meha-nisms to run a multi-server operating system next toa normal-world OS. It provides the following fun-tionality:
• Tasks and Threads. Tasks are address spaesproviding spatial isolation for servies, seuredrivers and appliations. Threads are enti-ties of exeution running inside a task and aresheduled preemptively.
• Virtual mahine (VM). A VM onsists of a vir-tual proessor, a memory partition and a set ofaessible devies. The reation of a new VMestablishes a shared-memory region, alled VMstate, that stores the normal-world proessorstate and is aessible by the reating task.
• Communiation hannels. Threads an sendmessages to and reeive messages from otherthreads and the hypervisor.To failitate the exeution of the normal-world OS,the hypervisor ontains the monitor software thatperforms the swith to the normal world, allednormal-world entry, and the swith bak to the se-ure world on events suh as monitor alls and inter-rupts, alled normal-world exit.To trigger a normal-world entry, a thread sends amessage to the VM. The hypervisor loads the urrentproessor state from the VM state, enables the mem-ory partition and swithes to normal-world proessormode. On normal-world exit the hypervisor savesthe normal-world proessor state in the VM state,disables the memory partition, swithes to seure-world proessor mode and passes exeution to thealling thread, whih in turn an examine the newproessor state.5



4.3 Unprivileged VMM ComponentAording to the arhiteture the VMM is an ap-pliation onsisting of a task with a thread runninginside. The purpose of the VMM is to provide thevirtual platform for the normal-world OS shown inFigure 5. It onsists of a set of virtual devie models.We only summarize the funtionality of the virtualdevies beause a detailed desription of every devieinterfae is beyond the sope of this work.

FIGURE 5: VMM devie arhiteture.The virtual interrupt ontroller reeives virtualinterrupt requests triggered by virtual devies. Thenormal-world OS an seletively enable or disable in-terrupts. A virtual interrupt that is enabled and as-serted is injeted into the normal-world OS as soonas possible. The virtual timer devie is able to pe-riodially generate virtual interrupts. Serial devies,blok devies, network devies and framebu�er de-vies implement hardware-like interfaes to exhangedata between the normal-world OS and the seure-world OS. A virtual devie an have a ommunia-tion hannel to a bakend in the servie layer, suhas a devie driver or a seure servie.The VMM handles requests from the normal-world OS and events from the bakends. Currently,a normal-world OS an request two servies usingmonitor alls:
• Read or write to a virtual devie. The VMMselets the orresponding virtual devie of thevirtual bus using the provided address. Thevirtual devie modi�es its state aording tothe passed parameters and returns a result.
• Go to idle mode. The VMM suspends the ex-eution of the normal-world OS until a virtualinterrupt is injeted.If the VMM reeives an event from a bakend ompo-nent it exeutes the handler of the onneted virtualdevie. Furthermore, the hypervisor passes hardware

interrupts from normal-world devies to the virtualinterrupt ontroller.In both ases the exeution of the normal-worldOS is suspended by the hypervisor and the normal-world proessor state is saved into the VM state. TheVMM has aess to the VM state and memory par-tition of the normal-world OS. It an inspet andmodify the state to read parameters, to pass returnvalues, and to injet interrupts. At the end of therequest handling, the VMM sends a message to thehypervisor to initiate a normal-world entry with thenew normal-world proessor state.4.4 Normal-world OSThe normal-world OS, alled TZ-Linux, runs insidethe normal-world of the TrustZone platform. It hasaess to the on�gured normal-world memory parti-tion and to normal-world devies. It ontains aessdrivers that send requests to the virtual devie mod-els in the VMM. The minimal on�guration of aessdrivers for the virtual platform that the VMM pro-vides onsists of an interrupt driver, a driver for thevirtual timer and a serial driver to enable onsoleinput and output for normal-world OS.4.4.1 Aess to Normal-world DeviesThe normal-world OS an aess a devie diretlyif the hardware platform or seure-world OS on�g-ure the devie as normal-world aessible. In thisase, all read and write operations to and from thedevie are allowed and require no intervention of theseure-world OS exept for the interrupt delivery. In-terrupts from the orresponding devie are routedthrough the seure-world OS beause the normal-world OS annot aess the seure interrupt on-troller. Figure 6 shows the interrupt routing fromthe non-seure devie to the normal-world OS.

FIGURE 6: Aess path and interrupt rout-ing for diret devie aess by the normal-world OS.6



The routing of interrupts to the normal-world OSis performed in �ve steps: First, the interrupt fromthe non-seure devie is signalled to the seure in-terrupt ontroller. Seond, the interrupt ontrollertriggers an interrupt and the proessor traps intothe hypervisor. If the normal world is urrently a-tive, the monitor ode in the hypervisor performs anormal-world exit and then delivers the interrupt asa message to the VMM. Third, the VMM injets avirtual interrupt into the virtual interrupt ontrollerand sets the virtual interrupt-pending signal insidethe VM state if the virtual interrupt is unmasked.Fourth, the VMM sends a message to the hyper-visor. Fifth, the hypervisor restores VM state andperforms the normal-world entry whih delivers thevirtual interrupt.After injetion of the virtual interrupt thenormal-world OS aesses the virtual interrupt on-troller to read the pending interrupt number, to maskand to unmask the interrupt.4.4.2 Aess to Seure-world DeviesThe normal-world OS annot aess seure resouresdiretly. Instead, it uses an aess driver that sendsrequests to the VMM in the seure world. The VMMinterprets the requests and exeutes the orrespond-ing ations or mediates them to seure drivers andseure servies aordingly. The VMM has ompleteaess to the state of normal-world OS and an ver-ify that the request is valid aording to a spei�edseurity poliy. Furthermore the normal-world OSannot aess seure resoures that are not presentin the VMM as virtual devies. That means thatthe on�guration of the virtual devie environmentwith the ommuniation hannels to seure serviesand drivers impliitly restrits the environment forthe normal-world OS.

FIGURE 7: Aess path for indiret devieaess.Aess to a seure devie is not as fast as aess tonon-seure devies beause it involves ommunation

between the normal-world OS and the seure-worldOS. Figure 7 shows the ontrol �ow from TZ-Linuxto a seure devie. whih generally involves the fol-lowing �ve steps:1. The aess driver in the normal-world OS is-sues a request to the VMM in the seure-worldOS.2. The hypervisor saves the normal-world proes-sor state into the VM state and sends a messageto the VMM.3. The VMM selets the virtual devie and han-dles the read or write request. For example, itan send another message to a seure driver inthe servie layer or it passes data to an enryp-tion servie.4. After �nishing the request the VMM sends areply message to the hypervisor.5. The hypervisor restores the normal-world pro-essor state from the VM state and initiatesthe normal-world entry.Similar to this sequene, interrupts are routedthrough the VMM as explained for the normal-worlddevie aess.As already explained, virtual devies have a om-muniation hannel to the seure omponent thatprovides the servie. As an example, we desribehow TZ-Linux aesses a seure network devie usinga virtual network devie inside the VMM. The TZ-Linux kernel ontains a network aess driver thatommuniates with with a virtual network devie in-side the VMM to aess a seure network devie. Thevirtual network devie is onneted to the seure net-work driver. To send a paket the network aessdriver sends a request to the virtual network devie,whih in turn passes the paket the seure networkdriver. Reeive operations are e�iently handled us-ing a ring bu�er, shared between TZ-Linux and theVMM. If the seure network driver reeives a paketit stores it in the next empty slot of the ring bu�er.The network aess driver is noti�ed after a suess-ful reeive operation by a virtual interrupt. It re-moves full slots from the ring bu�er and alloatesnew empty slots. For the performane benhmarksin this paper we plaed the network driver inside theVMM avoiding additional message passing betweenthe VMM and the network driver and reduing theopy overhead for network pakets.7



4.5 ImplementationWe built a prototype to verify and evaluate our de-sign. During the implementation we investigated theapabilities and limitations of TrustZone to ontrolthe normal-world OS. As remarked earlier, Trust-Zone has features that are omparable with alreadyexisting virtualization extensions of other hardwarearhitetures. The seure-world OS is able to ontrolthe exeution of the normal-world OS. The philos-ophy of TrustZone strives to minimize the intera-tions between normal world and seure world. Thisapproah has performane bene�ts, however it alsolimits the virtualization apabilities as illustrated bythe following examples.The detetion of events ourring inside thenormal-world OS is limited by the hardware beausemost ontrol registers of the proessor are bankedfor both worlds. This restrits the ability of theseure-world OS to virtualize proessor features forthe normal-world OS, suh as the register ontain-ing the number of physial proessors or registersof debugging features. As another example, reentproessor versions provide an instrution that is exe-uted in order to wait for an interrupt and indiatesthat the OS is in an idle state 3. The detetion ofthe exeution of suh an instrution by the normal-world OS enables the seure-world OS to sheduleother work. However, the ability to trap this in-strution is not supported. In TZ-Linux we replaedthe ritial instrution with a speial request to theVMM to solve this problem.The partitioning of physial memory as providedby the hardware is su�ient to enapsulate the OSinside the normal world, however it is not transpar-ent. The normal-world OS has to know the physialmemory partition it an use in the system. Changesin the on�guration of the memory partitioning re-quire a reloation of the normal-world OS. Further-more this partitioning sheme does not allow �negrained resoure ontrol as provided by the MMU be-ause the aess poliy has to be enfored by externalmemory ontrollers using oarse-grained regions.Devie virtualization using trap-and-emulate ispossible but is limited to external devie memory.The normal-world OS an trigger external aborts 4by aessing seure or invalid devie memory. Suhaborts trap diretly in the monitor if the seure-worldOS has this feature enabled. This mehanism ouldbe used to emulate aess to devies. However, suhaborts an be impreise with respet to the program

�ow 5, whih means that the proessor does not waitfor the ompletion of the instrution. Therefore, theseure-world OS has no hane to reonstrut thewritten value beause the normal-world proessorstate has hanged irreversibly sine the instrutionwas exeuted.Multiplexing two or more OSes inside the normalworld is supported by our design. It requires arefulhandling of shared hardware resoures, suh as pro-essor registers, memory, ahes and TLBs. We en-ountered the maintenane of the TLB as an unsolv-able problem. The TLB distinguishes normal-worldand seure-world entries, but annot separate en-tries from di�erent normal-world OSes. That meansone normal-world OS an use entries from anothernormal-world OS and break the enapsulation. Toavoid this ase a TLB �ush is required before the a-tivation of another normal-world OS. Aording tothe TrustZone spei�ation the monitor should beable to perform this task. However during our testswe were not able to ahieve the desired behaviour,whih remains as an open question.Finally, reent proessor ores add support forinterrupt virtualization. The proessor shadows theinterrupt �ag when it exeutes in the normal worldand enters the monitor even if the normal world hasinterrupts disabled. Furthermore a virtual interruptregister is available to aid the injetion of virtual in-terrupts from the seure world.5 EvaluationTo evaluate the TZ-Linux approah we ompare therequired software-engineering e�ort of this work withL4Linux. We measured the performane in ompari-son with L4Linux and a non-virtualized Linux usingmiro-benhmarks and arti�ial workloads and ana-lyzed the virtualization overhead for TZ-Linux.Hardware Currently the following ARM ores in-lude a TrustZone extension: the ARM1176JZ(F)-S,and all proessors from the Cortex-A series, suh asthe Cortex-A5, Cortex-A8 and Cortex-A9.Looking for a suitable hardware platform for theevaluation was a troubling experiene. For exam-ple, some platforms do not allow the exeution ofown ode inside the seure world. Rather, theseplatforms e�etively lok the seure world after theboot proess, suh as the OMAP3EVM[5℄ and the3The instrution is alled w�.4An external abort is an exeption generated by aessing external devie memory.5Whether an abort is preise or impreise is determined by the attributes of the memory mapping of the normal-world OS.8



Beagleboard[2℄. All other platforms with TrustZonesupport known to us lak the ability to on�gurememory and devies into seure-world and normal-world aessible. Instead all resoures of the plat-form are normal-world aessible.Therefore we made the assumption that addi-tional TrustZone-aware omponents, suh as a mem-ory protetion ontroller or protetion ontroller forperipherals an be added to a platform to enfore theseurity poliy. This assumptions does not a�et thesoundness of the design and still allows us to evaluatethe prototype implementation.For the following evaluation, we hose the Re-alView Platform Baseboard with two Cortex-A9CPUs (RealView/PBX) and 100 Mhz lok fre-queny. At a later stage we had the possibility touse an NVIDIA Tegra2 evaluation system, equippedwith a dual-ore Cortex-A9 CPU. The benhmarkswere run with enabled ahes.Software The TZ-Linux and L4Linux are basedon a Linux kernel of version 2.6.31. For the benh-marks Linux was on�gured with a 128MB memorypartition and a periodi timer interrupt of 10 mil-liseonds. The performane measurements were on-duted with the yle-aurate performane ounterof the proessor. As a base line we used an unmod-i�ed Linux, alled non-virtualized Linux, that runswith the same on�guration but has diret aess toall hardware resoures.5.1 Software-Engineering E�ortWe ount the number of hanges that are required torun TZ-Linux on a virtual platform ompared to thenumber of hanges for a ompletely paravirtualizedL4Linux kernel. We use soure lines of ode (SLOC)as a metri beause it an be easily alulated andis used in the software development ommunity toquantify the amount of development.TZ-Linux L4LinuxInterrupt ontroller 67 250Timer devie 84 70Memory Management 0 1100Proessor Management 0 200System alls 0 100Total 151 1720TABLE 1: Comparison of modi�ations inSLOC required in TZ-Linux and in L4Linux tovirtualize the platform.

First, we examine the required hanges to modifythe Linux kernel in order to run as a normal-worldOS and a paravirtualized OS. Table 1 shows the re-sults for TZ-Linux and L4Linux in terms of SLOC. Inomparison to L4Linux, TZ-Linux requires approxi-mately one tenth of modi�ations beause the mem-ory management and proessor management need noadaption.Seond, we ompare the size of the devie modelsof the TZ-Linux VMM with the size of similar de-vie models of the Qemu emulator [17℄ for the ARMRealview platform. Table 2 shows that the size ofthe devie models to support TZ-Linux is about onetenth the size ompared to the Qemu devie models.For referene the �gure shows also the size of theaess drivers in TZ-Linux that are o-developed forthe virtual devies in the VMM.Qemu devie TZ-Linux devie TZ-Linux driverInterrupt ontroller 584 103 67Timer devie 228 72 84Serial devie 214 130 180Blok devie 3500 67 210Network devie 500 210 320Total 5026 582 861TABLE 2: Comparison of similar deviemodels in SLOC in the TZ-Linux VMM andthe Qemu VMM.Aording to our metri, the software-development e�ort to implement a virtual platformis onsiderably smaller than paravirtualizing the OSor providing support for a real hardware platform.There are mainly two reasons for the small odesize of virtual drivers and devies. First, the inter-fae between both is optimized for e�ient parame-ter passing and simpli�ed state transition. Seond,the funtionality is tailored without onsidering anylegay support.The hypervisor ontains the monitor softwareand the funtion to send a message to the VMMwhih ontribute to the TCB of seurity-sensitiveappliations. The amount of this ode is approxi-mately 200 SLOC and muh smaller than the size ofthe VMM.5.2 PerformaneIn this setion, we ompare the performane of TZ-Linux with a non-virtualized Linux and L4Linux us-ing the LMbenh [23℄ miro-benhmark tool and arti-�ial workloads. Furthermore, we analyze the virtu-9



alization overhead for our arhiteture. The benh-marks are onduted using the RealView PBX board.5.2.1 BenhmarksFigure 8 shows the performane of arithmeti oper-ations normalized to the exeution time of a non-virtualized Linux. As expeted, there is only in-signi�ant overhead visible in TZ-Linux as well asL4Linux.
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FIGURE 8: LMbenh3: Comparison ofarithmeti operations with the exeution timenormalized to Linux.Figure 9 shows the performane of seleted sys-tem alls normalized to the non-virtualized Linux.As expeted, TZ-Linux has a insigni�ant overheadaround 2 perent. L4Linux has large overheads (from200 to 1750 %) beause system alls are interposedby the virtualizing OS.

FIGURE 9: LMbenh3: Comparison ofsystem all performane with the exeutiontime normalized to Linux.To measure the behaviour of TZ-Linux underhigh pressure we use three workloads with di�erentharateristis: a ompute intensive workload thatdeodes an audio �le, an IO-intensive workload thatdownloads a �le from the loal network using thewget ommand, and a mixed workload that ompiles

the jpeg library. In all senarios the Linux has diretaess to a network devie and uses a network-based�lesystem to launh the appliations and aess thedata. Furthermore, we measure the on�guration asdesribed in Setion 4.4.2, alled TZ-Linux/seure.The network driver inside the VMM aesses the net-work devie and TZ-Linux uses an aess driver tosend and reeive network pakets. Figure 10 showsall benhmarks with the performane normalized tothe non-virtualized Linux. We measured the timespent in kernel mode and in user mode to pointout their di�erent harateristis. A high kernel-mode ratio indiates a high number of user-kernelinterations. While user-mode ativity dominatesthe audio-deoding benhmark, kernel-mode ativitydominates the �le-download benhmark.
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audio decoding compile file downloadFIGURE 10: Comparison of workloadswith the exeution time normalized to Linux.The performane of the audio-deoding benh-mark is nearly the same for all versions of Linux be-ause few user-kernel interations are required. Inthe ompile benhmark, L4Linux has 30% more over-head than TZ-Linux beause it involves a high num-ber of system alls. In the third benhmark TZ-Linux has an overhead about 23% and L4Linux hasan overhead of roughly 40% ompared to the non-virtualized Linux. This indiates that the routing ofnetwork interrupts through as seure-world OS dom-inates the observed performane degradation.For TZ-Linux/seure the performane degradesompared to TZ-Linux with diret network aessdepending on the generated network tra� by thebenhmark. There are two reasons for this perfor-mane degradation. First, TZ-Linux/seure has tomake a request to the VMM for every send and re-eive operation. Seond, the seure network driverinside the VMM requires additional ontext swithesfrom the hypervisor to the VMM.10



5.2.2 Virtualization OverheadWe examine the measured overhead for TZ-Linux inmore detail. The total overhead depends on the vir-tualization overhead and onurrent aess to sharedresoures, suh as ahes and TLB, by the normalworld and the seure world. The virtualization over-head is determined by the time to handle one normal-world exit and the number of normal-world exits forthe spei� workload during the measurement pe-riod.Phase Desription RealView Tegra21 Normal-world exit 8 0.92 Msg from HV to VMM 4.25 1.23 Request handling 14 - 26 4 - 84 Msg from VMM to HV 4.25 1.25 Normal-world entry 8 0.9Total 38.5 - 50.5 8.2 - 12.2TABLE 3: Exeution time in miroseondsfor the phases of a request from the normal-world OS (Msg: Message, HV: Hypervisor)As disussed in Setion 4.4.2 the handling of arequest from the normal-world OS an be separatedinto �ve phases. Table 3 ontains the average exeu-tion time of every phase measured with miro benh-marks. The time spent in the VMM to handle therequest varies depending on the seleted virtual de-vie.
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TZ−Linux TZ−Linux with secure networkFIGURE 11: Average number of normal-world exits during a period of 1 seondFigure 11 shows the average number of normal-world exits for period of 1 seond. There are two dif-ferent types of normal-world exits that an our inour arhiteture: interrupts and monitor alls fromthe normal-world OS.The audio-deoding benhmark, whih is om-pute intensive has the fewest number of normal-worldexits. The periodi injetion of timer interrupts isthe only required interation between normal-world

OS and seure-world OS. The number of exits in-reases for the other two workloads beause addi-tionally network interrupts need to be handled morefrequently.The number of normal-world exits due to inter-rupts is higher for TZ-Linux with diret aess to thenon-seure network devie ompared to TZ-Linuxwith seure network devie espeially for the �le-download benhmark. This fat indiates a higherservie rate for network interrupts for the �rst on-�guration.
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TZ−Linux TZ−Linux with secure networkFIGURE 12: Average number of injetedinterrupts during a period of 1 seondFigure 12 shows the average number of injetedvirtual interrupts during a period of one seond. Twotypes of interrupts an be injeted in this setup: in-terrupts for the virtual timer devie and interruptsrouted for the network devie. Network interrupts inTZ-Linux with indiret aess to the seure networkdevie are generated by a suessful reeive opera-tion by the virtual network devie inside the VMM.The number of timer interrupts is �xed in all threeworkloads beause they are generated with a on-stant period of 10 milliseonds. However, the num-ber of network interrupts depends on the workload ofthe benhmark. The audio-deoding benhmark re-quires no network aess, while in the �le-downloadbenhmark network interrupts dominate.TZ-Linux with a seure network devie hasfewer virtual network interrupts injeted omparedto the �rst on�guration indiating a lower networkthroughput. For a detailed desription of the reasonsthat ause the observed performane degradation ad-ditional examinations are required.5.3 LatenyIn order to study the lateny of an appliation thathas timely requirements we measured the time thatpasses in order to deliver an external event suh asan interrupt.11



The lateny depends mainly on two fators: thelength of the ritial path to deliver the interrupt andthe availability of ritial resoures that are sharedwith other omponents in the system. The �rst fa-tor heavily depends in whih world the omponent isrunning beause it determines the length of the rit-ial path. The seond fator determines the numberof ahes and TLB misses that our in the pathof the interrupt delivery of the realtime appliation.(We do not onsider memory as a sare resoure inour senarios.)First we examine the lateny of realtime applia-tions running the seure world and then look at thelateny for normal-world realtime appliations. Allmeasurements are onduted with a Tegra2 board.5.3.1 Seure-World Realtime AppliationsFor a seure-world realtime appliation only the hy-pervisor is involved in order to deliver the interruptusing a message. Furthermore, if the system is run-ning in the normal world an additional world swithis required.
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FIGURE 13: Lateny to deliver an inter-rupt event to a seure-world realtime applia-tion.Figure 13 shows the distribution of the latenyin four di�erent senarios. Senario (a) measures thelateny without any resoure pressure nor normal-world appliation. It servs as a baseline for the othersenarios. Senario (b) inreases the length of theinterrupt path by adding a small normal-world ap-pliation beside the realtime appliation. Senario() runs a onurrent seure-world appliation thatonsumes as muh ahe and TLB resoures as pos-sible. Senario (d) runs a onurrent normal-worldappliation that is onsuming resoures.The �rst senario measures the lateny of the in-terrupt path without pressure on TLB and ahes.The interrupt is delivered from the hypervisor to the

realtime appliation with a message resulting in la-tenies of 1.5 miroseonds for the average ase and3.4 miroseonds for the worst ase. The seond se-nario enfores a world swith in order to deliver theinterrupt. The lateny inreases by 2 miroseonds,both, for the average and the worst ase. In thethird senario another seure-world appliation on-tents on TLB and ahe resoures. In onsequenethe average and worst-ase time inrease to 3.7 mi-roseonds and 7.2 miroseonds respetively whenompared to the �rst senario. In the last senarioa normal-world appliation ontents on the sharedresoures. This further inreases the lateny as anadditional world swith is required in order to de-liver the interrupt. The added lateny is roughly theexeution time of a world swith in omparison withthe third senario.5.3.2 Normal-World Realtime AppliationsIf the realtime appliation is running in the TZ-Linuxthe lateny to deliver an event inreases omparedto a seure-world appliation beause the VMM ispart of the interrupt path as shown in Figure 6. Forthe following disussion we assume that the priori-ties of all software omponents are on�gured withthe highest priority. For example, that means theVMM annot be preempted by another appliationwith a higher priority in the system.
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FIGURE 14: Lateny to deliver an inter-rupt event to a normal-world realtime applia-tion under two di�erent load senarios.Figure 14 shows the distribution of the lateny intwo di�erent senarios. Senario (a) measures the la-teny of the interrupt path without resoure pressurefor the normal-world realtime appliation. Senario(b) runs a ahe and TLB �ooder workload in theseure world to onsume as muh resoures as possi-ble.The intention of the �rst senario is to measurethe 'pure' lateny of the interrupt for the normal-world appliation without ontention on resoures.12



The diagram shows the distribution of the exeutiontime to deliver a timer interrupt to the TZ-Linuxkernel. The average exeution time is around 20 mi-roseonds while the measured worst-ase exeutiontime is 2750 mioseonds. The high lateny is ausedby the interrupt routing for normal-world interrupts.Two seure-world omponents are involved during in-terrupt delivery, the hypervisor and the VMM. In-terrupt injetion takes plae in several phases as de-sribed in Setion 4.4.1 with a worst ase exeutiontime of eah phase shown in Table 3. Due to the im-plementation of the interrupt ontroller model in theVMM there is an additional exit beside the exit forthe host interrupt, whih aknowledges the interrupt.So there are two exits required for one interrupt de-livery.In the seond senario another seure-world ap-pliation onsumes a muh as ahe and TLB as pos-sible. The VMM (and therefore the normal-worldOS) have a higher priority than the seure-world ap-pliation avoiding starvation. The measured aver-age ase and worst ase time are onsiderable longerthan in the �rst senario. Even we have no detailedknowledge of the exeution time of eah phase thereasonable assumption is that ahe and TLB set anorder of magnitude large than in the seure-worldrealtime appliation senario.In onlusion, the virtualization overhead as wellas shared resoure ontention inrease the measuredlateny and worst ase time in reasonable ways forrealtime workload running in the normal world.6 Related WorkTo the best of our knowledge this work is the �rstpubliation that examines and evaluates the apa-bilities and limitations of virtualization support ofthe TrustZone arhiteture in the embedded systemsresearh ommunity.Trusted Logi [7℄ develops the Trusted Foun-dations Software that is deployed as refereneimplementation for seure world omponents inTrustZone-enabled systems. The goal is to o�er a se-ure environment and a ommon framework for theintegration seure software development. Operatingsystems running in the normal world an all seureservies using the Trusted Foundations API.Winter [26℄ instantiated a Linux systems in thenormal world and an SE-Linux system in the seureworld. Both Linux instanes ommuniate using de-vie model similar to the one presented here. How-ever there is no performane evaluation available.

Yan-ling [27℄ desribes a system with an SE-Linux system in the normal world providing isola-tion for seure omponents on top and aessing theseure-world OS using the provided TrustZone API.As the system is not implemented an evaluation ismissing.The work of Sangorrin et. al. [24℄ desribes asimilar arhiteture as presented in this paper run-ning a small realtime OS in the seure world and aLinux-based OS in the non-seure world. However,realtime appliations in the seure OS are not iso-lated and an ompromise the omplete system.There is a large number of losed-soure produtsavailable that support isolation of system-level om-ponents inluding operating systems. Green Hills[3℄ uses a seurity arhiteture that employs Trust-Zone tehnology to assist virtualization. Paravirtu-alization tehniques are applied by solutions suh asPikeOS [6℄, OKL4 [4℄, Trango [9℄ and VirtualLogix[8℄. Until today all requests regarding informationabout the design or the performane or requests toevaluate the software were not suessful, so that aomparison is not possible.Xen[16℄ is popular virtualization solutions fordesktop and server systems. The Xen hypervisor hasbeen ported to ARMv5 arhiteture and uses par-avirtualization to virtualize a normal-world OS [21℄.The numbers for the LMbenh benhmark presentedindiate lower overhead than L4Linux shows but arestill an order of magnitude higher than measured forTZ-Linux.7 ConlusionsThis paper presented an approah based on full vir-tualization using TrustZone to isolate an operatingsystem as needed in state-of-the-art seurity arhi-tetures. The use of TrustZone's virtualization apa-bilities resulted in a muh lower number of requiredhanges to the Linux as a normal-world OS (about153 lines of ode) as ompared to a paravirtualizationapproah. The devie drivers and models needed forthe implementation of the platform are in the orderof 900 soure lines of ode. The resulting perfor-mane overhead ranges from barely measurable toup to 20% depending on the harateristis of theworkloads. The realtime apabilities of the systemstrongly favor seure realtime appliations while notexlude the exeution non-seure realtime applia-tions. We think that this work provides a baseline forupoming virtualization apabilities of future ARMores.13
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