ARM TrustZone as a Virtualization Technique
in Embedded Systems

Torsten Frenzel, Adam Lackorzynski, Alexander Warg and Hermann Hértig
Technische Universitdt Dresden
Department of Computer Science
01062 Dresden, Germany
{frenzel, adam, warg, haertig}@os.inf.tu-dresden.de

Abstract

Virtualization starts to gain traction in the embedded world as methods to enforce isolation are

needed to cope with the ever-growing complexity of modern systems.

Originating from desktop and

server systems, existing virtualization solutions have their focus on rich functionality such as migration
and check-pointing while real-time functionality is of little interest. In contrast, in embedded systems this
functionality is dispensable while the ability to support real-time workloads has to be retained. So far,
virtualization on ARM - the arguably predominant architecture for embedded systems - was impeded by
the lack of proper architectural support. In this paper, we show how TrustZone, an extension originally
meant to boost security, can also be used to fill that gap and provide encapsulation in real-time conscious
systems. We evaluate a minimally modified Linux on top of a real-time capable microkernel in terms of
engineering and runtime costs. The results show that it is possible to improve the performance compared
to existing solutions and preserve realtime properties for applications.

1 Introduction

Today, embedded systems such as smartphones han-
dle valuable content, like sensitive data from a bank
account and other personal information as timing
critical resource such as network connections. They
also run a growing number of applications and are
able to dynamically download new software. Conse-
quently, security-sensitive and realtime-sensitive ap-
plications and potentially malicious applications of
low trustworthiness share the same platform.

An important criterion for the vulnerability of
security-sensitve applications is the size of their
Trusted Computing Base (TCB). It consists of all
hardware and software components they have to
trust for their functionality. A small TCB for such
applications and services is favourable because it
helps to reduce the number of vulnerabilities that
can be attacked. Reducing the size of the TCB is
achieved by isolating components at software level,
hardware level and a combination of both.

The specification of the Trusted Mobile Plat-
form [11] is an attempt to address the security re-

quirements for mobile and embedded platforms. It
describes a generic hardware and software architec-
ture enriched with protocols to access secure ser-
vices. The specification defines different security
classes with specific isolation properties and require-
ments for their TCBs. For example, a highest secu-
rity class device requires hardware-enforced isolation
and a TCB consisting of a verified and trusted mi-
crokernel for security-sensitive applications.

ARM TrustZone [13] has been designed to enable
trusted mobile platforms by providing two hardware-
isolated execution domains. The secure-world do-
main supports the protected execution of security-
sensitive software, while the normal-world domain
enables the encapsulated execution of less critical
software. The hardware architecture protects the
security-sensitve software not only against attacks
from normal-world software but also from physical
attacks, such as the sniffing of bus transactions. Fur-
thermore, TrustZone aims to provide high perfor-
mance for access to physical resources for normal-
world components as well as secure-world compo-
nents, while reducing the costs for duplicated hard-

ware.

TrustZone imposes few restrictions on the soft-
ware stack of either world. This enables third-party
developers to integrate their own security solution.
While there exists a reference implementation for a
TrustZone software architecture [7], no results are
publicly available that evaluate the TrustZone archi-
tecture with regards to the performance overhead.
This paper intends to close this gap as it reports re-
sults of implementing an open security architecture,
called Nizza [18], on the TrustZone platform.

As with TrustZone, Nizza is designed to sup-
port minimized TCBs for security-sensitive applica-
tions. The software architecture isolates generic op-
erating systems and their applications from security-
sensitive applications using system virtualization. A
small realtime kernel or hypervisor implements the
virtualization layer and a multi-server OS provides
access to hardware and software resources. The ker-
nel can host isolated, budgeted realtime applications
and virtual machines with fixed priorities.

This work makes the following contributions: (1)
We show how TrustZone can be used to implement
a complex security architecture that facilitates the
execution of isolated realtime applications in embed-
ded systems using an approach that is similar to full
virtualization. (2) We compare this approach with
regards to the software-development effort to imple-
ment this solution and the performance and latency
with pure paravirtualization and native execution.

To this end, we provide in Section 2 a bird’s eye
view on the hardware and software components of
the TrustZone architecture. In Section 3 we outline
the Nizza security architecture applied as a Trust-
Zone software stack and introduce two important
virtualization techniques for security architectures.
In Section 4, we describe in detail our design and
implementation of using the TrustZone hardware ar-
chitecture as a basis for the Nizza software archi-
tecture. Section 5 provides an evaluation regarding
the changes to the encapsulated operating system
and the performance overhead and of our TrustZone-
based virtualization solution. Section 6 discusses re-
lated work and Section 7 concludes.

2 ARM TrustZone Architecture

TrustZone restricts the access to security-sensitive
components by introcuding a virtual split through
the hardware in the system. The approach requires
modifications in the processor core as well as the

LThe architecture refers to this as the NS-bit.

platform. The architecture is accompanied by a pro-
posed software architecture that reflects the split ap-
proach.

2.1 Hardware

A processor with TrustZone extension provides two
virtual processors establishing two security domains:
the secure world and mormal world. The proces-
sor can switch from one world to the other using
a dedicated and controlled mechanism, that requires
a secure-world software component, called the mon-
itor. Furthermore, all hardware components in the
system, such as memory and devices, are configured
as normal-world or secure-world accessible. This
can be achieved by adding TrustZone-aware compo-
nents that enforce the security policies in the system,
such as memory controllers [14] and special protec-
tion controllers [10]. The hardware split restricts the
access rights of the normal world to normal-world
resources, while the secure world can access all re-
sources.

The world in which the processor is currently
running determines its security state !. Whenever
the processor executes a read or write instruction
to access a resource, the corresponding bus transac-
tion is tagged with the security state of the proces-
sor. This way it is propagated through the system
and enables peripheral components of the platform
to check whether or not an access to a resource is
valid. All components that are involved in satisfying
this request can verify the security state. Whenever
a peripheral component itself issues a bus transac-
tion, this operation is tagged with the security state
of the component which also prevents DMA attacks.

The delivery of interrupts is also controlled by
the secure world, which configures if a specific inter-
rupt is delivered to the current world or to the moni-
tor software. TrustZone defines two models for inter-
rupt delivery. The first model uses one interrupt con-
troller that is programmed by the secure world only
and requires the monitor to decide to which world
an interrupt is routed. The second model uses a
TrustZone-aware interrupt controller [12] which pro-
vides two virtual interrupt controllers similar to the
two virtual processors. This enables the platform
to route interrupts to the configured world without
intervention of the monitor software.

A TrustZone-enabled platform consists of the
TrustZone-enabled processor core with additional
on-chip secure components, such as tightly coupled
memory, crypto modules, RAM and boot ROMs. If

the system bus is security-aware further secure pe-
ripheral components can be added, such as SDRAM,
flash and ROM. The partitioning of the platform
can be hard-wired or reconfigurable using special
platform-dependent mechanisms.

2.2 Software

The designers of TrustZone had a clear perspective of
the software architecture in mind, which extends the
hardware architecture’s philosophy into the software
layers on top. This software architecture consists
of normal-world components, including a generic op-
erating system and its applications accessing only
normal-world hardware, and secure-world compo-
nents. The secure-world software can range from a
small service or encryption layer fitting into on-chip
memory to a complex operating system with its ap-
plications.

Normal World Secure World

Trusted
Application

Secure-aware
Application

General
Application

—
Generic
Operating System
TrustZone
Access Driver!

Monitor Mode - TrustZone Monitor Software

Device
Specific
Task

Trusted
nterpreter]

Security
Services

Secure Kernel, Drivers

FIGURE 1:
architecture

TrustZone complex software

Figure 1 shows a complex software architecture
as outlined by the ARM engineers [15, 25]. It has a
generic OS and applications running in the normal
world. The generic OS can access the secure-world
services using TrustZone access drivers which in turn
call the TrustZone monitor software to switch to the
secure world. The secure software stack consists of
a secure kernel, secure drivers, trusted applications
and the monitor. The secure kernel contains drivers
for secure devices and hosts secure services together
with further device specific tasks. Trusted applica-
tions can run either direct on top of the secure service
layer or are isolated by a trusted interpreter, such as
a Java virtual machine. In addition to these compo-
nents a secure boot loader is required to bootstrap
and measure the software stack.

The monitor performs the switches between the
secure world and normal world. Its provides func-
tionality that is similar to a context switch in oper-
ating systems, ensuring that the state of the world
that the processor is leaving is saved, and the state

2The privileged instruction is called SMC.

of the world the processor is switching to is restored.
Normal-world entry to the monitor is only possible
via interrupts, external aborts or an explicgit call,
referred to as monitor call 2. The secure world can
enter the monitor without restrictions when running
in privileged mode, in addition to the available ex-
ception mechanisms.

As TrustZone is a pure security architecture it
makes no statement and poses no restrictions on wich
side realtime components should run.

For the communication between both worlds
TrustZone defines several APIs: a Generic API with
a simple message-passing interface, an extensible Se-
curity Channel APT for well-known services and APIs
for specific security modules. The APIs define a
remote-procedure-call standard to open connections
from the normal world to the secure world.

3 Nizza Architecture

The Nizza security architecture shown in Figure 2
minimizes the TCB for security-sensitive applica-
tions using a small multi-server operating system
with unprivileged components and the isolation of
non-secure components from security-sensitive com-
ponents. A microkernel enforces isolation between
components in the system and provides fast and con-
trolled communication between them. On top, de-
privileged servers, such as a file system, a secure GUI
and resource managers, as well as drivers provide a
small service layer. Non-secure and security-sensitive
applications can access these services, which mediate
and control the access to physical resources.

Non-secure Realtime
Application

Generic
Operating System

Secure Realtime
Application

| Services Resource Manager Device Driver Unprivileged
Mode

Privileged

| Realtime-Capable Microkernel | Mode

FIGURE 2:
chitcture

Nizza security and realtime ar-

The Nizza architecture closely resembles the
complex software architecture as described in the
previous section with a split in two worlds sepa-
rated by the microkernel. In the secure world the
service layer manages the platform and multiplexes
resources among both worlds. The normal world con-
sists of the generic OS and its applications.

Although the Nizza architecture is very similar to
the TrustZone’s complex software architecture there
are differences. The trusted interpreter as shown in
Figure 1 is not required because isolation between
application is provided by separate address spaces.
Furthermore the Nizza architecture does allow to en-
capsulate many generic OSes on the same platform,
which is not intended by the TrustZone architecture.
Nizza has built-in support for realtime applications,
which includes the low-latency preemptible kernel
with a static priority scheduling scheme and periodic
execution and budgeting of realtime applications.

Security architectures such as Nizza use virtual-
ization to encapsulate and isolate OSes and their ap-
plications, excluding them from the TCB of security-
sensitive and realtime applications. We first de-
scribe a paravirtualization architecture, an approach
that is commonly used in embedded system, and af-
terwards we describe full virtualization architecture
with hardware assistance.

Paravirtualization Paravirtualization modifies
critical parts of the deprivileged kernel of the virtu-
alized OS. Platform-specific components are adapted
to the interface of the virtualizing kernel using
source-code modifications.

A paravirtualized kernel needs modifications in
the system-call interface and all platform-specific
parts that interact with the hardware, like memory
management, and interrupt handling. For example,
page-table modifications are translated into resource-
delegation requests and interrupts are signalled to
the paravirtualized kernel as messages. All system
calls from the application to the paravirtualized ker-
nel need to be mediated by the hypervisor, which can
cause serious performance degradation.

Paravirtualization has low hardware require-
ments; any processor that supports isolation by ad-
dress spaces can be used to implement this virtu-
alization solution. However, the effort required to
adapt a kernel can be high.

XenLinux[16] and L4Linux [20] are examples of
paravirtualized kernels. In this work L4Linux serves
as a reference to compare our new approach with re-
garding the performance and software-development
effort.

Full Virtualization Full virtualization runs the
deprivileged kernel of the virtualized OS without
any modifications. The hardware traps sensitive and
privileged instructions to the virtualizing OS. This
enables the virtualizing OS to emulate these instruc-

tions and virtualize the hardware resources. Full
virtualization architectures require a virtual machine
monitor (VMM) that controls the virtualized OS and
provides the virtual hardware environment.

This approach relies on hardware assistance to
reduce the number of traps and avoid serious perfor-
mance degradation. Since the early seventies main-
frame vendors [19] and in recent years, server and
desktop processor vendors [22, 1] have implemented
virtualization extensions. Such extensions split the
physical processor into two virtual processors, one for
the virtualized OS and one for the virtualizing OS.
The execution of the virtualized OS is controlled by
the virtualizing OS. It initiates a switch to the vir-
tualized OS and enforces a switch back on critical
events, such as the occurrence of interrupts and page
faults.

Virtual Machine

Secure/
Realtime
Application

Realtime

Application VMM

1T

s
Device Drivers

Virtualizing OS

Application

Virtualized OS

Realtime-Capable Hypervisor

FIGURE 3:
architecture

Microkernel-based hypervisor

A microkernel-based virtualization architecture
with full virtualization support as shown in Figure 3
splits the VMM into two parts. A small privileged
hypervisor contains the mechanism to control and
schedule virtualized OSes inside a wvirtual machine
(VM). An unprivileged VMM provides the virtual
hardware environment for the virtualized OS.

This approach minimizes size of the privileged
component, the hypervisor, that contributes to the
TCB of security-sensitive applications. The VMM
does not add to the size of the TCB of security-
sensitive applications because it runs unprivileged in
its own address space. However, this separation re-
quires additional communication between the hyper-
visor and the VMM, which can decrease the perfor-
mance of the virtualized OS.

4 Full Virtualization
TrustZone

with

As stated in the previous section, current techniques
for mobile and embedded devices to encapsulate
OSes in security architectures, like paravirtualiza-
tion, require a high development effort. The Trust-
Zone hardware architecture directs the focus towards

an approach similar to full virtualization solutions.
TrustZone allows to run an operating system encap-
sulated in the normal world with only minor modifi-
cations and under control of a software layer in the
secure world.

4.1 Architecture

Figure 4 shows the Nizza security architecture ap-
plied to TrustZone as outlined in Section 3 combined
with the full virtualization approach. The normal
world contains the normal-world OS and its applica-
tions. The normal-world OS uses access drivers to
send requests to the secure world and has drivers
to access normal-world devices directly. The se-
cure world contains the monitor, the secure kernel
and the secure-world OS with secure applications.
The secure-world OS consists of unprivileged compo-
nents, such as secure device drivers and secure ser-
vices.

This architecture contains the realtime-capable
hypervisor and the VMM as new components derived
from the full virtualization scenario. The hypervisor
consists of the TrustZone monitor software and the
secure kernel, which are tightly coupled inside the
secure privileged component. This integration into
one component is justified by the fact that there is
no isolation between the secure-privileged processor
modes and the monitor processor mode. The hyper-
visor is responsible for the separation of the normal
world and the secure world and to switch between
both worlds on request. The VMM provides a vir-
tual platform for the execution of the normal-world
OS inside the virtual machine. It receives requests
from the normal-world OS and mediates them to se-
curity services or secure drivers.

Virtual Machine

Trusted/Realtime
Application

Secure-aware
Application

General
Application

Generic
Operating System
TrustZone
Access Driver!
= =

Monitor Mode - TrustZone Monitor Software

Realtime-Capable Hypervisor

FIGURE 4: Nizza software architecture ap-
plied to TrustZone

Our architecture requires a core with TrustZone
extension and the static or dynamic partitioning of
memory into a secure and a normal area. We use
the simple interrupt model with one secure interrupt

controller. All other devices are secure by default,
but the generic OS can get direct access to a specific
device if the platform can be configured that way.

We describe the hypervisor and the VMM which
drive the normal-world OS and the interface for the
normal-world OS to access normal-world and secure-
world resources.

4.2 Hypervisor Component

The hypervisor as the only component of the secure-
world OS running in privileged mode enforces iso-
lation and security policies. It is based on a mi-
crokernel design and offers abstractions and mecha-
nisms to run a multi-server operating system next to
a normal-world OS. It provides the following func-
tionality:

e Tasks and Threads. Tasks are address spaces
providing spatial isolation for services, secure
drivers and applications. Threads are enti-
ties of execution running inside a task and are
scheduled preemptively.

o Virtual machine (VM). A VM consists of a vir-
tual processor, a memory partition and a set of
accessible devices. The creation of a new VM
establishes a shared-memory region, called VM
state, that stores the normal-world processor
state and is accessible by the creating task.

o Communication channels. Threads can send
messages to and receive messages from other
threads and the hypervisor.

To facilitate the execution of the normal-world OS,
the hypervisor contains the monitor software that
performs the switch to the normal world, called
normal-world entry, and the switch back to the se-
cure world on events such as monitor calls and inter-
rupts, called normal-world exit.

To trigger a normal-world entry, a thread sends a
message to the VM. The hypervisor loads the current
processor state from the VM state, enables the mem-
ory partition and switches to normal-world processor
mode. On normal-world exit the hypervisor saves
the normal-world processor state in the VM state,
disables the memory partition, switches to secure-
world processor mode and passes execution to the
calling thread, which in turn can examine the new
processor state.

4.3 Unprivileged VMM Component

According to the architecture the VMM is an ap-
plication consisting of a task with a thread running
inside. The purpose of the VMM is to provide the
virtual platform for the normal-world OS shown in
Figure 5. Tt consists of a set of virtual device models.
We only summarize the functionality of the virtual
devices because a detailed description of every device
interface is beyond the scope of this work.

VMM

Virtual bus

Normal-world Virtual . "

Processor [«— Interrupt leirrtnuearl I\)/g:/llj:;

State Controller
Virtual Interrupt Line
Backend
Device Driver
FIGURE 5: VMM device architecture.

The virtual interrupt controller receives virtual
interrupt requests triggered by virtual devices. The
normal-world OS can selectively enable or disable in-
terrupts. A virtual interrupt that is enabled and as-
serted is injected into the normal-world OS as soon
as possible. The virtual timer device is able to pe-
riodically generate virtual interrupts. Serial devices,
block devices, network devices and framebuffer de-
vices implement hardware-like interfaces to exchange
data between the normal-world OS and the secure-
world OS. A virtual device can have a communica-
tion channel to a backend in the service layer, such
as a device driver or a secure service.

The VMM handles requests from the normal-
world OS and events from the backends. Currently,
a normal-world OS can request two services using
monitor calls:

e Read or write to a virtual device. The VMM
selects the corresponding virtual device of the
virtual bus using the provided address. The
virtual device modifies its state according to
the passed parameters and returns a result.

e (o to idle mode. The VMM suspends the ex-
ecution of the normal-world OS until a virtual
interrupt is injected.

If the VMM receives an event from a backend compo-
nent it executes the handler of the connected virtual
device. Furthermore, the hypervisor passes hardware

interrupts from normal-world devices to the virtual
interrupt controller.

In both cases the execution of the normal-world
OS is suspended by the hypervisor and the normal-
world processor state is saved into the VM state. The
VMM has access to the VM state and memory par-
tition of the normal-world OS. It can inspect and
modify the state to read parameters, to pass return
values, and to inject interrupts. At the end of the
request handling, the VMM sends a message to the
hypervisor to initiate a normal-world entry with the
new normal-world processor state.

4.4 Normal-world OS

The normal-world OS, called TZ-Linux, runs inside
the normal-world of the TrustZone platform. It has
access to the configured normal-world memory parti-
tion and to normal-world devices. It contains access
drivers that send requests to the virtual device mod-
els in the VMM. The minimal configuration of access
drivers for the virtual platform that the VMM pro-
vides consists of an interrupt driver, a driver for the
virtual timer and a serial driver to enable console
input and output for normal-world OS.

4.4.1 Access to Normal-world Devices

The normal-world OS can access a device directly
if the hardware platform or secure-world OS config-
ure the device as normal-world accessible. In this
case, all read and write operations to and from the
device are allowed and require no intervention of the
secure-world OS except for the interrupt delivery. In-
terrupts from the corresponding device are routed
through the secure-world OS because the normal-
world OS cannot access the secure interrupt con-
troller. Figure 6 shows the interrupt routing from
the non-secure device to the normal-world OS.

gl Secure
Non-: Applicati I T T A
on-secure Application I ugntpoﬁrl'rup Appllcatlon
4 Service Layer
TZ-Linux
. PR 2 .
Driver | Hypervisor
I
Nogéi?g:re Interrupt Controller | Hardware
FIGURE 6: Access path and interrupt rout-

ing for direct device access by the mormal-
world OS.

The routing of interrupts to the normal-world OS
is performed in five steps: First, the interrupt from
the non-secure device is signalled to the secure in-
terrupt controller. Second, the interrupt controller
triggers an interrupt and the processor traps into
the hypervisor. If the normal world is currently ac-
tive, the monitor code in the hypervisor performs a
normal-world exit and then delivers the interrupt as
a message to the VMM. Third, the VMM injects a
virtual interrupt into the virtual interrupt controller
and sets the virtual interrupt-pending signal inside
the VM state if the virtual interrupt is unmasked.
Fourth, the VMM sends a message to the hyper-
visor. Fifth, the hypervisor restores VM state and
performs the normal-world entry which delivers the
virtual interrupt.

After injection of the virtual interrupt the
normal-world OS accesses the virtual interrupt con-
troller to read the pending interrupt number, to mask
and to unmask the interrupt.

4.4.2 Access to Secure-world Devices

The normal-world OS cannot access secure resources
directly. Instead, it uses an access driver that sends
requests to the VMM in the secure world. The VMM
interprets the requests and executes the correspond-
ing actions or mediates them to secure drivers and
secure services accordingly. The VMM has complete
access to the state of normal-world OS and can ver-
ify that the request is valid according to a specified
security policy. Furthermore the normal-world OS
cannot access secure resources that are not present
in the VMM as virtual devices. That means that
the configuration of the virtual device environment
with the communication channels to secure services
and drivers implicitly restricts the environment for
the normal-world OS.

3 VMM Secure
Non-secure Application ’m‘ Applisation
24]
Secure Secure
Driver Services
TZ-Linux
1 r
5
[seaurs pevice [

FIGURE 7: Access path for indirect device

access.

Access to a secure device is not as fast as access to
non-secure devices because it involves communcation

between the normal-world OS and the secure-world
OS. Figure 7 shows the control flow from TZ-Linux
to a secure device. which generally involves the fol-
lowing five steps:

1. The access driver in the normal-world OS is-
sues a request to the VMM in the secure-world

OS.

2. The hypervisor saves the normal-world proces-
sor state into the VM state and sends a message
to the VMM.

3. The VMM selects the virtual device and han-
dles the read or write request. For example, it
can send another message to a secure driver in
the service layer or it passes data to an encryp-
tion service.

4. After finishing the request the VMM sends a
reply message to the hypervisor.

5. The hypervisor restores the normal-world pro-
cessor state from the VM state and initiates
the normal-world entry.

Similar to this sequence, interrupts are routed
through the VMM as explained for the normal-world
device access.

As already explained, virtual devices have a com-
munication channel to the secure component that
provides the service. As an example, we describe
how TZ-Linux accesses a secure network device using
a virtual network device inside the VMM. The TZ-
Linux kernel contains a network access driver that
communicates with with a virtual network device in-
side the VMM to access a secure network device. The
virtual network device is connected to the secure net-
work driver. To send a packet the network access
driver sends a request to the virtual network device,
which in turn passes the packet the secure network
driver. Receive operations are efficiently handled us-
ing a ring buffer, shared between TZ-Linux and the
VMM. If the secure network driver receives a packet
it stores it in the next empty slot of the ring buffer.
The network access driver is notified after a success-
ful receive operation by a virtual interrupt. It re-
moves full slots from the ring buffer and allocates
new empty slots. For the performance benchmarks
in this paper we placed the network driver inside the
VMM avoiding additional message passing between
the VMM and the network driver and reducing the
copy overhead for network packets.

4.5 Implementation

We built a prototype to verify and evaluate our de-
sign. During the implementation we investigated the
capabilities and limitations of TrustZone to control
the normal-world OS. As remarked earlier, Trust-
Zone has features that are comparable with already
existing virtualization extensions of other hardware
architectures. The secure-world OS is able to control
the execution of the normal-world OS. The philos-
ophy of TrustZone strives to minimize the interac-
tions between normal world and secure world. This
approach has performance benefits, however it also
limits the virtualization capabilities as illustrated by
the following examples.

The detection of events occurring inside the
normal-world OS is limited by the hardware because
most control registers of the processor are banked
for both worlds. This restricts the ability of the
secure-world OS to virtualize processor features for
the normal-world OS, such as the register contain-
ing the number of physical processors or registers
of debugging features. As another example, recent
processor versions provide an instruction that is exe-
cuted in order to wait for an interrupt and indicates
that the OS is in an idle state >. The detection of
the execution of such an instruction by the normal-
world OS enables the secure-world OS to schedule
other work. However, the ability to trap this in-
struction is not supported. In TZ-Linux we replaced
the critical instruction with a special request to the
VMM to solve this problem.

The partitioning of physical memory as provided
by the hardware is sufficient to encapsulate the OS
inside the normal world, however it is not transpar-
ent. The normal-world OS has to know the physical
memory partition it can use in the system. Changes
in the configuration of the memory partitioning re-
quire a relocation of the normal-world OS. Further-
more this partitioning scheme does not allow fine
grained resource control as provided by the MMU be-
cause the access policy has to be enforced by external
memory controllers using coarse-grained regions.

Device virtualization using trap-and-emulate is
possible but is limited to external device memory.
The normal-world OS can trigger external aborts *
by accessing secure or invalid device memory. Such
aborts trap directly in the monitor if the secure-world
OS has this feature enabled. This mechanism could
be used to emulate access to devices. However, such
aborts can be imprecise with respect to the program

3The instruction is called wfi.

flow °, which means that the processor does not wait
for the completion of the instruction. Therefore, the
secure-world OS has no chance to reconstruct the
written value because the normal-world processor
state has changed irreversibly since the instruction
was executed.

Multiplexing two or more OSes inside the normal
world is supported by our design. It requires careful
handling of shared hardware resources, such as pro-
cessor registers, memory, caches and TLBs. We en-
countered the maintenance of the TLB as an unsolv-
able problem. The TLB distinguishes normal-world
and secure-world entries, but cannot separate en-
tries from different normal-world OSes. That means
one normal-world OS can use entries from another
normal-world OS and break the encapsulation. To
avoid this case a TLB flush is required before the ac-
tivation of another normal-world OS. According to
the TrustZone specification the monitor should be
able to perform this task. However during our tests
we were not able to achieve the desired behaviour,
which remains as an open question.

Finally, recent processor cores add support for
interrupt virtualization. The processor shadows the
interrupt flag when it executes in the normal world
and enters the monitor even if the normal world has
interrupts disabled. Furthermore a virtual interrupt
register is available to aid the injection of virtual in-
terrupts from the secure world.

5 Evaluation

To evaluate the TZ-Linux approach we compare the
required software-engineering effort of this work with
L4Linux. We measured the performance in compari-
son with L4Linux and a non-virtualized Linux using
micro-benchmarks and artificial workloads and ana-
lyzed the virtualization overhead for TZ-Linux.

Hardware Currently the following ARM cores in-
clude a TrustZone extension: the ARM1176JZ(F)-S,
and all processors from the Cortex-A series, such as
the Cortex-A5, Cortex-A8 and Cortex-A9.

Looking for a suitable hardware platform for the
evaluation was a troubling experience. For exam-
ple, some platforms do not allow the execution of
own code inside the secure world. Rather, these
platforms effectively lock the secure world after the
boot process, such as the OMAP3EVM][5] and the

4An external abort is an exception generated by accessing external device memory.
5Whether an abort is precise or imprecise is determined by the attributes of the memory mapping of the normal-world OS.

Beagleboard[2]. All other platforms with TrustZone
support known to us lack the ability to configure
memory and devices into secure-world and normal-
world accessible. Instead all resources of the plat-
form are normal-world accessible.

Therefore we made the assumption that addi-
tional TrustZone-aware components, such as a mem-
ory protection controller or protection controller for
peripherals can be added to a platform to enforce the
security policy. This assumptions does not affect the
soundness of the design and still allows us to evaluate
the prototype implementation.

For the following evaluation, we chose the Re-
alView Platform Baseboard with two Cortex-A9
CPUs (RealView/PBX) and 100 Mhz clock fre-
quency. At a later stage we had the possibility to
use an NVIDIA Tegra2 evaluation system, equipped
with a dual-core Cortex-A9 CPU. The benchmarks
were run with enabled caches.

Software The TZ-Linux and L4Linux are based
on a Linux kernel of version 2.6.31. For the bench-
marks Linux was configured with a 128MB memory
partition and a periodic timer interrupt of 10 mil-
liseconds. The performance measurements were con-
ducted with the cycle-accurate performance counter
of the processor. As a base line we used an unmod-
ified Linux, called non-virtualized Linux, that runs
with the same configuration but has direct access to
all hardware resources.

5.1 Software-Engineering Effort

We count the number of changes that are required to
run TZ-Linux on a virtual platform compared to the
number of changes for a completely paravirtualized
L4Linux kernel. We use source lines of code (SLOC)
as a metric because it can be easily calculated and
is used in the software development community to
quantify the amount of development.

| | TZ-Linux | L4Linux

Interrupt controller 67 250
Timer device 84 70
Memory Management 0 1100
Processor Management 0 200
System calls 0 100
Total 151 1720
TABLE 1: Comparison of modifications in

SLOC required in TZ-Linux and in L{Linuzx to
virtualize the platform.

First, we examine the required changes to modify
the Linux kernel in order to run as a normal-world
OS and a paravirtualized OS. Table 1 shows the re-
sults for TZ-Linux and L4Linux in terms of SLOC. In
comparison to L4Linux, TZ-Linux requires approxi-
mately one tenth of modifications because the mem-
ory management and processor management need no
adaption.

Second, we compare the size of the device models
of the TZ-Linux VMM with the size of similar de-
vice models of the Qemu emulator [17] for the ARM
Realview platform. Table 2 shows that the size of
the device models to support TZ-Linux is about one
tenth the size compared to the Qemu device models.
For reference the figure shows also the size of the
access drivers in TZ-Linux that are co-developed for
the virtual devices in the VMM.

| Qemu device TZ-Linux device TZ-Linux driver |

Interrupt controller 584 103 67
Timer device 228 72 84
Serial device 214 130 180
Block device 3500 67 210

Network device 500 210 320
Total 5026 582 861
TABLE 2: Comparison of similar device

models in SLOC in the TZ-Linux VMM and
the Qemu VMM.

According to our metric, the software-
development effort to implement a virtual platform
is considerably smaller than paravirtualizing the OS
or providing support for a real hardware platform.
There are mainly two reasons for the small code
size of virtual drivers and devices. First, the inter-
face between both is optimized for efficient parame-
ter passing and simplified state transition. Second,
the functionality is tailored without considering any
legacy support.

The hypervisor contains the monitor software
and the function to send a message to the VMM
which contribute to the TCB of security-sensitive
applications. The amount of this code is approxi-
mately 200 SLOC and much smaller than the size of
the VMM.

5.2 Performance

In this section, we compare the performance of TZ-
Linux with a non-virtualized Linux and L4Linux us-
ing the LMbench [23] micro-benchmark tool and arti-
ficial workloads. Furthermore, we analyze the virtu-

alization overhead for our architecture. The bench-
marks are conducted using the RealView PBX board.

5.2.1 Benchmarks

Figure 8 shows the performance of arithmetic oper-
ations normalized to the execution time of a non-
virtualized Linux. As expected, there is only in-
significant overhead visible in TZ-Linux as well as
L4Linux.

W TZ-Linux,

W L4Linux,

O Linux
120% T T

100%

80%

60%

40%

Percentage normalized to Linux

20%

0%
bit add mul div mod

FIGURE 8: LMbench3: Comparison of
arithmetic operations with the execution time
normalized to Linuz.

Figure 9 shows the performance of selected sys-
tem calls normalized to the non-virtualized Linux.
As expected, TZ-Linux has a insignificant overhead
around 2 percent. L4Linux has large overheads (from
200 to 1750 %) because system calls are interposed
by the virtualizing OS.

null_call

FIGURE 9: LMbench3: Comparison of
system call performance with the execution
time normalized to Linux.

To measure the behaviour of TZ-Linux under
high pressure we use three workloads with different
characteristics: a compute intensive workload that
decodes an audio file, an IO-intensive workload that
downloads a file from the local network using the
wget command, and a mixed workload that compiles

10

the jpeg library. In all scenarios the Linux has direct
access to a network device and uses a network-based
filesystem to launch the applications and access the
data. Furthermore, we measure the configuration as
described in Section 4.4.2, called TZ-Linux/secure.
The network driver inside the VMM accesses the net-
work device and TZ-Linux uses an access driver to
send and receive network packets. Figure 10 shows
all benchmarks with the performance normalized to
the non-virtualized Linux. We measured the time
spent in kernel mode and in user mode to point
out their different characteristics. A high kernel-
mode ratio indicates a high number of user-kernel
interactions. While user-mode activity dominates
the audio-decoding benchmark, kernel-mode activity
dominates the file-download benchmark.

@ kernel-mode
B user-mode,

160%
140%

1200
1009+ -

80% -

60%

40% -

20% -~

Percentage normalized to Linux

0%

TZ-Linux/secure]
TZ-Linux/secure]
TZ-Linux/secure]

audio decoding compile file download

FIGURE 10: Comparison of workloads
with the execution time normalized to Linuz.

The performance of the audio-decoding bench-
mark is nearly the same for all versions of Linux be-
cause few user-kernel interactions are required. In
the compile benchmark, L4Linux has 30% more over-
head than TZ-Linux because it involves a high num-
ber of system calls. In the third benchmark TZ-
Linux has an overhead about 23% and L4Linux has
an overhead of roughly 40% compared to the non-
virtualized Linux. This indicates that the routing of
network interrupts through as secure-world OS dom-
inates the observed performance degradation.

For TZ-Linux/secure the performance degrades
compared to TZ-Linux with direct network access
depending on the generated network traffic by the
benchmark. There are two reasons for this perfor-
mance degradation. First, TZ-Linux/secure has to
make a request to the VMM for every send and re-
ceive operation. Second, the secure network driver
inside the VMM requires additional context switches
from the hypervisor to the VMM.

5.2.2 Virtualization Overhead

We examine the measured overhead for TZ-Linux in
more detail. The total overhead depends on the vir-
tualization overhead and concurrent access to shared
resources, such as caches and TLB, by the normal
world and the secure world. The virtualization over-
head is determined by the time to handle one normal-
world exit and the number of normal-world exits for
the specific workload during the measurement pe-
riod.

| Phase | Description | RealView Tegra2 |
1 Normal-world exit 8 0.9
2 Msg from HV to VMM 4.25 1.2
3 Request handling 14 - 26 4-8
4 Msg from VMM to HV 4.25 1.2
5 Normal-world entry 8 0.9
Total 38.5 -50.5 | 8.2-12.2
TABLE 3: Ezecution time in microseconds

for the phases of a request from the normal-
world OS (Msg: Message, HV: Hypervisor)

As discussed in Section 4.4.2 the handling of a
request from the normal-world OS can be separated
into five phases. Table 3 contains the average execu-
tion time of every phase measured with micro bench-
marks. The time spent in the VMM to handle the
request varies depending on the selected virtual de-
vice.

interrupts
monitor call

2,000

1,500[-

1,000

Number of exits

500

audio—decodin:
compile
file-download
audio—decodin:
compile
file-download

TZ-Linux TZ-Linux with secure network

FIGURE 11: Average number of normal-
world exits during a period of 1 second

Figure 11 shows the average number of normal-
world exits for period of 1 second. There are two dif-
ferent types of normal-world exits that can occur in
our architecture: interrupts and monitor calls from
the normal-world OS.

The audio-decoding benchmark, which is com-
pute intensive has the fewest number of normal-world
exits. The periodic injection of timer interrupts is
the only required interaction between normal-world

11

OS and secure-world OS. The number of exits in-
creases for the other two workloads because addi-
tionally network interrupts need to be handled more
frequently.

The number of normal-world exits due to inter-
rupts is higher for TZ-Linux with direct access to the
non-secure network device compared to TZ-Linux
with secure network device especially for the file-
download benchmark. This fact indicates a higher
service rate for network interrupts for the first con-
figuration.

network
timer

Number of injected virtual interrupts

audio—-decodin
compile
file—download
audio—decodin
compile
file-download

TZ-Linux TZ-Linux with secure network

FIGURE 12: Average number of injected
interrupts during a period of 1 second

Figure 12 shows the average number of injected
virtual interrupts during a period of one second. Two
types of interrupts can be injected in this setup: in-
terrupts for the virtual timer device and interrupts
routed for the network device. Network interrupts in
TZ-Linux with indirect access to the secure network
device are generated by a successful receive opera-
tion by the virtual network device inside the VMM.
The number of timer interrupts is fixed in all three
workloads because they are generated with a con-
stant period of 10 milliseconds. However, the num-
ber of network interrupts depends on the workload of
the benchmark. The audio-decoding benchmark re-
quires no network access, while in the file-download
benchmark network interrupts dominate.

TZ-Linux with a secure network device has
fewer virtual network interrupts injected compared
to the first configuration indicating a lower network
throughput. For a detailed description of the reasons
that cause the observed performance degradation ad-
ditional examinations are required.

5.3 Latency

In order to study the latency of an application that
has timely requirements we measured the time that
passes in order to deliver an external event such as
an interrupt.

The latency depends mainly on two factors: the
length of the critical path to deliver the interrupt and
the availability of critical resources that are shared
with other components in the system. The first fac-
tor heavily depends in which world the component is
running because it determines the length of the crit-
ical path. The second factor determines the number
of caches and TLB misses that occur in the path
of the interrupt delivery of the realtime application.
(We do not consider memory as a scarce resource in
our scenarios.)

First we examine the latency of realtime applica-
tions running the secure world and then look at the
latency for normal-world realtime applications. All
measurements are conducted with a Tegra2 board.

5.3.1 Secure-World Realtime Applications
For a secure-world realtime application only the hy-
pervisor is involved in order to deliver the interrupt
using a message. Furthermore, if the system is run-
ning in the normal world an additional world switch
is required.

60
30
0

L——
50

150 ' 250 ' 350 | 450 550 ' 650 ' 750 ' 830 ' 950[10ns]

950[10ns]

(a) Secure-world realtime application without concurrent applications

LI —— T T 3 ~flias
50 150 250 350 450 550

(b) Secure-world realtime application with world switch

et el

650 750 850

12

6
o il it

L
50 150 250 350 550 650

450
1d realtime with vorld

T
950(10 ns]

(b)

12
6

Ot—T—T 7 7T 1 T T
50 150

1d realtime

850 95010 ns]

(©) Sec fon with conc FFworld

FIGURE 13: Latency to deliver an inter-
rupt event to a secure-world realtime applica-
tion.

Figure 13 shows the distribution of the latency
in four different scenarios. Scenario (a) measures the
latency without any resource pressure nor normal-
world application. It servs as a baseline for the other
scenarios. Scenario (b) increases the length of the
interrupt path by adding a small normal-world ap-
plication beside the realtime application. Scenario
(c) runs a concurrent secure-world application that
consumes as much cache and TLB resources as pos-
sible. Scenario (d) runs a concurrent normal-world
application that is consuming resources.

The first scenario measures the latency of the in-
terrupt path without pressure on TLB and caches.
The interrupt is delivered from the hypervisor to the

12

realtime application with a message resulting in la-
tencies of 1.5 microseconds for the average case and
3.4 microseconds for the worst case. The second sce-
nario enforces a world switch in order to deliver the
interrupt. The latency increases by 2 microseconds,
both, for the average and the worst case. In the
third scenario another secure-world application con-
tents on TLB and cache resources. In consequence
the average and worst-case time increase to 3.7 mi-
croseconds and 7.2 microseconds respectively when
compared to the first scenario. In the last scenario
a normal-world application contents on the shared
resources. This further increases the latency as an
additional world switch is required in order to de-
liver the interrupt. The added latency is roughly the
execution time of a world switch in comparison with
the third scenario.

5.3.2 Normal-World Realtime Applications

If the realtime application is running in the TZ-Linux
the latency to deliver an event increases compared
to a secure-world application because the VMM is
part of the interrupt path as shown in Figure 6. For
the following discussion we assume that the priori-
ties of all software components are configured with
the highest priority. For example, that means the
VMM cannot be preempted by another application
with a higher priority in the system.

I‘\I\HI 1 H‘Lllmllﬂ :

2400

0 T T T 1L
1200 ' 1600 2000

(@) Normel-world realtime application

28‘00 3ZbO i 3Gb0 i 40‘00 [10ns]

acet weel

11
T T y T T T
1200 1600 2000 2400 2800 3200 3600

(b) Normal-world realtime application with concurrent secure world application

4000 [101s]

FIGURE 14: Latency to deliver an inter-
rupt event to a normal-world realtime applica-
tion under two different load scenarios.

Figure 14 shows the distribution of the latency in
two different scenarios. Scenario (a) measures the la-
tency of the interrupt path without resource pressure
for the normal-world realtime application. Scenario
(b) runs a cache and TLB flooder workload in the
secure world to consume as much resources as possi-
ble.

The intention of the first scenario is to measure
the ’'pure’ latency of the interrupt for the normal-
world application without contention on resources.

The diagram shows the distribution of the execution
time to deliver a timer interrupt to the TZ-Linux
kernel. The average execution time is around 20 mi-
croseconds while the measured worst-case execution
time is 2750 micoseconds. The high latency is caused
by the interrupt routing for normal-world interrupts.
Two secure-world components are involved during in-
terrupt delivery, the hypervisor and the VMM. In-
terrupt injection takes place in several phases as de-
scribed in Section 4.4.1 with a worst case execution
time of each phase shown in Table 3. Due to the im-
plementation of the interrupt controller model in the
VMM there is an additional exit beside the exit for
the host interrupt, which acknowledges the interrupt.
So there are two exits required for one interrupt de-
livery.

In the second scenario another secure-world ap-
plication consumes a much as cache and TLB as pos-
sible. The VMM (and therefore the normal-world
OS) have a higher priority than the secure-world ap-
plication avoiding starvation. The measured aver-
age case and worst case time are considerable longer
than in the first scenario. Even we have no detailed
knowledge of the execution time of each phase the
reasonable assumption is that cache and TLB set an
order of magnitude large than in the secure-world
realtime application scenario.

In conclusion, the virtualization overhead as well
as shared resource contention increase the measured
latency and worst case time in reasonable ways for
realtime workload running in the normal world.

6 Related Work

To the best of our knowledge this work is the first
publication that examines and evaluates the capa-
bilities and limitations of virtualization support of
the TrustZone architecture in the embedded systems
research community.

Trusted Logic [7] develops the Trusted Foun-
dations Software that is deployed as reference
implementation for secure world components in
TrustZone-enabled systems. The goal is to offer a se-
cure environment and a common framework for the
integration secure software development. Operating
systems running in the normal world can call secure
services using the Trusted Foundations API.

Winter [26] instantiated a Linux systems in the
normal world and an SE-Linux system in the secure
world. Both Linux instances communicate using de-
vice model similar to the one presented here. How-
ever there is no performance evaluation available.

13

Yan-ling [27] describes a system with an SE-
Linux system in the normal world providing isola-
tion for secure components on top and accessing the
secure-world OS using the provided TrustZone API.
As the system is not implemented an evaluation is
missing.

The work of Sangorrin et. al. [24] describes a
similar architecture as presented in this paper run-
ning a small realtime OS in the secure world and a
Linux-based OS in the non-secure world. However,
realtime applications in the secure OS are not iso-
lated and can compromise the complete system.

There is a large number of closed-source products
available that support isolation of system-level com-
ponents including operating systems. Green Hills
[3] uses a security architecture that employs Trust-
Zone technology to assist virtualization. Paravirtu-
alization techniques are applied by solutions such as
PikeOS [6], OKL4 [4], Trango [9] and VirtualLogix
[8]. Until today all requests regarding information
about the design or the performance or requests to
evaluate the software were not successful, so that a
comparison is not possible.

Xen[16] is popular virtualization solutions for
desktop and server systems. The Xen hypervisor has
been ported to ARMv5 architecture and uses par-
avirtualization to virtualize a normal-world OS [21].
The numbers for the LMbench benchmark presented
indicate lower overhead than L4Linux shows but are
still an order of magnitude higher than measured for
TZ-Linux.

7 Conclusions

This paper presented an approach based on full vir-
tualization using TrustZone to isolate an operating
system as needed in state-of-the-art security archi-
tectures. The use of TrustZone’s virtualization capa-
bilities resulted in a much lower number of required
changes to the Linux as a normal-world OS (about
153 lines of code) as compared to a paravirtualization
approach. The device drivers and models needed for
the implementation of the platform are in the order
of 900 source lines of code. The resulting perfor-
mance overhead ranges from barely measurable to
up to 20% depending on the characteristics of the
workloads. The realtime capabilities of the system
strongly favor secure realtime applications while not
exclude the execution non-secure realtime applica-
tions. We think that this work provides a baseline for
upcoming virtualization capabilities of future ARM
cores.

8 Acknowledgements

We would like to thank the European Commision for
supporting us through the 7th Framework Program
with the projects TECOM ¢ and eMuCo 7.

References

[1] AMD Virtualization (AMD-V) Technology. Lo-
cated at: http://www.amd. com.

[2] BeagleBoard. Located at: http:
//beagleboard.org/.
[3] INTEGRITY Secure Virtualization.

http://wuw.greenhillssoftware.com/news/
20091021 _ARM_TrustZone_Solution.html.

[4] OKL4 Homepage.

ok-labs.com.

Located at: http://www.

OMAP3EVM Evaluation Platform . Located
at: http://focus.ti.com/docs/toolsw/
folders/print/tmdsevm3530.html.

[5]

[6]

Pikeos homepage.
sysgo.com/.

Located at: http://www.

[7]

Trusted Logic Homepage. Located at: http:
//www.trusted-logic.com/.

18]

Virtual Logix Homepage.
//www.virtuallogix.com.

Located at: http:

[9]

VMWare Homepage. Located at: http://www.
VMWare. com.

[10] Primecell infrastructure amba™ 3 trustzone™™

protection controller, November 2004.

[11] Trusted mobile platform software architecture
description, October 2004.

[12] Amba™ 3 trustzone™ interrupt controller,
September 2008.

[13] ARM Security Technology Building a Secure
System using TrustZone Technology, 2009.

[14] Trustzone address space controller (tzc-380)
technical reference manual, March 2010.

[15] Tiago Alves and Don Felton. Trustzone: Inte-
grated hardware and software security, 2004.

[16] Paul Barham, Boris Dragovic, Keir Fraser,
Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Tan Pratt, and Andrew Warfield. Xen
and the Art of Virtualization. In Proceedings

Shttp://tecom-project.eu/
"http://emuco.eu/

14

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

of the 19th ACM Symposium on Operating Sys-
tem Principles (SOSP), pages 164-177, Bolton
Landing, NY, October 2003.

Fabrice Bellard. QEMU, a Fast and Portable
Dynamic Translator. USENIX, 2005.

Hermann Hértig, Michael Hohmuth, Norman
Feske, Christian Helmuth, Adam Lackorzynski,
Frank Mehnert, and Michael Peter. The nizza
secure-system architecture. In In IEEE Collab-
orateCom 2005. IEEE Press, 2005.

E. C. Hendricks and T. C. Hartmann. Evolution
of a virtual machine subsystem. IBM Syst. J.,
18(1):111-142, 1979.

M. Hohmuth. Linux-Emulation auf einem
Mikrokern. Master’s thesis, TU Dresden, Au-
gust 1996. In German; with English slides.
Available from URL: http://os.inf.tu-dres-
den.de/ “hohmuth/prj/linux-on-14/.

Joo-Young Hwang, Sang-Bum Suh, Sung-Kwan
Heo, Chan-Ju Park, Jae-Min Ryu, Seong-Yeol
Park, and Chul-Ryun Kim. Xen on arm: Sys-
tem virtualization using xen hypervisor for arm-
based secure mobile phones. pages 257 —261,
jan. 2008.

Intel Corporation. Intel Virtualization Technol-
ogy Specification for the TA-32 Intel Architec-
ture, April 2005.

L. McVoy and C. Staelin. Imbench: Portable
tools for performance analysis. In USENIX An-
nual Technical Conference, pages 279-294, 1996.

Daniel Sangorrin, Shinya Honda, and Hiroaki
Takada. Dual operating system architecture for
real-time embedded systems. July 2010.

P. Wilson, A. Frey, T. Mihm, D. Kershaw, and
T. Alves. Implementing embedded security on
dual-virtual-cpu systems. Design Test of Com-
puters, IEEE, 24(6):582 —591, nov.-dec. 2007.

Johannes Winter. Trusted computing building
blocks for embedded linux-based arm trustzone
platforms. In STC ’08: Proceedings of the 3rd
ACM workshop on Scalable trusted computing,
pages 21-30, New York, NY, USA, 2008. ACM.

Xu Yan-ling, Pan Wei, and Zhang Xin-guo. De-
sign and implementation of secure embedded
systems based on trustzone. Embedded Software
and Systems, Second International Conference
on, 0:136-141, 2008.

15

