
Userspace I/O drivers in a realtime context

Hans J. Koch

Linutronix GmbH

Bahnhofstr. 25, 88690 Uhldingen, Germany

hjk@linutronix.de

Abstract

Userspace I/O (UIO) drivers and realtime kernels often meet each other, since both are frequently used on
embedded devices. Being designed to handle strange devices like FPGAs found on embedded boards, UIO is
a simple and convenient way to implement a driver for such devices. However, the author frequently receives
enquiries from people who are uncertain about the performance of a driver partly written in userspace,
especially in a realtime system. This article shows how UIO works, and how it performs under realtime
conditions.

1 Introduction

The Userspace I/O framework (UIO) was introduced
in Linux 2.6.23 and allows device drivers to be writ-
ten almost entirely in userspace. UIO is suitable
for hardware that does not fit into other kernel sub-
systems, like fieldbus cards, industrial I/O cards, or
A/D converters. Programmers in industry who work
with such hardware are rarely kernel experts. Writ-
ing and maintaining a large inkernel driver for special
hardware of this kind can be a nightmare.

UIO addresses this situation by allowing the pro-
grammer to write most of the driver in userspace us-
ing all standard application programming tools and
libraries. This greatly simplifies development, main-
tenance, and distribution of device drivers for this
kind of hardware.

2 Linux device drivers

Hardware devices can be grouped by function (net-
work devices, block devices) or by the way they are
connected to the processor (PCI devices, USB de-
vices). These different groups (or classes) of hard-
ware are supported by different kernel subsystems.

For example, if somebody wants to develop a driver
for a new PCI network card, he will make use of
the already existing PCI and networking subsystems.
He will only implement those functions that are re-
ally hardware specific. He will neither implement the
many thousand lines of code that are needed for ev-
ery PCI card nor the many thousand lines needed for
every networking device.

The programmer in this example will also notice
that there are already many drivers for other PCI
networking cards in the kernel source tree. He can
use them as examples or templates for his own driver.

As a result, drivers for standard hardware are
relatively small and easy to implement. They can be
easily included in the mainline kernel source tree,
which simplifies future maintenance of the driver
code.

Unfortunately, there is a lot of hardware out
there that does not fit into one of these subsystems.
Analog or digital I/O, fieldbus interfaces, or custom
specific FPGAs are examples for such hardware.

1

3 A new driver model? Why?

Drivers for such non-standard hardware are often im-
plemented as character devices. For very simple de-
vices, the read() and write() methods of the device
file are all that is needed to control the device from
userspace.

But typically this sort of hardware tends to be
more complex. Driver authors usually implement all
the extra functionality using ioctl().

Figure 1 shows the architecture of such a con-
ventional driver.

FIGURE 1: Conventional driver

Note that this sort of driver will have to use many
internal kernel functions and macros. For several
good reasons, the kernel developers refuse to keep the
internal API stable. This means that a driver that
works fine with today’s kernel might neither work nor
compile anymore in three months. Drivers included
in the mainline kernel do not share this problem:
A programmer who applies changes to the internal
API is of course obliged to fix all affected drivers,
so the community will actually maintain the driver.
But the special driver for non-standard hardware will
probably never make it into the mainline kernel, so
the original author is fully responsible for keeping his
driver up-to-date.

Summing it all up, a programmer who needs to
develop a driver for such a device used to be in this
situation: He must write a complete inkernel driver
from scratch. The driver will become large because
there is no support by existing subsystems. There
are no examples in the kernel sources. He will face a
steep learning curve since he has to deal with many
internal kernel functions and macros. Debugging the
driver will be very different from debugging an ap-
plication. The driver will not go to mainline, so he
will have considerable work maintaining it through-
out the whole lifetime of the product.

To address this situation, the Userspace I/O
framework was introduced.

4 How does UIO work?

A device driver has basically two tasks:

1. accessing device memory

2. dealing with interrupts generated by the device

The first task is easy to accomplish. Linux is able
to map physical device memory to an address acces-
sible from userspace. This has already been possible
by using /dev/mem, and a lot of people used it for
similar purposes, introducing some security leaks or
stability problems. UIO improves this by prevent-
ing userspace from mapping memory that does not
belong to the device. The UIO core already has an
mmap() implementation capable of doing this for all
kinds of memory (physical, logical, and virtual mem-
ory). A UIO driver author does not have to deal
with the non-trivial internals of Linux kernel mem-
ory management in any way.

The second task is more difficult. Interrupts need
to be serviced within the kernel because it is not
possible to do that in userspace. With today’s level-
triggered interrupts, the machine will hang if the in-
terrupt is still active at the end of the interrupt ser-
vice routine (ISR). Therefore, we still need a small
kernel module containing a minimal ISR that only
needs to acknowledge or disable the interrupt. All
the other work is done in userspace.

If the userspace part of the driver wants to wait
for an interrupt, it simply does a blocking read()
from /dev/uioX. This call will return immediately
as soon as an interrupt occurs. UIO also implements
the poll() system call, so you can (and should) use
select() to wait for an interrupt. The select() func-
tion has a timeout parameter that can be used to
prevent the task from hanging if there are no more
interrupts.

Figure 2 shows a very small kernel driver that
calls only a few kernel functions. Most of the func-
tionality is handled in a generic way by the UIO
framework, effectively protecting the driver author
from the dirty sides of the kernel. As a bonus, the
UIO framework generates a set of directories and at-
tribute files in sysfs. These sysfs attributes allow
searching for devices, finding the correct size of the
memory mappings, version of the kernel driver, and
so on.

2

FIGURE 2: UIO driver

5 Example kernel driver

Handling interrupts is the main reason why a kernel
module is necessary. However, the ISR can be very
small. All it needs to do is ensure that the interrupt
line becomes inactive again. It is also good style to
handle shared interrupts properly, even if the current
hardware does not make use of it. A typical ISR for a
UIO driver will usually look like this (pseudo code):

static irqreturn_t my_handler(int irq,

struct uio_info *dev_info)

{

if (IRQ is not caused by my hardware)

return IRQ_NONE;

/* Disable interrupt */

(Perform some register access

to silence the IRQ line)

return IRQ_HANDLED;

}

Next, we need to implement the driver’s probe
function. Here we fill a structure of type struct
uio info with information about the device. There
is a name and a version string that should be set to
a value that is meaningful for the userspace part of
the driver. The UIO core will report an error if one
of these strings is a NULL pointer, so we might as
well fill in something useful.

We also need to fill in the device resources. How
exactly we get this information depends on what
kind of device we have. For a PCI card, we will call
pci resource start() and pci resource len() to get in-
formation about the card’s memory resources. A PCI

card is physical memory, so we set the memtype field
to UIO MEM PHYS. The IRQ was already detected
by the PCI subsystem and can be found in struct
pci dev-¿irq. We also pass in the flags we want the
UIO core to use for request irq().

Having set up struct uio info, we then call
uio register device(). If this function returns any
non-zero value, something went wrong and we let
the whole probe function fail, returning -ENODEV.
Note that we can also perform our own tests here
to find out if the hardware is really in a usable state
and let probe() fail if it is not. Actually, we should at
least check the more obvious errors, e.g. the presence
of the physical memory.

Putting it all together, a probe function for a
PCI card could look like this:

static int __devinit my_pci_probe(struct pci_dev *dev,

const struct pci_device_id *id)

{

struct uio_info *info;

info = kzalloc(sizeof(struct uio_info),

GFP_KERNEL);

if (!info)

return -ENOMEM;

if (pci_enable_device(dev))

goto out_free;

if (pci_request_regions(dev, "my_card"))

goto out_disable;

info->name = "my_card";

info->version = "0.0.1";

info->mem[0].addr = pci_resource_start(dev, 0);

if (!info->mem[0].addr)

goto out_release;

info->mem[0].internal_addr =

ioremap(pci_resource_start(dev, 0),

pci_resource_len(dev, 0));

if (!info->mem[0].internal_addr)

goto out_release;

info->mem[0].size = pci_resource_len(dev, 0);

info->mem[0].memtype = UIO_MEM_PHYS;

info->irq = dev->irq;

info->irq_flags = IRQF_SHARED;

info->handler = my_handler;

if (uio_register_device(&dev->dev, info))

goto out_unmap;

pci_set_drvdata(dev, info);

return 0;

out_unmap:

iounmap(info->mem[0].internal_addr);

3

out_release:

pci_release_regions(dev);

out_disable:

pci_disable_device(dev);

out_free:

kfree (info);

return -ENODEV;

}

If the probe function is successful, we remem-
ber the pointer to the uio info structure by calling
pci set drvdata(). This is necessary because we need
that pointer at module unload time to unregister our
UIO device.

You can find working examples of UIO drivers
for PCI cards in drivers/uio/, e.g. uio cif.c, in the
kernel source tree.

6 Example userspace driver

Let’s have a look at a minimal UIO userspace driver.
The following code simply opens a UIO device, maps
its memory, and waits for interrupts. I omitted all
error checking, and the code does not do anything
with the mapped memory:

int32_t irq_count;

int fd = open("/dev/uio0", O_RDWR);

void *map_addr = mmap(NULL, 4096,

PROT_READ | PROT_WRITE,

MAP_SHARED, fd, 0);

/* Always read exactly 4 bytes! */

while (read(fd, &irq_count, 4) == 4) {

printf(Interrupt number %d\n,

irq_count);

}

For a real driver, this code has to be improved, of
course. The values returned by open() and mmap()
need to be checked for errors, and we should call
munmap() before we leave the program. The name
of the device file (/dev/uio0) and the size of the
memory mapping (4096) should never be hardcoded.
The values we set up in the kernel module in the
last chapter are available in sysfs and should be
used here. Instead of blindly assuming that our de-
vice is /dev/uio0, we should check if the string in
/sys/class/uio/uio0/name is really the name we set
in our kernel part. If it is not, we try uio1, uio2,
and so on. In the mmap() call, we should use the
value found in /sys/class/uio/uio0/maps/map0/size
instead of hardcoding the size value.

Note that UIO implements mmap() in an un-
usual way. The last parameter (“offset”, 0 in the ex-
ample above) is used to tell UIO which mapping we
want to use. It has to be set to N*getpagesize() for
mapping number N. An offset cannot be given, UIO
always maps from the beginning of the memory. This
strange behaviour of mmap() was necessary to allow
devices to have more than one address range that can
be mapped. If mmap() was successful, map addr is
a pointer to the beginning of the device’s memory.

The read() call in our example needs some ex-
planation. It is important to read exactly four bytes.
The internal counter in the UIO core is a signed 32-
bit integer on all architectures, so you should use a
suitable type (like int32 t in the example) for your
counter variable. The read() call will block, until an
interrupt occurs, there is no way around this. You
cannot specify O NONBLOCK in your open() call.

In most applications, it is not desirable to have
a read() call that blocks forever if no interrupt oc-
curs. You can use select() to find out if a subsequent
read() will block. It is also possible to pass a timeout
value to select(), making it return if nothing happens
within the given time. Read the manpage of select()
for details. Another advantage of select() is that it
can wait for multiple file descriptors. Applications
often not only wait for interrupts but also e.g. for
data to arrive from a socket. Using select() can elim-
inate the need for several threads in many cases.

One last detail: The open() call in our example
opens the UIO device file with O RDWR. We do not
want to write to the UIO device file, so why did I
use O RDWR? The answer is simple: If we opened
the UIO device with O RDONLY, the subsequent
mmap() with PROT WRITE set would fail. As we
want to have read and write access to our device
memory, we have to use O RDWR.

6.1 libuio

Userspace parts of UIO drivers generally contain
code segments that are independent of the hard-
ware, e.g. finding the UIO device by name, opening
it, mapping memory using the information given in
sysfs, and so on.

We created a library called libuio that contains
these frequently needed functions. It is licensed un-
der the terms of the LGPL. A link to the git reposi-
tory is given at the end of this document [1].

4

7 Performance considerations

There are two important things to look at: How fast
can we access the card’s memory (registers)? How
long does it take until the userspace part of the driver
can respond to an interrupt?

The following two chapters deal with these as-
pects.

7.1 Performance of memory access

In real-world drivers, ioctl() is often used to write a
single value to a hardware register. As can be seen in
figure 3, this is not as straight-forward as one might
think. In that one syscall, the Virtual File System
(VFS) first needs to find the ioctl implementation
for that device and call it. Then the ioctl function
will copy the value from userspace to kernelspace.
And finally, the value is written to the card. If the
call is supposed to return a result, that same path
(reversed) is walked again.

In a UIO driver, the device’s memory is directly
mapped into userspace. Writing to a register is as
simple as an access to a normal array of integers.
This makes UIO userspace driver code faster and eas-
ier to read.

FIGURE 3: ioctl() vs. direct memory ac-
cess

7.2 Interrupt latency

The interrupt latency of a UIO driver is obviously
slightly longer than the one of an in-kernel driver,
because the userspace process needs to be woken up.
But how large is that latency overhead, and how can
it be measured?

Most UIO drivers depend on a certain hardware.
That makes it difficult to compare different boards

or architectures. To work around that problem, I
use a driver called uio dummy for testing. I wrote
this driver a few years ago to test the UIO core. The
kernel part of uio dummy uses a timer that regu-
larly calls uio event notify(). This function is also
called when real hardware interrupts occur in a nor-
mal driver. That means that uio dummy can very
well be used for testing interrupt behaviour without
the need for real hardware.

The userspace part of the uio dummy driver can
be very small, too. All it needs to do is call select()
to wait for an interrupt. After select() returns, it has
to call read() to allow the next interrupt to trigger
the UIO core handler.

The time when uio event notify() is called is the
time when an in-kernel driver could respond to an in-
terrupt. The time when select() returns is the time
when the userspace part of the UIO driver can re-
spond to the interrupt. Consequently, the difference
between these times is the UIO latency overhead we
are looking for.

Both times can be measured using a ker-
nel with tracing enabled. Make sure you
have CONFIG FUNCTION TRACER and CON-
FIG DYNAMIC FTRACE enabled.

With such a kernel, and a userspace program
called uio events, you can do something like this:

#!/bin/sh

if ! lsmod | grep uio_dummy

then

echo Loading uio_dummy...

modprobe uio_dummy

fi

./uio_events 2>&1 > /dev/null &

PID=‘pidof -s uio_events‘

echo uio_events started, pid = $PID

if ! mount | grep debugfs

then

echo Mounting debugfs on /sys/kernel/debug/...

mount -t debugfs nodev /sys/kernel/debug/

fi

cd /sys/kernel/debug/tracing

echo uio_event_notify > set_ftrace_filter

echo function > current_tracer

echo global > trace_clock

echo 1 > events/syscalls/sys_exit_select/enable

cd events/syscalls/sys_exit_select/

echo "common_pid==$PID" > filter

5

cd /sys/kernel/debug/tracing

cat trace_pipe

This gave me the following output on a lap-
top with Core i3 processor, running 2.6.33.7-rt29,
uio dummy produced one interrupt per second:

...

sirq-timer/0-5 [000] 377.437654: uio_event_notify <-uio_dummy_timer

uio_events-1971 [000] 377.437680: sys_select -> 0x1

sirq-timer/0-5 [000] 378.437251: uio_event_notify <-uio_dummy_timer

uio_events-1971 [000] 378.437278: sys_select -> 0x1

sirq-timer/0-5 [000] 379.440866: uio_event_notify <-uio_dummy_timer

uio_events-1971 [000] 379.440893: sys_select -> 0x1

sirq-timer/0-5 [000] 380.438907: uio_event_notify <-uio_dummy_timer

uio_events-1971 [000] 380.438923: sys_select -> 0x1

sirq-timer/0-5 [000] 381.436042: uio_event_notify <-uio_dummy_timer

uio_events-1971 [000] 381.436069: sys_select -> 0x1

sirq-timer/0-5 [000] 382.435631: uio_event_notify <-uio_dummy_timer

uio_events-1971 [000] 382.435654: sys_select -> 0x1

sirq-timer/0-5 [000] 383.439290: uio_event_notify <-uio_dummy_timer

uio_events-1971 [000] 383.439309: sys_select -> 0x1

sirq-timer/0-5 [000] 384.438831: uio_event_notify <-uio_dummy_timer

uio_events-1971 [000] 384.438855: sys_select -> 0x1

sirq-timer/0-5 [000] 385.438425: uio_event_notify <-uio_dummy_timer

uio_events-1971 [000] 385.438452: sys_select -> 0x1

sirq-timer/0-5 [000] 386.442043: uio_event_notify <-uio_dummy_timer

uio_events-1971 [000] 386.442067: sys_select -> 0x1

sirq-timer/0-5 [000] 387.437709: uio_event_notify <-uio_dummy_timer

uio_events-1971 [000] 387.437741: sys_select -> 0x1

sirq-timer/0-5 [000] 388.437237: uio_event_notify <-uio_dummy_timer

uio_events-1971 [000] 388.437258: sys_select -> 0x1

...

The differences are 26, 27, 27, 16, 27, 23, 19, 24,
27, 24, 32, and 21 microseconds between the call to
uio event notify and the return of userspace’s select()
call.

For comparison, cyclictest on the same computer
delivered the following results:

cyclictest -n -p80

...

... Min: 5 Act: 11 Avg: 52 Max: 134

This is just a short example to show that UIO
latency overhead does not stand out when compared
to other latencies in the system. More detailed mea-
surement results will be made available, a link can
be found at the end of this article [2].

7.3 Experiences with real systems

The author developed several UIO drivers for cus-
tomer’s embedded products. One example is a board
equipped with an ARM11 CPU (Freescale i.MX31)

where a custom specific chip caused 1000 inter-
rupts/sec. These were easily handled by the UIO
driver, even at 90% CPU load.

UIO drivers for fieldbus cards that are in main-
line, like uio cif.c and uio sercos3.c can produce a
similar interrupt load and are in commercial produc-
tion use for quite a while.

It should be obvious that in real world systems,
with high CPU loads and many RT tasks, optimizing
the system, e.g. by tuning thread priorities, can con-
sume a considerable amount of development time.

8 Conclusion

UIO is the easiest way to write a driver for devices
that are not supported by other subsystems. It al-
lows programmers to write the major part of the
driver in userspace, using all the tools, programming
languages, and libraries they are aquainted with.

The kernel part of the driver is very small and
easy to write and to maintain. After passing the re-

6

view process, it is usually no problem to include it
into the mainline kernel.

The interrupt latency overhead of UIO usually

causes no problems and is often negligible. Com-
pared to in-kernel character device drivers, it is often
more than compensated by the fast register access
through mapped memory.

References

[1] http://git.linutronix.de/gitweb.cgi?p=projects/libUIO.git;a=summary

[2] http://hansjkoch.de/˜hjk/uio

7

