
Virtual Processors as Kernel Interface

Adam Lackorzynski, Alexander Warg

Technische Universität Dresden

Department of Computer Science

Operating Systems Group

{adam, warg}@os.inf.tu-dresden.de

Michael Peter

Technische Universität Berlin

Deutsche Telekom Laboratories

Security in Telecommunications

peter@sec.t-labs.tu-berlin.de

Abstract

After virtualization has gained traction in a variety of fields ranging from the desktop computer
to datacenter servers, it is likely to make inroads into embedded systems as well. The complexity of
a VM implementation depends on the virtualization abilities of the processor used. Unfortunately, the
instruction set architecture of many popular embedded CPUs is not virtualizable, which precludes efficient
pure or faithful virtualization.

In this paper, we make the case for operating system (OS) rehosting, a flavor of virtualization that
lends itself to implementations of low complexity and does not rely an CPU virtualization extensions.
The feasibility of OS rehosting crucially depends on the traits of the interface of the underlying kernel.
Our observation was that the ubiquitously used thread model is rather poorly suited to run an OS on top.
As a solution, we propose the currently often employed threads be supplemented with virtual processors
(vCPUs), an abstraction that is more aligned with the underlying hardware.

To evaluate our proposition, we ported the Linux kernel to a vCPU enhanced version of the Fiasco
microkernel. Compared to a previous thread-based version, the vCPU version required much less devel-
opment effort. The performance gains range from slight to well-pronounced depending on the workload.

1 Introduction

The market for embedded devices has undergone a
fundamental transition in the recent past. Closed
special purpose devices with a fairly limited re-
source budget have turned into general purpose gad-
gets that often exhibit performance characteristics
of desktop machines of a couple of years ago. Such
rapid strides in capabilities led to calls for new fea-
tures, foremost the ability to customize devices by
installing software according to personal preferences.
However, the record of operating systems in the last
years does not instill confidence when it comes to
security. What is a nuisance on desktop systems, be-
comes an unacceptable risk for some embedded sys-
tems. For example, no network operator can tolerate
smartphones that came under illegitimate control af-
ter a downloaded application subverted the handset
and turned it into a jammer.

The situation is complicated by the presence
of multiple parties who want their interests safe-
guarded. The owner wants his assets such as access

codes protected. The network operator is concerned
about stable network operations. Content providers
insist on the enforcement of the consumption rules
for their content. Unfortunately, current systems
have inherent design and implementation flaws that
prevent them from isolating multiple stakeholders on
one machine reliably. The underlying reason is the
lack of mechanisms to grant authority selectively fol-
lowing the principle of least authority. There are too
many parts of the system that run with privileges
sufficient to take over the whole system if subverted.

Microkernels have shown that they can con-
tribute to making the trustworthiness problem more
tractable. Their contribution is twofold: first, they
allow for the construction of systems with very small
trusted computing bases (TCB). That is achieved by
minimizing the amount of code running in the most
privileged execution mode, where it is, by definition,
part of the trusted computing base of any applica-
tion regardless of whether the code is actually needed
by an application. In contrast, functionality resident
in user-level tasks can only affect other applications
if it was explicitly granted sufficient authority.

1

Second, not subject to backward compatibility
requirements, microkernels can break new grounds
regarding security features. A huge step for-
ward was the adoption of capability-based security
schemes [19][12]. Facilitating the principle of least
authority, capabilities are regarded as superior to
access-control lists based systems [16].

Their individual shortcomings notwithstanding,
operating systems are valuable components that no
non-trivial system can dispense with. Economic
pressure mandates the deployment of existing sys-
tems as no single organisation can hope for devel-
oping a reasonable OS in an acceptable time frame.
Virtualization allows leveraging their strengths while
still enforcing isolation thereby limiting the poten-
tially affected scope in case of a failure or subversion.

Commodity processors in desktop and server sys-
tems feature to a large extent virtualization exten-
sions, which are missing from most embedded pro-
cessors. Yet, previous work[9] has shown that small
kernels can encapsulate operating systems on com-
modity processors that do not efficiently support vir-
tualization.

For reasons that are partly historical, microker-
nel designs paid more attention to raw message pass-
ing performance than to the ease of OS rehosting.
In this paper, we propose to augment the kernel in-
terface with virtual CPUs, an execution abstraction
that bears a close resemblance to physical CPUs.
This addition to the kernel interface has the poten-
tial to reduce the porting effort while increasing the
confidence in the correctness of the changes to the
guest operating system.

1.1 Outline

We will proceed with a discussion of what the choices
are regarding the implementation of the CPU part of
virtual machines (Section 2) before we detail the de-
sign of virtual CPUs in Section 3. To prove the feasi-
bility of the proposition, we report on our implemen-
tation (Section 5) and describe how the Linux kernel
can be ported onto it (Section 6). Our conclusion
(Section 9) is preceded by measurements (Section 7)
that give an impression of the performance charac-
teristics and related work (Section 8).

2 Virtualization

The term virtualization itself is used in two differ-
ent contexts which occasionally gives rise to confu-
sion. In a wider sense, virtualization is a technology

whereby operating systems run on a machine with-
out exercising absolute control over it. In that mean-
ing it is left open whether the guest OS is modified
and, if so, how intrusive that modification is. Apart
from (faithful or pure) virtualization, paravirtualiza-
tion and OS rehosting are possible.

In a stricter sense, virtualization denotes a
method whereby software is provided with an envi-
ronment that is a genuine replica of a physical ma-
chine. If used in that context, it contrasts with par-
avirtualization and OS rehosting as the two latter
provide environments that only resemble a physical
machine. Accordingly, virtualization is, in principle,
compatible with all operating systems whereas par-
avirtualization and OS rehosting require more or less
intrusive changes. Figure 1 illustrates the different
virtualization approaches, which we will describe in
more details in the following sections.

b)

c) d)

a) OS

Hardware

Hypervisor/VMM

Hardware

OS

Hypervisor/VMM

Hypervisor/VMM

Hardware

OS

OS

OS

OS

Hardware

No virtualization

OS Rehosting

Full Virtualization

Paravirtualization

OS

HW InterfaceOS API

HW Interface with problematic

instructions replaced with

Hypervisor calls

FIGURE 1: Overview over different vir-
tualization approaches. Virtualization dupli-
cates the machine interface with high fidelity,
whereas paravirtualization replaces problem-
atic instructions with calls to the underlying
kernel. OS rehosting goes further and provides
a fairly abstracted kernel interface with many
implementation specifics left out.

2.1 Faithful Virtualization

Faithful virtualization – sometimes also referred to
as pure or full virtualization – provides an environ-
ment that is a genuine copy of a physical machine.
That allows for an existing operating system to be
deployed without any modifications.

However, despite its merits, virtualization did
not catch on in the commodity market because com-
modity processors did not have adequate support for

2

virtualization. For an instruction set architecture
(ISA) to be virtualizable, it has to meet the Popek-
Goldberg criterion[17]. Briefly, it mandates that
each sensitive instruction is also privileged. A sensi-
tive instruction is one that either reveals (privileged)
execution state or affects the execution1. Many pop-
ular ISAs, though, are not virtualizable with x86[18]
and ARM[6] the most prominent examples.

Although it is possible to implement faithful vir-
tualization on CPUs with non-virtualizable ISAs, do-
ing so efficiently involves complex technologies such
as binary translation[3][1]. As such, this approach
is of little appeal to security-concerned systems be-
cause their trustworthiness is negatively affected by
complexity.

2.2 Paravirtualization

Faithful virtualization depends on the ability to effi-
ciently intercept all of the guest’s accesses to privi-
leged resources such as control registers. That is nec-
essary to retain control over the machine and present
the guest with the behavior he would see if executing
on a physical machine.

If not all accesses to privileged resources cause
an exception or those exceptions are too expensive,
it is reasonable to adopt a modified architecture,
which is simpler to implement and yield better per-
formance [20]. To that end, problematic privileged
instructions are replaced with direct calls into the
underlying software layer, which requires source code
access. That is rather straight-forward task, which
can even be fully automated[14].

The drawback of that approach is that it often
draws on very specific ISA features for efficiency. For
example, Xen [5]- a prominent representative for par-
avirtualization - makes use of three privilege rings on
x86 and segmentation in order to use a single page
table for both guest kernel and guest user. Such a
close dependence on an ISA makes it non-portable.
ARM, for example, features only two privilege levels
and does not come with segmentation. Although an
alternative implementation with dedicated pageta-
bles for guest user and guest kernel might incur a
lower performance penalty on ARM2 than on x86,
the diverging implementations would complicate the
common code base.

2.3 OS Rehosting

Paravirtualization pays for the non-intrusive guest
changes with the introduction of complexity into the
kernel, which has to cover all quirks of a given ISA.
That contrasts with OS rehosting, which aims to cap-
ture only those features that are necessary to host an
operating system. The intention behind that change
is to simplify the implementation of the kernel by
deliberately dropping unused features that are of no
importance for modern operating systems.

The simplification of the kernel comes at the cost
of more intrusive changes required for the guest OS.
Depending on the used system, it is likely possi-
ble that the features provided by the kernel such
as threads or address spaces do not closely match
the CPU model. In such cases, the effort required
to port an OS may be significantly higher than that
needed for paravirtualization. For example, User-
mode Linux[2], a Linux kernel rehosted on itself, re-
quires a fair amount of effort to emulate the behavior
of a (physical) CPU with the mechanisms provided
by Linux. ptrace was not designed for debugging
processes, not hosting an OS kernel.

Microkernel systems provide a more light-weight,
yet general CPU abstraction, allowing them to re-
host existing operating systems more easily. Typical
systems are L4Linux[9], Wombat[13], and MkLinux
[8].

In this paper, we argue that OS rehosting can
be superior to faithful virtualization and paravirtu-
alization. Embedded processors often do not provide
the virtualization features required for faithful virtu-
alization, paravirtualization adds complexity to the
kernel that does not pay off with added functionality.
Our goal is it to facilitate OS rehosting by aligning
the kernel interface more with the CPU model that
is assumed by operating system kernels. We expect
that the resulting solution is of lower complexity and
simplifies the needed modifications of the guest ker-
nel.

3 Synchronous Threading

Threads are a common way to run user-level ac-
tivities. Restricting the system to only allow syn-
chronous communication promises a simplified im-
plementation in the kernel but also has conse-
quences on the whole system design. In the syn-
chronous model the thread state space is of low

1The popf instruction silently disregards bits when run at user level, which can change the control flow.
2ARM features tagged TLBs.

3

complexity as each thread can only be in either
of four states: running, preempted-and-ready-to-
run, blocked-on-sending-a-message, and blocked-on-
receiving-a-message. Yet, this simple model is sur-
prisingly versatile, provided that a method is avail-
able which allows threads to manipulate the state of
other subordinate threads.

The problem of that approach is that a thread
has to chose if it either waits for an incoming message
or executes. Asynchronous activities can only be
handled with dedicated threads that run tight event
loops. Once an event has occurred, the event han-
dling thread has to bring the event to the attention
of the main service thread. This can be non-trivial
if the latter engages, for example, in cross address
space operations where it waits for the arrival of a
message from a thread resident in another task. This
scenario is the common setup for the hitherto Linux
port on the Fiasco kernel.

The event thread may take different actions de-
pending on whether that message has arrived or not,
yet it has no efficient way to figure out the current sit-
uation. Current schemes often endow event threads
with higher priorities than anyone else. The event
thread then can dispense with explicit locking while
inspecting the other thread’s states because it can
be sure that they do not execute. Still, the interac-
tion with the main thread involves at least one more
system call and even more, if the state of the sender
thread needs to be recovered as well.

Apart from the performance aspect, having mul-
tiple threads also raises questions as to time provi-
sioning. From an external perspective, it does not
matter which thread consumes time. To that end, it
would be expedient to assign the two threads differ-
ent priorities but feed them from one budget. The
different priorities ensure that the event handling
thread takes precedence over the main thread while
the shared budget guarantees that the two as group
only consume a certain fraction of CPU time. How-
ever, we do not know of any microkernel that offers
such functionality. It is not apparent if such a scheme
would be compatible with other objectives, such as
time donation along IPC dependency chains.

4 Design

The fundamental problem of synchronous schemes
is that a thread has to decide whether it wants to
make computational progress or be ready to receive
messages as both cannot be done at the same time.
It would be better if a thread could make computa-
tional progress but receive an asynchronous notifica-

tion when an event requires its attention.

4.1 Kernel Interface

We extended the synchronous thread model with an
asynchronous mode where events can be delivered
without that the receiving thread has called an ex-
plicit blocking operation. To make this possible we
extended the existing thread object with the follow-
ing fields, which reside on a page shared between
kernel and user.

State indicator. Comparable to a (virtual) inter-
rupt flag, the state indicator controls whether events
can be delivered. Having the state indicator set, a
thread can execute and react to an event as soon as it
occurs. An event is delivered by the kernel changing
the control flow such that an event handling function
is invoked.

The user can set and clear the flag at its dis-
cretion, for example, to ensure that code paths are
executed atomically. An event delivery is also ac-
companied by clearing the flag.

State save area. The save state area holds the
state of the interrupted context when an event is be-
ing delivered. The control transfer requires that part
of the user visible CPU state is overwritten. At least
the instruction pointer and additional registers re-
quired for the entry, for example, the stack pointer,
need to be loaded with new values. The previous val-
ues are made available through the state save area.
From there it is further transfered to local data struc-
tures such as thread control blocks.

The state save area corresponds to the kernel
stack on IA32. Upon a kernel entry, the processor
pushes the old values of instruction and stack pointer
together with the flags register onto the kernel stack
before it reloads them.

Pending event indicator. The event indicator
facilitates fast transitions from delivery disabled to
delivery enabled without going through the kernel or
unduly delaying the delivery of events.

When an event occurs while the state indicator
is clear, it cannot be delivered outright. Instead, the
kernel queues it and sets the pending event indicator.
When the vCPU eventually enables event delivery, it
needs to check whether events are pending. Only in
these cases it needs to trap into the kernel.

4

It depends on the application binary interface
and the instruction set architecture specifics if a fast
path for entering into the event delivery enabled state
without kernel assistance is possible. More details on
that will be furnished in Section 5.

The pending event indicator is the only field that
has no direct correspondence in physical processors.
Processors maintain their interrupt status internally
and do not expose them through their ISA.

Entry vector. Delivering an event transfers the
control flow of a vCPU to the event handling func-
tion. Such a disruption of the otherwise sequential
control flow of the vCPU is referred to as upcall.

The entry point and the pointer to the stack of
that function are stored in the entry vector fields.
The handling function finds the parts of preempted
execution state that had to be overwritten to resume
the event handler function in the state save area.

Continuing the hardware analogy, on IA32, the
processor retrieves the new instruction pointer from
the interrupt descriptor table (IDT) and, if neces-
sary, the stack pointer from the task state segement
(TSS).

4.2 Virtual CPU API

The vCPU API consists of two functions: disable
suppresses the delivery of events, which allows for
atomically executed code paths. Of course, atomic
execution is only guaranteed with respect to the
vCPU. The microkernel can preempt the vCPU at
any time irrespective of its event delivery status.
However, if it finds the vCPU disabled, no upcalls
will be generated and the execution will be resumed
with the same state later. A thread library may
make use of (local) atomic execution for, for ex-
ample, thread switching or the implementation of
synchronization primitives such as semaphores, mu-
texes, and condition variables.

By enable, the vCPU indicates that it is ready
for receiving further events. When the microkernel
preempts an enabled vCPU, it may resume its ex-
ecution later with an upcall. An upcall indicates a
condition that requires immediate attention.

Events can be either synchronous or asyn-
chronous. If the vCPU encounters a condition that
results in a processor fault, then this fault is reflected
to the vCPU by the kernel. The vCPU has to ensure
that it can handle the event without faulting again

before the last fault has been resolved. The second
group contains events that are triggered by external
sources. For example, timer expirations, interrupts
associated with the vCPU, and IPC messages are
signalled through upcalls.

enable can be combined with an atomic change
of the execution state, which is necessary to re-
sume the execution of a previously preempted code
path. While disable is a simple write operation to
the state indicator, enable has to deal with the case
that events that occurred while the state indicator
was cleared are pending. A straight-forward imple-
mentation may use a syscall and leverage the kernels
ability to atomically execute code paths. Depending
on the traits of the ISA, it may be possible to atom-
ically check for pending events and, provided none is
present, enable event delivery and resume execution
without entering into the kernel.

4.3 Comparision with Threading

Virtual CPUs provide a better foundation for the im-
plementation of user threading packages than kernel
threads. The reason is two-fold. First, transparent
preemption of kernel threads raises some concerns
with respect to concurrency handling. To illustrate
the problem, assume a scenario where a critical sec-
tion is protected by a lock. Threads try to grab
the lock or donate computation time to the current
lock owner to speed up its execution. Unfortunately,
grabbing the lock, say with an atomic instruction,
and announcing the lock ownership by writing one’s
own identity in a spot that is protected by the lock
is non-atomic. If a preemption occurs in between,
then a thread may find the lock taken but is unable
to donate time. More complex situations are simple
to conceive.

Second, switches between kernel threads almost
always require kernel involvement3, whereas vCPUs
can switch directly between threads at user level as
long as no events are pending.

4.4 Subdomains

A virtual CPU should be able to execute code in dif-
ferent address spaces. This feature is motivated by
standard operating systems as envisioned workload
where multiple user processes run and must be hin-
dered from accessing the guest kernel memory as well
as the memory of other guest processes.

3Some microkernel designs allow for user-level switching between kernel threads in a limited number of cases.

5

a) b)

Unprivileged

Kernel

Hardware implemented address space

Hardware protected portion

Memory assigned to user

vCPU

Kernel task User task

Microkernel

CPUCPU

Kernel

CPU

User User

Microkernel

User alias

FIGURE 2: Implemenation of a subdomain
(a) on hardware, (b) on top of a microkernel

Commodity processors allow to mark parts of an
address space only accessible when running in a priv-
ileged mode. With the microkernel claiming exclu-
sive rights on this privilege, this method cannot be
used to protected a (guest) kernel from its subordi-
nate domains. Instead, we use two address spaces as
illustrated in Figure 2. The resume operation can
take a reference to a second task, where the execu-
tion is to be resumed. Upon the occurrence of an
event, the microkernel switches back to the kernel
task, where the event is delivered to the vCPU. Using
this mechanism the vCPU can execute in different
address spaces depending on whether it is executing
guest kernel or guest user code.

Using multiple tasks to emulate two privilege lev-
els of a CPU has been used before[9]. With threads
being the only execution abstraction, previous work
had to populate each address space with at least one
thread as those could not migrate between address
spaces. Using multiple threads is not without pitfalls
because scheduling attributes need to be found for
each of them. The problem becomes more apparent
if the system is to host more than one guest and each
one shall be assigned a certain share of the available
processor time. In contrast, in our system only one
schedulable unit, the vCPU itself, is used. Subordi-
nate address spaces act as environments but do not
introduce new entities from the schedulers point of
view.

5 Implementation

To validate the feasibility of the design, we im-
plemented virtual CPUs in Fiasco.OC, the latest
version of the Fiasco microkernel. Owing to its

L4-ancestry, Fiasco.OC implements kernel threads,
which we wanted to retain to ensure backward com-
patibility for workloads that do not immediately
transition to virtual CPUs. Furthermore, much of
the implementation of kernel threads can be reused
so that we took the decision to add an additional
mode of operation to threads. Switched into vCPU
mode, they exhibit the behavior described in the de-
sign chapter before.

Fortunately Fiasco’s kernel threads already have
an associated memory region that is guaranteed to
be resident. The user thread control block (UTCB)
serves as an register extension, which, for example,
allows to transfer payloads that do not fit into the
register file. When running in vCPU mode, a UTCB
conveniently accommodates the state indicator, the
state save area and the pending event indicator.

Operations on the Event State Whereas dis-
able is just a simple memory operation, enable is
more involved. The reason for this disparity is that
the enable operation has to pay attention to poten-
tially pending, yet undelivered events that arrived
while event delivery was disabled.

Event delivery can be disabled voluntarily, for
example, to execute a critical section. When leaving
the section, event delivery is enabled again. Events
may have been arrived in the meantime. This con-
dition is indicated by the pending flag in the vCPU
state area. If the flag is set, the event enable code
must perform an explicit message receive operation
and handle the incoming message.

Another way event delivery gets disabled is when
the vCPU is entered through its entry vector. At
some later point, the execution should resume with
the state that has been interrupted and saved in the
state save area. Along with this operation, the event
interrupt state must be set to the state from before
the entry. In the general case this must be done
through a system call since only the kernel is able to
restore the state of the vCPU, even if no task switch
is involved.

Whether control can be transfered to an ar-
bitrary state without involving the kernel depends
on the instruction set architecture of the processor
and the employed application binary interface (ABI).
Many RISC-like processors can restore arbitrary user
states only from the kernel because only the kernel
has access to special-purpose state save/restore regis-
ters. For such processors, enable invariably involves
a system call.

4ret loads an new instruction pointer and changes the stack pointer.

6

The x86 architecture, though, allows for a pure
user-level implementation as it features the ret in-
struction that changes two registers at once4. The
resume operation first sets the state indicator. From
that point events may arrive and disrupt the oper-
ation. Next it checks if events are marked pend-
ing. If that is the case, it clears the state indicator
and returns back to the threading library, which will
then invoke a syscall to have the pending event deliv-
ered. If no event is marked pending, the resumption
proceeds with restoring the state of the preempted
thread. This operation will load all but one gen-
eral purpose register from the register state. At that
point only eip, esp, and a general purpose register,
say eax, need to be restored. To that end, esp is set
to the value to be loaded. Then eip is pushed onto
the stack. At that point, eax can be reloaded from
the structure it itself points to. The operation is con-
cluded by executing a ret instruction, which loads eip
from the stack and adjusts esp to the expected value.

Special actions need to be taken if an event oc-
curs after the state indicator has been set to enabled
but before the last instruction of the sequence has
completed. The vCPU entry path can detect this
condition reliably as it knows about the start and
end of the resume function. In that case, it does not
save the preempted state, which is reported in the
state save area, into the storage area maintained for
the current (vCPU) thread. This is sound because at
that point the user computation has not progressed
so that the storage area still holds the latest state.
The only modification happened on the users stacks
below its stack pointer, which is of no concern be-
cause the ABI declares that space as undefined.

6 Linux on vCPU

For each logical Linux CPU we employ a vCPU. The
events that a vCPU has to deal with are the same
that a physical CPU encounters: exceptions includ-
ing page faults, interrupts, and system calls.

For each user process a separate address space is
used. The vCPU switches into it whenever user-level
code is to be executed. Control is given to the ad-
dress space in which the Linux kernel resides when
an event occurs.

Fiasco features a kernel interrupt-object that
allow asynchronous interaction between an event
source and consumer. An event is marked pending
and thus does not get lost if the receiver is not ready
to consume it. Events on the interrupt object can
be either triggered through messages or by device
IRQs, which makes virtual and physical devices look

the same. An interrupt object can be associated with
a vCPU, where it raises an (vCPU) event as long as
(interrupt) events are pending.

A special case is the timer interrupt, which is
implemented with a thread that periodically triggers
an interrupt on an interrupt object associated with
the vCPU. The reason for that special treatment is
that timer ticks, unlike device IRQs, are only acces-
sible through IPC timeouts. Future versions of the
Fiasco microkernel might expose timer ticks through
interrupt objects as well.

Microkernel

L4Linux Kernel

L4Linux

Process

L4Linux Kernel

Thread vCPU

L4Linux

Process

L4Linux

Process

L4Linux

Process

L4Linux

Process

L4Linux

Processa) b)

Microkernel

Legend:

FIGURE 3: (a) L4Linux implemented
with threads and (b) L4Linux implemented
with vCPUs.

7 Evaluation

To evaluate our implementation of vCPUs and com-
pare common operating system mechanisms with
standard implementations we employed an AMD
Phenom X3 8450 running at 2.1 GHz.

7.1 Exception Microbenchmarks

When a process that is under the control of a re-
hosted OS causes a hardware fault, then this fault
transfers control to the microkernel, which, in turn,
forwards it to the rehosted OS. Since faults may oc-
cur frequently, it is important that they are handled
efficiently. Our benchmark compares Fiasco.OC us-
ing the vCPU and the IPC model of L4Linux. For
comparison the same functionality has been mod-
elled with Linux functionality to show the induced
cost of the same operation on Linux, such as with
User-Mode Linux[2] (UML).

Linux Fiasco
Host Host

IPC vCPU
Intra exception 2104 1594 870
Inter exception 7456 2433 1663
Inter PF with map 19833 3751 2833

7

TABLE 1: Fault resolving methods in dif-
ferent environments, in CPU cycles. In In-
ter tests, the activity causing the fault and the
fault handler reside in different address spaces,
whereas in intra the use the same.

The measured values are depicted in Figure 1.
Despite involving the same number of CPU privi-
lege transitions, fault reflection using the IPC mecha-
nisms is slightly slower than with vCPUs. The reason
is that sending an IPC is a rather complex operation
because the IPC rendevouz has to be gone through,
which also involves a capability lookup. Although
the kernel will always find the fault handling thread
ready to receive in our test that does not hold for the
general case. Accordingly, the kernel has to check
the validity of the capability. Furthermore, switch-
ing between threads involves some complexity with
respect to scheduling. The thread switch path has
to check if scheduling attributes are to be donated
across the IPC operation. In comparison, fault re-
flection on vCPU is rather light-weight. The fault
occurring in a subordinate domain can always be in-
stantly delivered as switching into that sub-domain
automatically set the state indicator flag. Moreover,
from the schedulers point of view the fault reflec-
tion does not pose a relevant event, that means the
scheduler is not involved at all.

When using Linux as the host system, such as
with UML, handling faults for other processes is done
with signal handlers and ptrace calls of which sev-
eral are needed for a single fault. Establishing mem-
ory mappings in the faulting process must be done
by forcing the faulting process to execute an mmap,
which requires even more ptrace calls. In contrast,
the mechanisms provided by Fiasco only require a
single system call to receive and resolve the fault.

7.2 Thread switching

We implemented a basic thread library that does a
purely user-level thread switch in 51 cycles. In con-
trary, a thread switch done through the Fiasco kernel
is accounted with 335 cycles.

User Kernel
Thread switch 51 335

TABLE 2: Thread switch durations, in
CPU cycles.

7.3 Compile Benchmark

A Linux kernel compile benchmark compares as seen
in Figure 3. The vCPU version performs better due

to the improved fault handling mechanisms, however
those are not dominant.

L4Linux Threads vCPU
Linux compile 161.5 158.8

TABLE 3: Linux kernel compile bench-
mark, in seconds, smaller is better.

7.4 Fine-granular Timing

To keep the design simple, the threaded version of
L4Linux picked up on events only under view condi-
tions, specifically when being idle or before returning
to user level. While this design choice avoided a com-
plications regarding (L4) thread synchronisation, it
made L4Linux non-preemptible in the kernel. Such
a regimen is unacceptable for real-time workloads as
worst-case event handling latency equals longest ex-
ecution path in the kernel.

Switching the design to virtual CPUs opens up
the opportunity to improve on the real-time prop-
erties of L4Linux. The adoption of vCPUs brings
L4Linux more in line with the stock version, includ-
ing the ability to preempt processes executing in the
kernel.

We used cyclictest [7] to compare the event la-
tency characteristics of L4Linux with those the main-
line Linux. Both test candidates used the high preci-
sion event timer (HPET) as timer source. The results
of the measurements are shown in figure 4.

L4Linux is hard pressed as the architecture puts
it at a disadvantage. First, its kernel runs at user
level where it cannot make use of the global feature
for TLB entries. Such entries are not purged from the
TLB during context switches and are used in Linux
to keep kernel TLB entries resident. In contrast,
L4Linux sustain a large number of TLB misses be-
fore it can dispatch cyclictest. Since cyclictest

runs in its own address space, it will also suffer TLB
misses. As such, L4Linux fares badly compared to
mainline Linux which has good chances to suffer no
TLB misses at all. There, cyclictest is likely to be
the current process which obviates context switch.

Second, Fiasco does not support message-
signalled interrupts (MSI) for non-PCI devices. It
is quite plausible that interrupts incur additional de-
lays if they go through the IO-APIC.

Finally, Fiasco has to mask the level-triggered
interrupt of the HPET before it can acknowledge it.
Masking the interrupt on the IO-APIC takes approx-
imately 2.5µs alone. Since native Linux uses MSIs,
interrupt masking is never required.

8

 0.1

 1

 10

 100

 1000

 10000

 20 40 60 80 100 120 140 160 180 200

F
re

qu
en

cy

Latencies in Linux, in ´µs

Linux and L4Linux cyclictest latency

Linux

 0.1

 1

 10

 100

 1000

 10000

 20 40 60 80 100 120 140 160 180 200

F
re

qu
en

cy

Latencies in L4Linux, in ´µs

L4Linux

FIGURE 4: Latencies in Linux and
L4Linux running cyclictest.

8 Related Work

L4Linux[9] was initially developed for the thread-
based version of Fiasco. Delivering the proof that
OS rehosting on microkernels can be implemented
efficiently, it is nonetheless plagued with a number
of issues regarding synchronization, performance and
scheduling.

Scheduler activations [4] brought up the question
of whether threading is the right abstraction for ex-
ecution. It was observed that, at the time, neither
kernel-level threads nor their user-level counterparts
addressed the issue sufficiently. As a solution, an up-
call mechanism more capable than traditional UNIX
signals was proposed.

Psyche [15] investigated how affording threads
first-class status benefits clarity, portability, and ef-
ficiency of parallel programs.

K42[11] employs an up-call based user interface
that bears some resemblance to our solution. How-
ever, with a focus on scalability, K42’s developer
were not interested in deploying an (non-scalable)
standard operating system. As such, K42 does not
support switching into a subordinate protection do-
main. Another difference is the use of global names-
paces, which contrasts with our capability based ap-
proach.

The merits of paravirtualization were most no-
tably demonstrated by Xen[5]. As a VMM, Xen
is geared towards the exclusive use of virtual ma-
chines, which invariably are rather heavy-weight. In
contrast, Fiasco.OC supports heavy-weight VMs and
light-weight tasks alike, giving the developer the

choice how to meet his requirements best.

User-mode Linux[2] is an effort to port the Linux
kernel onto itself. The difficulties encountered were
numerous as the classical Unix functionality such as
ptrace, mmap, and signals are not well suited to em-
ulate a physical CPU. To mitigate these issues, the
project even developed changes to the host kernel
that provided functionality that otherwise could only
be achieved with considerable performance impedi-
ments.

Rump[10] (Runnable Userspace Meta Pro-
gramm) is an approach that allows to run a kernel
components in a POSIX process for better develop-
ment and debugging purposes. It is being develop-
ment on the NetBSD platform.

9 Conclusion

In this paper we presented a design and implemen-
tation of a virtual processor approach that is well in-
tegrated into the microkernel infrastructure as well
as it allows operating system rehosting and efficient
user-level threading.

10 Acknowlegdements

We would like to thank the European Commission
for their support through the Research Programme
FP7 with the projects eMuCo5 and TECOM6.

References

[1] Qemu. URL: http://www.qemu.org.

[2] User-Mode Linux. URL: http://

user-mode-linux.sourceforge.net.

[3] VMware. URL: http://www.vmware.com.

[4] T. E. Anderson, B. N. Bershad, E. D. Lazowska,
and H. M. Levy. Scheduler activations: Effective
kernel support for the user-level management of
parallelism. ACM Transactions on Computer
Systems, 10:95–109, 1992.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization,
2003.

5http://www.emuco.eu/
6http://www.tecom-project.eu/

9

[6] R. Bhardwaj, P. Reames, R. Greenspan, V. S.
Nori, and E. Ucan. A choices hypervisor on
the arm architecture. Department of Com-
puter Science, University of Illinois at Urbana-
Champaign, 2006.

[7] cyclictest. URL:https://rt.wiki.kernel.org/
index.php/Cyclictest.

[8] F. B. des Places, N. Stephen, and F. D.
Reynolds. Linux on the OSF Mach3 micro-
kernel. In Conference on Freely Distributable
Software, Boston, MA, Feb. 1996. Free Soft-
ware Foundation, 59 Temple Place, Suite 330,
Boston, MA 02111.

[9] H. Härtig, M. Hohmuth, J. Liedtke,
S. Schönberg, and J. Wolter. The perfor-
mance of µ-kernel-based systems. pages
66–77.

[10] A. Kantee. Rump file systems: kernel code re-
born. In USENIX’09: Proceedings of the 2009
conference on USENIX Annual technical con-
ference, pages 15–15, Berkeley, CA, USA, 2009.
USENIX Association.

[11] O. Krieger, M. Auslander, B. Rosenburg, R. W.
Wisniewski, J. Xenidis, D. Da Silva, M. Os-
trowski, J. Appavoo, M. Butrico, M. Mergen,
A. Waterland, and V. Uhlig. K42: building
a complete operating system. SIGOPS Oper.
Syst. Rev., 40(4):133–145, 2006.

[12] A. Lackorzynski and A. Warg. Taming subsys-
tems: capabilities as universal resource access
control in l4. In IIES ’09: Proceedings of the
Second Workshop on Isolation and Integration
in Embedded Systems, pages 25–30, New York,
NY, USA, 2009. ACM.

[13] B. Leslie, C. van Schaik, and G. Heiser. Wom-
bat: A portable user-mode Linux for embedded
systems. In Proceedings of the 6th Linux. Conf.
Au, Canberra, 2005.

[14] J. LeVasseur, V. Uhlig, M. Chapman, P. Chubb,
B. Leslie, and G. Heiser. Pre-virtualization: soft
layering for virtual machines. Technical Report
2006-15, Fakultät für Informatik, Universität
Karlsruhe (TH), July 2006.

[15] B. D. Marsh, M. L. Scott, T. J. Leblanc, and
E. P. Markatos. First-class user-level threads.
In In Proceedings of the Thirteenth ACM Sym-
posium on Operating Systems Principles, pages
110–121, 1991.

[16] M. S. Miller, K.-P. Yee, and J. Shapiro. Ca-
pability Myths Demolished. Technical report,
2003.

[17] G. J. Popek and R. P. Goldberg. Formal require-
ments for virtualizable third generation archi-
tectures. Commun. ACM, 17(7):412–421, 1974.

[18] J. Robin and C. Irvine. Analysis of the intel
pentium’s ability to support a secure virtual ma-
chine monitor, 2000.

[19] J. S. Shapiro, J. M. Smith, and D. J. Farber.
Eros: a fast capability system. In SOSP ’99:
Proceedings of the seventeenth ACM symposium
on Operating systems principles, pages 170–185,
New York, NY, USA, 1999. ACM.

[20] A. Whitaker, M. Shaw, and S. D. Gribble. Scale
and performance in the denali isolation kernel.
SIGOPS Oper. Syst. Rev., 36(SI):195–209, 2002.

10

