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Abstract

Formal verification play an important role in development and application of safety-critical system,

which is highly recommended at SIL4 in IEC61508. SPIN as a powerful model checker verifies the

correctness of distributed software models in a rigorous and mostly automated fashion, against a set of

presumably correct specifications. The object to be verified is the protocol - NOP designed for safety-

critical distributed embedded system, which provides a communication pattern through deciding the

ordering of access to shared. medium by a pre-defined node order. NOP use an event-trigger paradigm

instead of time-triggered, thus communication events including error detection is based on discrete events

instead of real time, which make it possible to use SPIN as validation tool.

The objective of this paper is to verify the specification of NOP showing that it meets the fault tolerant

requirement under a single-fault assumption. According to the fault hypothesis, NOP has performance

failure semantic, that is a faulty node deliver correct results in the value domain,but in the time domain,

the results may be delivered early or late.

In this paper, we make use of the faulty hypothesis assumption to partition the protocol model into 7

equivalence classes according to the fault analysis result of a FMEA into dedicated models, which ensures

that each model can be treated independently of the others, significantly reducing the size of the overall

state space to be checked by the validation process and making the model more understandable. Finally,

based on properties verified by each model shown at the last section of the paper, the safety and liveness

properties of NOP can be validated by integrating the results of each model because the full coverage of

faults and independence of models. Though we can not establish the correctness by formal verification,

we provides a higher level of assurance of the consistency between the specification and requirement.
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1 Introduction

Model checking is an automated technique that,
given a model of the system and some property,
checks whether the model satisfies the specified prop-
erties. Notably modeling can detect concurrency de-
fects that are otherwise difficult to discover. Within
appropriate constrains, a model checker can perform
an exhaustive state-space search on a software design
or implementation and alert the implementing orga-
nization to potential design deficiencies. Compared
to the other (semi)automated formal techniques (for
instance, deductive methods, like theorem provers)
model checking is relatively easy to use. The speci-
fication of the model is very similar to programming
and as such it does not require much additional ex-
pertise from the user. Most notably SPIN allows
relatively streight forward model development based
on existing code due to this strong similarity. The
verification procedure is completely automated and
often takes only several minutes. Another important
advantage of the method is that, if the verification
fails, the possible erroneous behavior of the system
can be reproduced. This significantly facilitates the
location and correction of the errors.

This paper describes a practical application of
model checking for validating the requirements for a
real-time communication protocol. The case study
described here is of verification of the specification
of a communication protocol - NOP, which was de-
signed for the distributed safety-critical system. In
the protocol, detection of all possible faults defined in
fault hypothesis and maintaining consistent among
correct nodes (minimal 3) is provided. However, it
was not possible to determine whether the specifica-
tion provide the desired level of fault tolerance. More
important, testing of the eventual implementation
would not necessarily provide this validation either,
due to the difficulty of ensuring test case coverage for
all possible fault occurrence scenarios. The approach
described here uses a formal automata based model
derived from the specification. We define a set of
safety and liveness properties, which are required to
be satisfied when the system encounters an errors.

We used the model checker SPIN[1] in this pa-
per, which will identify traces in the model for which
these properties were violated. The formal method
are used to model critical chunks of an informal spec-
ification, to check that key properties hold. The
aim is to find errors, rather than to prove correct-
ness.Application of formal method is driven by the
need of the project, and is used as a modeling tool
to answer questions that arise during verification and
validation. In the case of NOP we are using during

the design phase to allow to get the code right from
the very outset.

The paper is organized as follows. In section 2,
we describe the fault hypothesis defined in the NOP
requirement. With a single-fault assumption, the ba-
sic communication semantic is designed. Due to error
detection at the protocol layer, an effective member-
ship service can be provided in NOP. To verify the
consistency between the requirement and the specifi-
cation, we derive the properties to be verified. In the
first attempt, modeling all fault types in one model
proved to be impractical due to state space explosion
and high complexity. Thus we de-component the full
featured model into several small submodels by the
independence of different fault scenarios in Sectin 3.
In Section 4, by using semi-formal method - FMEA,
all possible hazards in the NOP are listed. Based on
the result, we determine the maping between failure
modes and submodels. The detailed modeling is de-
scribed in Sectin 5, in which the verification result
is displayed including performance data of verifica-
tion as well as satisfied properties. Section 6 presents
conclusions and describes our future work.

2 NOP High Level Model De-

scription

Event-triggered Node Ordering Protocol [2] is de-
signed for small-scale distributed safety-critical real-
time system. The system model of NOP we assumed
consists of nodes and a bus channel. In the model,
no duplicated channel and bus guardian are involved,
which make the fault semantic of NOP increase to
performance failure from fail-silent failure [3], that
is in NOP, a faulty node can send arbitrary mes-
sage at an arbitrary point in time. And the fault
PROPAGATES to the whole system instead of con-
tain within a node. In addition, network omission
failure must be considered at protocol layer. The re-
quirement of NOP assumes a single-fault hypothesis
that is at most one fault is present in the system
at any time. Moreover, a restriction is put on fault
arrival rate in NOP that a new fault will not oc-
curs before the last error is diagnosed. Starting at
a TMR(Triple Modular Redundancy) on the top of
NOP, we require the minimal configuration of NOP
to be 3 nodes, and the error must be detected within
a FTU slot [4].

According to the requirement above, the proto-
col switches among three modes. First, all nodes are
configured at the initialization with common param-
eters. Then the protocol begins operation and keeps
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going even in the present of a single fault. But when
the fault scenario violates the defined fault hypothe-
sis, each node will detect and quit communications,
then the protocol is in a fail-safe state. Obviously,
there is a loose couple between initialization and op-
eration mode, thus we separate the specification into
two parts and verify each part individually. In this
paper, we only cover the verification on operation
mode.

The basic communication semantic is similar to
TTP. In NOP, medium assess is controlled by pre-
defined Node Ordering Delivery List(NODL) which
is the correspondent of MEDL in TTP. During the
transmission slot, the sender is permitted to send
at most one message, then the next transmission
slot is assigned to the next node in NODL. As a
receiver, the node first check if the incoming mes-
sage follows the definition of NODL. If it is in-order,
then the node accepts the frame and update the ex-
pected node in the next transmission slot. If not,
the frame is discarded, the node keeps waiting for
the correct message until it reaches a timeout. Ac-
cording to the common knowledge among nodes, we
can safely deduce that if one receiver accepts the
transmitted message, then all correct receivers will
accept it. Therefore, the implicit acknowledgement
integrated into the next transmitting message is used
to eliminate handshakes.

In NOP specification, error detection is imple-
mented at the protocol level by two error case: time-
out and out-of-order message reception. Thus each
node monitors the channel continuously and has
common knowledge of ordering of arriving frames,
then The failed node can be detected at system-wide
based on the NODL. Based on error detection, at
protocol level, NOP provides membership service for
the upper layer protocols, which maintains an active
node list of the system continuously during the run-
ning time. When a node is detected to have failed,
it should be removed from the membership vector as
soon as possible. Thus the reliable membership ser-
vice must satisfy the following two requirements:
Agreement: The membership lists of all non-faulty
nodes are the same.
Validity: The membership lists contain all non-
faulty nodes and at most one faulty node.
The Agreement requires all correct node to have the
same active node list, while Validity requires the
faulty node must be detected and remove from the
communication activities. Because a fault must be
manifested before it can be diagnosed, we can not
remove of the faulty node immediately.

From above, the main safety concern of NOP
is error detection coverage and reliability of mem-

bership service. To verify such requirement, model
checking is a powerful tool to perform exhaustive ex-
ploration of all possible behaviors, and then locate
potential design deficiencies.

In this paper, we verify whether the design of
NOP fulfil the following requirement:

• fault coverage of NOP

• NOP can keep operation under a single-fault
hypothesis

• all correct nodes have the same membership
list

• the faulty node can be detected and removed
from the membership lists of all correct nodes

• The minimal number of nodes in NOP is 3.

3 Modeling NOP

3.1 The First Attempt of Modeling

In the specification of NOP, the run-time state ma-
chine of one node is as shown in Fig. 1.

FIGURE 1: run-time state machine of

NOP

In the state machine, the input triggering each state
transition is generated by a fault occurrence. So to
implement the state machine, all kinds of faults must
be injected into the model. It is hard to estimate the
state space, but we can provide a number for com-
parison - that the fault-free model of NOP of 3 nodes
has 481 states and 88-byte state-vector (in SPIN). It
is obvious that the state space will explode if you im-
plement the state machine in one model. Moreover,
the model is hard to maintain as the specification
evolves.
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3.2 Reducing The State Space

There are a number of ways in which the state space
can be reduced to a size amenable to model checking.
The most reasonable way for our project is to parti-
tion the functional requirements of the system into
equivalence classes by exploiting natural symmetries
or subclasses that may be present in the domain.
For NOP, we partitioned the functional behavior by
separating the classed of fault that occur. The re-
quirement assume a single-fault hypothesis and put
restriction on fault occurrence rate, which implies
independence of the different fault scenario. That is
not to say that faults can’t propagate but the prop-
agation is assumed to not induced concurrent faults.
Thus, we can split the state machine into several
sub-state machine with a single fault injection each.

The state space of the model could be exhaus-
tively searched allowing critical functional require-
ments to be validated down to the design level by
judiciously abstracting away extraneous complexity.
Such mechanism was been used to verify a fault tol-
erant spacecraft controller[5]. Because the method
allow validation of partial specification, it is an prac-
tical approach for maintaining consistency between
a co-evolving specification and an implementation.

4 Fault Analysis

In this section, the submodels of NOP is described
in detail. According to the system model see Fig. 2,

FIGURE 2: the system model of NOP

we do fault analysis by semi-formal method FMEA,
which is helpful to increase the probability of fault
coverage. In this paper, I only list the failure modes
of FMEA, while omitting other parts, see Table 1.

failure modes scope
processor:
crash detection in protocol
transient sending
nothing

detection in protocol

sending message
too late

detection in protocol

sending message at
incorrect time

detection in protocol

sending invalid out-
put

detection in protocol

babbling idiot fail-
ure

detection in protocol

reception omission detection in protocol
network link:
failed physical link detetion in protocol
duplicated message detection in protocol
corrupt message handled by underlying

network
loss of messages detection in protocol
physic clock:
dead clock mitigated
too fast clock detection in protocol
too slow clock mitigated
clock draft effect mitigated
node id:
invalid node id mitigated in initialization
duplicated node id mitigated in initialization
masquerade
node id

mitigated in initialization

NODL:
truncated NODL mitigated in initialization
corrupt NODL mitigated in initialization
inconsistent NODL mitigated in initialization

In the above failure mode list, the failure modes
in value domain such as invalid message or corrupt
message can be detected by a simple checker or CRC
implementing at underlying physical layer, which
have no effect on protocol operation, thus can ig-
nore such failure modes at the protocol level. The
failure modes of critical parameters of NOP are han-
dle at initialization stage instead of in running time,
but even they occur at running time, the symptom
is that same as a faulty processor. From the proto-
col perspective, there is no difference between phys-
ical link failure and omission fault, and duplicated
messages is seen as non-ordered frame sending by a
faulty processor. Thus the only failure of network
link the protocol must be handled is the transient
omission failure. As far as failure modes of a faulty
processor, babbling idiot failure manifests as a faulty
sender sending message at incorrect time, thus it is
detected by receipt of non-ordered message from one
node.
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After analysis of possible fault in NOP, we figure
out the mapping between failure modes to the sub-
models as follows. The failure modes are indepen-
dent of each other, and has a corresponding SPIN
model. In the following section, we number the sub-
models in the follwoing order.

1. fail-silent processor

2. transient sending omission

3. message sending too late

4. transient receiving omission

5. transient channel omission

6. too fast clock

7. arbitrary processor failure with inconsistent
state

5 Submodels

5.1 Properties To Be Verified

In Section 2, we list the requirement of NOP. Then
we must transform these requirement to the state-
ment SPIN can verify automatically. In above sec-
tion, we take care of fault coverage issue. For Re-
quirement 2, we use the following claim to verify:
P1(Liveness): there is no non-progress cycle in any
correct node.
it means there is any correct node going on nor-
mal communication under specified fault scenario.
Strictly speaking, Agreement requirement states that
all correct nodes keep consistent at any time. But
this is too strict to implement, due to divergence of
processing speed and jitter. The practical require-
ment is that the inconsistent state is allowed but
with the upper boundary. In NOP, the agreement
requirement is described as follows:
P2(Safety): at any state, the divergence of the
membership vectors of correct nodes is at most one
bit.
As far as requirement that a faulty node is removed
by all correct nodes, we express it in temporal logic
as follows:
P3:

[](S → ♦Q) (1)

where S = node[i].mb[FAULT ID] == 0
and Q = node[i].mb = node[j].mb (i,j ∈ correct
nodes)
the temporal logic means that when any correct
node responses to the detected error by removing the
faulty node ,then eventually all correct nodes will do
the same thing and resynchronize.

5.2 Modeling

In the following section, we introduce abstracting
the protocol and injecting fault during modeling.
Obviously, each node must be a individual process.
About bus, it is only responsible for transmitting
the message and do nothing with the requirement
to be verified, thus it is not necessary to put it
in a process(exception in transient channel omission
model). The message format only includes the con-
trol states of NOP with 4 field. And there is one
message channel for each node to sending and re-
ceiving messages. According to the communication
semantic of NOP, the message channel need at most
1 slot. SPIN supports two types of communication
channel. One is synchronous or rendezvous channel,
the other is asynchronous or buffered channel. Us-
ing synchronous model, the system seems there is a
precise global time that events will be issued at ex-
act the same time at individual process. While the
asynchronous model can execute at any possible or-
der. In NOP, there is no global time at protocol
layer at all, and the communication activities are is-
sued by themselves. Thus jitter must be considered
as a potential factor impacting the behavior of the
protocol. Therefore, asynchronous communication
model is used to modeling NOP. In addition, we as-
sume that the system is synchronous implicitly that
is before the new message arrival, the node finishes
processing the last message. But in SPIN model,
due to asynchroniztion execution and no assumption
on execution at all, such implicit assumption must
be explicit by synchronization among processes. We
implement such assumption with a global variable.

Due to non-deterministic feature of SPIN, the
fault-injection is easy to implement, see the follow-
ing example injecting a failed processor failure:

if

:: myturn -> { ch!msg; change_state;}

:: error = 0 -> { inject fault; error = 1;}

fi;

In above pseudo code, SPIN will select one of the
two block to execute randomly when the two condi-
tions hold at the same time, then the fault will be
injected into the model randomly. For simplicity, we
assign a node as a fault node which does not impact
the consistency of the model only for reducing state
spaces. The other issue about injecting fault is the
constrains on a single-fault and fault rate which can
be implemented by a global variable.
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The core of the model is processing message in-
cluding detailed error diagnosis mechanism. Here,
with the limitation of length, I only take fail-silent
processor model as an instance. The state machines
of a faulty node and a correct node in the fail-silent
processor failure are shown in Fig. 3 and Fig. 4,which
are simplified from the state table generated by SPIN
verifier by removing transition due to synchroniza-
tion and assignment statement.

FIGURE 3: The state transition diagram

of a fail-silent processor

FIGURE 4: The state transition diagram

of a correct processor

In Fig. 3, each node initializes some data struc-
ture at S0 and enters run-time state when all other
nodes finishing initialization. The first sender will
begin transmitting message (S3) and other nodes lis-
ten to the network (S2). When the sender finishes
the transmission, it transits to S2 waiting for ex-
pected frame. As a receiver, the node will transit
from S2 to S7 presenting the process from reception
of a message to processing of the message in the pro-
tocol. The node will enter S1 to wait for that all
nodes process the frame, then a new transition slot
starts. For the fault node, once the fault is trig-
gered, the node can not sending any message but
listening to the network (S8). While in the correct
node model, when a fault is triggered, SPIN will en-
ter a timeout state in which there is no executable
statement and the system is stalled. At this point,
the correct node detects the error and makes diagno-
sis by removing the faulty node from its membership
vector, shown by S5 and S7. Then the correct node
can go on operation entering S1 or S2.

For the safety property, we assert that the di-
vergent distance is less than 1 in the state S8 of the
correct node and that the agreement is reached at the
state S3. As far as the liveness property is concern,
we verify that by setting the S3 as a progress state
to show there is no non-progress cycle in a correct
node model.

5.3 Result Analysis

Whether the requirement is met by the protocol
specification is up to the verification result of each
model. Only when all the model satisfy the proper-
ties, we can show the consistency between the re-
quirement and the specification. The first verifi-
cation is done with the minimal configuration of 3
nodes. The result is shown in Table 2. As shown
in the table, all the models pass the verification of
P1 and P2(the No. 0 model is the fault-free model.).
The property with star mark means that during veri-
fication, the weak fairness must be enabled. Because
we introduce omission recovery mechanism, not all
models need to verify P3, we mark the models which
can recovery from the error. Then, We repeat the
same verification with more than three nodes, and
there is no model violate the properties either.
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submodels P1 P2 P3
0

√ √
-

1
√

∗
√ √

2
√

∗
√ √

3
√

∗
√ √

4
√

∗
√

-
5

√
∗

√ √

6
√

∗
√

-
7

√
∗

√
-

In addition, the state space and resource con-
sumption of models are interested. All related data
is shown in Table 3 which is the verification of 3
nodes with the safety property. The state space of
models are in the order of thousand, and memory us-
age and execution time have no big difference among
models.

submodels state space mem usage time(s)
0 481 4.653 MB 0
1 2266 4.849MB 0.03
2 3060 4.946MB 0.02
3 6703 5.141MB 0.03
4 2125 4.849MB 0.01
5 4208 5.044MB 0.04
6 1843 4.751MB 0.01
7 4438 5.044MB 0.02

For more than 3 nodes, the performance results
of fault-free model and failed processor model are
shown in Table 4 and Table 5. As shown in Table 4
and Table 5, the state space increases exponentially
with the number of nodes. With 6 nodes, the state
space of failed processor model reaches the order of
million. At the same time, memory usage and execu-
tion time are increased dramatically. The objective
of SPIN model is not for scalability issue, thus it
is sufficient of six nodes for the verification, though
there left a space for further reducing space states of
models.

nodes state space mem usage time(s)
3 481 4.653MB 0
4 3128 4.946MB 0.03
5 19695 7.192 0.16
6 120302 23.013 1.33

nodes state space mem usage time
3 2266 4.849MB 0.03
4 21820 6.997MB 0.11
5 208128 30.044 1.45
6 1945400 287.075MB 20.6

6 Conclusion

In this paper,we verify the design of NOP to show
that it meets the fault tolerant requirement under a

single-fault assumption that is a faulty node deliver
correct results in the value domain,but in time do-
main, the results may be delivered early or late. The
first attempt to model the protocol into one model is
impractical due to huge state space which consumes
much more computation time and resources. Due
to the single-fault assumption and the constrains on
fault rate, we find a way to reduce state space by
partitioning the model by separating out the classes
of fault that can occur into dedicated models. Then
we derive the fault classes the result of FMEA to get
the full fault coverage and make each model can be
treated independently of the others. Finally, based
on properties verified by each model, the safety and
liveness properties of NOP is validated by integrating
the results of each model.

It is important to note that with this ap-
proach,the focus is not on proving correctness, but
on revealing errors. We have shown in the case study
that the approach is capable of finding subtle errors
that are otherwise almost impossible to detect. If
we did not find any error, that would not establish
correctness, but is does provide a higher level of as-
surance than is otherwise possible.

Because we models the specification partially by
a set of independent submodels, the models are easy
to maintain with a co-evolving specification. More-
over, We think this approach make it possible to be
used to verify the consistency between the specifi-
cation and an implementation. In the future work,
we will try to evolve the models to the implementa-
tion and provide a higher level of confidence for the
consistency of the implementation.
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