
OVERSEE - a generic FLOSS communication and application

platform for vehicles.

Nicolas McGuire

der.herr@hofr.at

Andreas Platschek

andreas.platschek@opentech.at

Georg Schiesser

georg.schiesser@opentech.at

Opentech EDV Research GmbH

Augasse 21, 2193 Bullendorf - AUSTRIA

Abstract

Following the trend already set by the avionics industry, the target of the OVERSEE project is to
create a platform that allows to integrate multiple ECUs into one hardware node, while protecting them
from each other. This protection in time and memory ensures the independence of residing applications
and their real-time requirements. This approach does not only allow the reuse of (legacy) software
modules based on the temporal and spacial isolation, which ensures preserving the dependability, safety
and security properties of the individual legacy modules, but also lends it self to modular validation. It
potentially also reduces the number of ECUs in the car, leading to a decrease of power consumption, a
decrease in weight and allows a higher utilization of the hardware nodes. Reduction of the number of
ECUs is not only a cost issue but also a reliability issue. The more systems deployed independently in a
car the higher the complexity - the current level of up to 80 ECUs [13] is most likely close to the limit
that is economically tolerable.

In addition, OVERSEE will provide a secure interface from the outside world into the vehicle, allowing
the connection of the car to the Internet in a secure and safe manner. This connection can be used by the
driver to download new applications and data (e.g. maps, software updates,...) into the OVERSEE ECU,
providing data communication to the vehicle vendor and/or authorities as well as allow the migration of
data from off-car locations while fully preserving privacy, integrity and authentication.

OVERSEE is committed to the usage of open-source technologies and anticipates the creation of an
environment that will allow automotive enthusiasts to bring new applications - beyond the creativity of
traditional automotive vendors - to the road.

In this article we will outline the goals of OVERSEE, the current state of assessment efforts and the
preliminary design of the OVERSEE platform. Though OVERSEE is in an early design stage feedback
from the open-source community is essential to ensure that this platform can satisfy the needs of industrial
users as well as the open-source community.

It is an expressed goal of the OVERSEE project consortium to provide the necessary community
infrastructure to allow creation of an active open-source community in the automotive context and thus
not only enhance the capabilities of on-board software but lead to entirely new capabilities at the concept
level.

1 Introduction

As the current state of security in automotive sys-
tems is less than satisfying [2], the upcoming trend of

connecting vehicles to the Internet will make the situ-
ation even worse. For this reason, the OVERSEE[1]
project is tackling this problem, in order to allow
a secure connection of the vehicle to the Internet,
while maintaining the automotive system’s safety,

1



and therefore the safety of it’s passengers. Although
OVERSEE’s approach does not take care of the
problems described in [2], it makes sure, that things
do not get worse even with the vehicle’s computer
systems connected to the outside world.

The second goal of OVERSEE is to research the
IMA (Integrated Modular Avionics) approach that is
already in wide use in the Avionics Industry[11, 12]
for it’s use in an automotive system. In comparison
to an federated system, where each software com-
ponent is contained in it’s own hardware node, a
integrated system allows to house several software
components of different criticality on the same hard-
ware node. Of course special precautions to maintain
the independence of the software components have to
made. The advantage of such an integrated approach
lies in the better utilization of the hardware nodes,
and - due to reduction of the number of nodes - in
savings in power, weight and cost.

There are several standards for operating sys-
tems in use in the automotive industry, one of the
most popular is the OSEK [3] standard. It’s popu-
larity and simplicity are the main reasons, why we
at OpenTech think, that it would be a good idea to
implement this standard, in order to allow potential
users of the OVERSEE platform to run their legacy
OSEK compliant applications on top of the OVER-
SEE platform with no or only minor migration ef-
forts.

Another important step attempted in OVER-
SEE is to build and establish a FLOSS platform
for the automotive industry. So far, the automotive
industry traditionally has been building on propri-
etary OS, in fact it was centered around a per-brand
system to a large extent making interoperability of
software between vehicle manufacturers almost im-
possible. Even with the introduction of OSEK and
the wide spread endorsement, the situation did only
mildly change due to the specifics of bus systems
and of course vendor specific algorithms at almost
all levels. OVERSEE does not expect that this can
be changed easily but at the same time sees a large
potential if the automotive applications could gain a
common basis to allow non-vendor specific applica-
tions to be readily exchanged. With this premises
the automotive industry would have the potential to
open up to a broader creative community of devel-
opers similar to what has happened in the mobile
phone market in the past 5 years.

The stakes are higher in the automotive case
though as there are not only security related chal-
lenges but clearly safety related issues that do not
directly arise in the mobile phone market. Learn-

ing from the mobile device and consumer electronics
though is vital if this process is to be successful -
thus OVERSEE has a clear focus on security aspects
at this point.

Building a viable community is not a simple task
and it is not to be expected to happen quickly - but
clearly building on FLOSS technologies, eliminating
vendor locking and software dependencies, is essen-
tial to achieve a broad automotive vendor acceptance
and at the same time a community acceptance. In
this sense OVERSEE is anticipating to be an en-
abling technology - enabling the creative potential
of the open-source community to leap on one of the
most common computing platforms available world
wide - the car.

In the following we give a short introduction to
FLOSS implementations of the OSEK specification,
present the approach that OVERSEE will take and
have a look at the current state of the OVERSEE
project. In the last section we will conclude the
OVERSEE platform and give a sneak preview on
how OVERSEE could develop in our opinion.

Numerous recent publications have indicated
that the usage of modern communication technolo-
gies in cars pose potential dangers - while not too
surprising it is impressive how naively wireless tech-
nologies have actually been deployed at this point
[14]. OVERSEE is explicitly targeting a secure point
of access to automotive environments in a sufficiently
generic manner to allow utilizing all mainstream
communication technologies.

2 Mapping ARINC653 to

OSEK

Since the trend towards an integrated approach is
already in use in the avionics industry [11, 12] (IMA
- Integrated Modular Avionics), and XtratuM has
been developed following the avionics standard AR-
INC653, we find it necessary to show that the IMA
approach, and therefore XtratuM are suitable for the
automotive industry. To do so, we made a map-
ping from ARINC653 to the most commonly stan-
dard used in the automotive industry - OSEK/VDX
- in order to show that XtratuM (or any ARINC653
compliant OS for that matter) is also suitable for the
use in an automotive environment.

This mapping between ARINC653 and
OSEK/VDX has been split up into three parts:

Dictionary First a dictionary to map equivalent ex-
pressions has been made (i.e. Process / Task).

2



This part has been done more or less during
the other two, while mapping the parts of the
standards against each other, you realize that
an expression used in one is equivalent to an-
other expression in the second one. This dic-
tionary is meant to give the reader who knows
one standard well but does not know the other
one a quick start.

Parts directly mappable Next, those parts of the
two standards that can be mapped directly
have been mapped to each other, using require-
ments that have been derived from OSEK OS.
The assumption here is, that if the require-
ments derived from one standard (OSEK OS)
can be mapped to the second one (ARINC653),
these part are compliant. Fortunately, the
largest part of the mapping can be done here
as a 1:1 mapping.

Parts not directly mappable Last the missing
parts (those which are only part of one of the
two standards) have been discussed, and it is
shown that they are no contradiction to the
other standard. For most parts it can even
be shown, that though they are not explicitly
mentioned in the standard, they are implicitly
in use in some part of it (e.g. semaphores
are explicitly defined in ARINC653, but are
only implicitly in use in OSEK OS). This way
a complete mapping between those two stan-
dards has been accomplished.

Following to this mapping, a ARINC653 compli-
ant OS following the IMA approach is also suitable
for the automotive industry. From a safety perspec-
tive this mapping should give us a good basis in case
the OVERSEE platform is certified by the authori-
ties in the future. Although this is not planned to
be done in the context of the OVERSEE project it-
self, it is vital to provide this possibility, in order to
make the OVERSEE platform more attractive to the
OEMs.

3 Available FLOSS implemen-

tations of OSEK

During the assessment phase, we identified two
FLOSS projects, which implement the OSEK/VDX
[3] and seem to be mature enough to be used
in the context of OVERSEE, FreeOSEK[4] and
Trampoline[5]. There were a couple of others, which
seemed a little bit to immature to consider them,
therefore we focused on these two.

This section intends to summarize the most im-
portant features of these two projects, as well as their
(current) shortcomings. Both of these two projects
are developed following the MISRA-C coding guide-
lines, seem to have documented deviations from the
MISRA-C guidelines well. Furthermore, both pro-
vide a full implementation of OSEK OS, and at least
big parts of the rest of the OSEK/VDX.

3.1 FreeOSEK

FreeOSEK[4] is a OSEK implementation started by
Mariano Cerdeiro. It currently runs on ARM and
on POSIX compliant platforms, so you can test it on
your Linux desktop machine.

FreeOSEK is licensed under the GPLv3 with link
exception. This means, that you can link your code
into FreeOSEK and can still license your code under
whatever license you want (free or proprietary).

According to the FreeOSEK homepage, they cur-
rently run about 80% of the OSEK conformance
tests, and of those about 95% pass. In addition,
FreeOSEK is tested, using the static code checking
tool splint.

Another nice feature we found in the context of
FreeOSEK is GOB[9], a GUI based OSEK configu-
ration builder.

3.2 Trampoline

Trampoline[5] is developed at the Real-Time Sys-
tems group of IRCCyN (Jean-Luc Béchennec, Mikaël
Briday, Sébastien Faucou and Yvon Trinquet) in
Nantes.

In contrast to FreeOSEK, Trampoline supports
more hardware platforms, among them ARM, PPC,
AVR, c166, cortex-m3, ...

Trampoline is licensed under the LGPL, also al-
lowing you to link your code with whatever license
you prefer into Trampoline.

3.3 Assessment Result

Although the community around FreeOSEK is
merely not existent, the code base is solid and the
most important parts of OSEK/VDX are available,
and for those parts implemented, not deviations from
the standard could be found.

In contrast, Trampoline has full OSEK support,
and they even started to implement parts of AU-

3



TOSAR. But during the assessment phase, small de-
viations from the standard could be found. In ex-
ample additional process states are defined for no
obvious reason. This raises the question which ad-
ditional deviations are in the code which we did not
spot.

4 A OSEK Layer for Linux

Although OVERSEE targets to run an OSEK OS on
XtratuM, we are going to implement the OSEK layer
on a standard Linux environment as well. This gives
us three big advantages. First of all we gain a better
development environment (i.e. more and better tools
for debugging and testing). Furthermore this sec-
ondary implementation demonstrates the high porta-
bility of the chosen OSEK OS and allows the reuse
of FLOSS based components.

The procedure we are going to use in porting an
OSEK OS for the OVERSEE platform is, to design
and implement an OSEK Layer on top of Linux (in
example as a guest OS of lguest and/or kvm). In this
environment, implementing, debugging and testing
should be a lot more comfortable than in XtratuM.

The port of such an functional layer to XtratuM
should be not that hard, since by then we already
know, that we have a functional OSEK layer and
can focus on the port itself.

4.1 Linux Virtualization Capabilities

Mainline Linux provides a wide variety of virtual-
ization solutions. At the moment all those solutions
focus on the use in server applications, and do not
target embedded systems at all. Although there have
been attempts to use Linux as an hypervisor [8] there
is no project - as far as we know - using Linux as a
hypervisor in a real-world project.

For the implementation in the context of OVER-
SEE we are going to assess two candidates, we see as
most suitable: KVM [7] and LGUEST[6].

Others like XEN are not seen as very suitable
due to their size and complexity. The same might
be true for KVM (TODO: find nr. of lines of code)
which is huge compared to lguest with roughly 6000
lines of code. Apart from size, a second argument
speaking for lguest is it’s outstanding documenta-
tion - the source code of lguest can be considered as
on of the best documented software projects ever.

5 OVERSEE

OVERSEE targets a hypervisor approach, where
multiple independent applications, share the same
computational platform. As you can see in figure
2, one main aspect of a hypervisor is that it pro-
vides a virtualization layer, taking control over the
hardware, and controlling the resource usage of the
guest operating systems. These resources include
CPU time, Memory, Communication Interfaces, ...

Apart from virtualization, the most important
features of the hypervisor are a static configuration,
known at compile time, the memory protection of the
guests, the time partitioning it provides for them and
a health monitoring system.

Mulitplexer 
System Partition

(Driver)

Hypervisor

Hardware

Internet

Application C

OSEK Runtime 
Environment

Application B

GNU/Linux Runtime
Environment

Application A

OSEK Runtime
Environment

Peripherial

Port

Port

Port

FIGURE 1: IMA approach - multiplexing
secure communication channels

Static Configuration The configuration of the hy-
pervisor is done via a XML configuration file.
This file defines everything from the amount
of memory needed by the application and the
CPU time it needs to the communication chan-
nels it is allowed to write to / read from.
The XML configuration file is parsed at com-
pile time and all the configuration data of the
system is statically contained in the binary
and cannot be changed during runtime. To
change the configuration, the XML file has to
be edited, the binary has to be rebuilt and
flashed into the target.

Static Scheduling The most important property,
the hypervisor has to guarantee, is the inde-
pendence of the applications. We distinguish
between different kinds of independence. The
first one is the independence in time. This
means, that a faulty application must not be
able to block the CPU and therefore lead to
the starvation of another application.

4



Memory Protection The second kind of indepen-
dence is the independence in memory. This
means, that an application must not be able to
alter the memory space of any other applica-
tion.

Independent Communication The next kind of
independence regards the communication sys-
tem: a faulty application (e.g. babbling idiot)
must not be able to influence another appli-
cation via the communication channel (e.g. by
keeping it from work by sending too many mes-
sages).

Health Monitoring System fail - there is no way
we can prevent this, but systems rarely drop
dead, they actually issue multiple indications
of an approaching failure - just that we gen-
erally tend to ignore these [15]. Operating
systems intended for the use in safety related
systems like ARINC 653 or OSEK based so-
lutions, try to utilize this fact by providing
appropriate monitoring interfaces, exported to
the application domains and thus allowing to
detect the deteriorating health of the system
before a potentially hazardous situation occurs.
In OVERSEE the monitoring infrastructure of
the underlying hypervisor modeled along the
lines of ARINC 653 is made available to the
application and system partitions. This moni-
toring is also to include security aspects, as in a
accessible automotive system like OVERSEE,
security breaches could directly impact safety
of the system and the environment[14].

6 Composability Issues

The goal of providing platforms for industrial sec-
tors is not new. One of the critical problems for
any such platform concept is the composability of
systems. Composability has traditionally focused on
performance issues, most notably temporal behavior
of applications - basically this was the main issue of
ARINC 653 and in a lesser part of OSEK.

Security has not been in the focus of automotive
industry at the operating system level - simply be-
cause cars were seen as ”closed” networks and thus
there is little potential to attack the system. With
the dramatic change introduced by the utilization of
wireless communication within cars and to the out-
side word - obviously this has changed. This im-
plies also that composability demands are changing
- OVERSEE addresses the composability demands of
automotive industry by providing a core security ca-

pabilities in a way that allows to place a non-security
related application in a partition (lets say some in-
fotainment application) while placing a highly sensi-
tive application in an adjacent partition (lets say a
digital blackbox) and guarantee security properties
at the OS level. That is to say the applications are
truly independent of each other with respect to se-
curity design (in fact the infotainment application is
assumed to potentially be malicious). To allow this
novel security level composability, OVERSEE has to
not only provide core security mechanisms at the OS
level but also has to be able to ensure that there are
no side-channels in the system - with other words:
only explicit interpartition data exchange may be
possible. This is enforce by the communication sub-
system of the core OS.

logical communication channel

Secure System
Partition
(Driver)

Hypervisor

Hardware Node1
Peripherials

virtual interrupt
routing

valid channel
partners?

Application A

OSEK Runtime
Environment

Port

Secure System
Partition
(Driver)

Hypervisor

Hardware Node2
Peripherials

virtual interrupt
routing

valid channel
partners?

Application B

OSEK Runtime
Environment

Port

FIGURE 2: IMA approach - Scalability

The capabilities that ensure secure composabil-
ity in OVERSEE are

• spatial partitioning

• partition isolation (temporal and spatial)

• explicit communication (through the core only)

• system level security services (i.e. encryption,
TPM, etc.)

7 The state of OVERSEE

Currently (September 2010) the OVERSEE project
is in the first third of the design phase, and many vi-
tal decisions have not been made yet. So far, we have
identified a huge number of possible use-cases[16]
ranging from parking sensor systems over eCall to
V2V applications. After the consortium has decided
on a smaller subset of those use-cases, they were used
to derive requirements for the OVERSEE platform,
and to be possible candidates for the proof of concept
and demonstration phases.

5



7.1 Next Steps

Based on some identified use-cases and rough re-
quirements identified in the last few month, the de-
sign phase has started - this design phase is not a
typical bespoke design phase as it is more of an in-
tegrative nature - building on pre-existing software
components that need to be integrated. This not
only raises a lot of interface issues - it is easy to end
up with more ”glue-logic” than actual code if one
is not careful - but also at the same time requires
some consolidation of capabilities to fit the specifics
of automotive needs.

As with any FLOSS based project, first an ex-
tensive assessment phase to identify FLOSS compo-
nents that can be reused is mandatory, the interfaces
between the reused FLOSS building-blocks and the
building-blocks to be developed during the OVER-
SEE project must be designed. This process is highly
iterative as it is neither possible to arbitrarily modify
FLOSS components without breaking main-line com-
pliance, nor is it reasonable to impose new paradigms
on an industry that don’t fit current practice. In this
sense OVERSEE is a highly integrative project.

In parallel to these activities, the stringent secu-
rity demands, mandate development of thorough se-
curity requirements in the form of a protection profile
in the context of the common criteria (IEC 15408).
Any such protection profile will not only impact the
design but also the development process - this in
the context of pre-existing components is a major
challenge, from our perspective, for the OVERSEE
project.

8 Conclusions

The primary show stoper to enabling community
driven automotive apps have been identified as:

• closed APIs and proprietary interfaces

• closed networks as the current paradigm in au-
tomotive industry

• and complexity of application integration

OVERSEE targets to resolve these shortcom-
mings by providing a secure access point to in car and
internet resources, while providing standadrd APIs.

OVERSEE has the potential to enable car apps
to be developed in the opensource community and
at the same time ensure security and integrity of au-
tomotive platforms by providing critical services as
core functionalities of an open platform.

Following the trend already shown by the avion-
ics industry, OVERSEE has the potential to revolu-
tionize the automotive industry and introduce an in-
tegrated approach replacing the feterated in-vehicle
systems which have already been in use for too long
and are by any means behind the state of art.

Acknowledgements

This paper has been produced in the context of
the OVERSEE project (FP7-ICT-2009-4, Project ID
248333).

References

[1] OVERSEE - Open Vehicular Platform, OVER-
SEE Homepage, http://www.oversee-project.com

[2] Experimental Security Analysis of a
Modern Automobile, Karl Koscher,
Alexei Czeskis et. al, Center for Au-
tomotive Embedded Systems Security
(CAESS), http://www.autosec.org/pubs/cars-
oakland2010.pdf

[3] Open Systems and the Corresponding Inter-
faces for Automotive Electronics, OSEK Group,
http://osek-vdx.org

[4] FreeOSEK - Scalable RTOS for embed-
ded systems..., FreeOSEK Homepage,
http://opensek.sourceforge.net/

[5] Trampoline - OpenSource RTOS project ,
Trampoline Homepage, http://trampoline.rts-
software.org/

[6] Lguest: The Simple x86 Hypervisor, Lguest
Homepage, http://lguest.ozlabs.org/

[7] KVM - Kernel based Virtual Machine, KVM
Homepage, http://www.linux-kvm.org

[8] Towards Linux as a Real-Time Hypervisor, Jan
Kiszka, http://www.linux-kvm.org

[9] GOB - The free OSEK configuration builder,
GOB Homepage, http://gobx.sourceforge.net

[10] MISRA-C, MISRA - The Motor In-
dustry Software Reliability Association,
http://www.misra.org.uk/

[11] Perspectives: Reusable Software in Integrated
Avionics, Cary Spitzer, Avionics Magazine,
http://www.aviationtoday.com/av/categories/
commercial/Perspectives-Reusable-Software-in-
Integrated-Avionics 838.html, 2005

6



[12] Integrated Modular Avionics: Less
is More, James W. Ramsey,
http://www.aviationtoday.com/av/categories/
commercial/8420.html, 2007

[13] This Car Runs on Code, Robert N. Charette,
http://spectrum.ieee.org/green-tech/advanced-
cars/this-car-runs-on-code/0, 2009

[14] Security and Privacy Vulnerabilities of In-Car
Wireless Networks: A Tire Pressure Monitoring
System Case Study, Ishtiaq Roufa, Rob Miller,

et al. http://www.usenix.org/events/sec10/tech/
full papers/Rouf.pdf, 2010

[15] Normal Accidents: Living with High Risk Tech-
nologies, Charles Perrow, September 1999

[16] T1.1 Use Case Identification,
OVERSEE, https://www.oversee-
project.com/fileadmin/oversee/deliverables/
OVERSEE D1 1 Use Case Identification.pdf,
2010

7


