
Analysis of Statistical Properties of Inherent Randomness

Peter O. Okech

Faculty of Information Technology

Strathmore University, Nairobi Kenya

pokech@strathmore.edu

Nicholas Mc Guire

Distributed & Embedded Systems Lab

School of Information and Science and Engineering

Lanzhou University, P.R.China

mcquire@lzu.edu.cn

Abstract

For contemporary computing systems with performance enhancing hardware components, the exe-
cution time of a given instruction or sequence of instructions shows a marked variance. The temporal
indeterminism at instruction level can be attributed to the internal complexity of superscalar CPUs, as
well as the effect of systems software. There is a need to develop metrics to measure this inherent ran-
domness associated with the complexity of the hardware/software system. In this paper, we present an
analysis of the statistical properties of inherent randomness. We consider this as the first step in the
process of deriving a suitable metric. Our approach involves generating a random binary sequence based
on the temporal non-deterministic execution of threads. We then perform a number of statistical tests, to
evaluate quality of the bit stream produced. It is our belief that these results can form a basis for an ac-
ceptable metric of system level randomness and could further provide a set of quantitative measures that
can be used to compare the complexity of hardware/software systems like GNU/Linux on contemporary
superscalar/multi-core systems.

1 Introduction

A major focus in real time systems research is that
of ensuring temporal determinism in relation to task
execution. The approach taken by Real Time Oper-
ating Systems (RTOS) designers in improving deter-
minism and predictability of their products is to min-
imize latency and jitter, while enforcing sequential
predictability by excessive locking regimes. This ap-
proach has led to improved response time of RTOS,
but has not eliminated system jitters. Some parts of
the system jitter are associated with the instruction
history rather than a functional code-path and must
be viewed as inherent in complex software systems
running on non-deterministic hardware.

In the field of timing analysis for schedulability
of task in real time systems, one approach is that

of the estimation of the worst case execution time
(WCET) of a task. These figures are then combined
for different tasks, in order to calculate the feasibil-
ity of meeting the deadlines of each of the task. To
correctly calculate the WCET one must take into ac-
count the execution time of each instruction in the
worst case execution path. It is now accepted that
there are variation in the execution time of a program
which occurs because the hardware it executes on
varies in the amount of time required to perform the
same set of instructions. These hard to predict vari-
ations [1] are mainly caused by the complex mech-
anisms employed by modern processors to increase
their performance such as pipelining, caching, out-
of-order execution of instructions and branch predic-
tion. These performance enhancing techniques intro-
duce local non-determinism in the timing behavior of
individual instructions [2].

1

The notion of inherent randomness of modern
computing hardware platform was introduced in [3].
Inherent randomness is the measure of how non-
deterministic the execution of functionally determin-
istic instructions are on contemporary processors
with performance enhancing features. Our aims are
to measure this randomness, and develop an appro-
priate quantitative measure of the indeterminism of
modern computing platforms. This is a challeng-
ing task, since we cannot directly quantify the level
of randomness. In this respect, we have developed
a multi-threaded random number generator (RNG)
which harvest the entropy of the inherent random-
ness of modern hardware/software system.

In this paper, we present the concept behind the
RNG based on inherent randomness of modern com-
puting platform and the results of statistical test
done on the binary sequence produced by the gen-
erator. The motivation for analyzing the statisti-
cal properties of inherent randomness is to investi-
gate those attributes of the random sequence which
could form the basis of a suitable metric for mod-
ern computing hardware/software platforms, and to
allow quantitative comparison of complexity of such
systems.

The rest of the paper is organized as follows. In
section 2, we survey related works. Section 3 details
some public domain test suites for empirical testing
of random number generators. We describe in sec-
tion 4 the main idea on which our RNG is based.
Section 5, the methods section describes our choices
made during the design and testing of the RNG. The
results and our analysis is presented in section 6. The
paper’s conclusion is given in the last section.

2 Related Work

Our works is based on the variability of instruction
execution time. This phenomena has been investi-
gated in literature. An earlier investigation related to
scheduling jitter of RTLinux and its relation to low-
level CPU functional units - memory cache, BTB,
TLB - issues was presented at the Real Time Linux
Workshop in Lile 2005 [4]. The main conclusion of
this work was that the jitter observed in the real-time
Linux extensions was not primarily related to the
interrupt processing, as was commonly claimed on
mailing lists, but actually related to low-level hard-
ware execution time variance and thus in principle
not much influenced by the RTOS. Further the dis-
tribution of jitter indicated that the cause was ac-
tually primarily random processes occurring rather
than well defined delays introduced by disabling of

interrupts - the later would have resulted in visible
”spikes” in the jitter rather than a smooth distribu-
tion. The Jitter distribution is shown in figure 1.

DMA on max 6144

DMA off max 14528

 1

 10

 100

 1000

 10000

 100000

 0 2000 4000 6000 8000 10000 12000 14000

sa
m

pl
es

scheduling jitter in nanoseconds

scheduling jitter at high disk load

optimized rtl − dma on
optimized rtl − dma off

FIGURE 1: Jitter Distribution

Random number generators as usually classified
as either true (or physical) random number genera-
tor (TRNG) or pseudo random number generators
(PRNG). The fundamental difference between the
two types is that a PRNG use a deterministic algo-
rithm to generate random number sequences while
a TRNG is an application that samples a source of
entropy, traditionally a physical process. That is,
given the same initial value (seed) the sequence pro-
duced by a PRNG repeats itself, a property that a
TRNG lacks. Based on this perspective, software
systems typically regarded as deterministic systems,
are not considered as possible sources of true ran-
domness. Davis and Niphadkar [5] describe how to
use the non-determinism of the scheduling of concur-
rent thread to generate a sequence of random bits.
They describe this approach as neither a TRNG or a
PRNG, though we believe it should be classified as a
true random number generator, since it does not use
a deterministic algorithm to generate its sequence
neither does it require seeding. This is similar to our
work in which we extract randomness from the tem-
poral variability of instruction execution in a modern
superscalar CPU.

3 Statistical Evaluation

An ideal random number generator is characterized
by the property that the random numbers it gener-
ates are independent and uniformly distributed on
a finite range. These number can be either an in-
teger or a real numbers. It is possible to view an
integer or a real number in the range (0,1] as a se-
quence of binary bits through its binary expansion.
Some generators directly produce binary digits, and

2

for such generators, the values from the set {0,1}
that constitute the random sequence are expected to
be independent and to have a long run average value
of 0.5.

In order to evaluate a random number generator,
the generator (or its output) is usually submitted to
statistical tests that aims at revealing any statistical
deficiencies by looking at empirical evidence against
the null hypothesis. The null hypothesis, represent-
ing the perfect behavior of a truly random generator
of random bits, is that the random bits are indepen-
dent and identically distributed over the two element
set {0,1} and there is zero covariance across all bit
of the random number.

The output of most statistical tests is a p-value,
which is a measure of the strength of the evidence
provided by the data against the hypothesis. The
significance level α of the test of a statistical hypoth-
esis is the probability of rejecting the null hypothe-
sis when it is true. A sequence is indicated as a
pass/success by a given test if the p-value ≥ α, thus
the null hypothesis is accepted, otherwise the hy-
pothesis is rejected and the result is called a failure.
The sequence that passes a test would be considered
to be random with a confidence 1 − α.

It is generally accepted that passing a number
of statistical tests does not prove that the output
of an RNG is random sequence, but only improves
the confidence in the RNG for a given application
scenario.

The classical testing of a sequence of random
numbers based on mathematical statistic is pre-
sented in Donald Knuth’s seminal work [6]. These
tests reveal the possible deviations of the distribu-
tion of the numbers from a uniform distribution.
Over the years, others have implemented these tra-
ditional tests, as well as developed new more strin-
gent tests. Among these are publicly available tests
suites such as the ENT [8] test program from Formi-
lab, DIEHARD [8], the NIST [9] and TestU01 [10].
We will briefly discuss these tests next.

ENT is a Pseudorandom Number Sequence Test
Program developed by John Walker in 1998. It im-
plements five standard tests for randomness, namely
entropy, chi-square test, Arithmetic mean, Monte
Carlo estimation of PI and Serial Correlation. These
are straight forward mathematical metrics and iden-
tify major departure from randomness. The simplic-
ity of the ENT test utility make it attractive for quick
evaluation of the randomness of bit sequences.

The DIEHARD battery of tests was developed
in 1996 by Prof. Georges Marsaglia from the Florida
State University for testing randomness of sequences

of numbers. It was supposed to give a better way
of analysis in comparison to original Federal Infor-
mation Processing Standard Publication FIPS 140
(FIPS) [11] statistical tests. It’s other objective was
to develop more stringent tests which go beyond
Knuths classical methods in order to meet the new
challenges posed by sophisticated applications of ran-
dom numbers. The DIEHARD test is still widely re-
garded as a very comprehensive collection of tests for
detecting non-randomness, though several authors
have reported that it is no longer maintained.

The National Institute of Standards and Tech-
nology (NIST) developed a Statistical Test Suite in
2001 as a statistical package to test the randomness
of arbitrary long binary sequences produced by either
hardware or software based random number gener-
ators especially for cryptographic applications. The
test suite was developed in response to a perceived
need for a credible and comprehensive set of tests
for binary random number generators. NIST is now
considered as a de facto standard testing of RNGs
for cryptographic applications.

The TestU01 suite is an ANSI C library of generic
random number generators of various types. There
is also a well defined collection of statistical tests
which can be used to verify and test a generator.
The tests can be applied to either a generator inte-
grated into the library as a new generator or run on
a file created from an external implementation. For
testing pseudo-random number generators, the bat-
teries SmallCrush, Crush and BigCrush are recom-
mended. The tests in these batteries are used to test
both the structure and the output of the PRNG. For
binary sequence stored in a file, the batteries Rab-
bit, Alphabit, and BlockAlphabit can be used. We
chose to perform tests on the binary files generated
from our RNG using Alphabit and Rabbit which ap-
ply a variety of tests and produce 17 and 39 different
statistics respectively. The tests in each of the bat-
teries are shown in table 1 below.

3

Test Alphabit Rabbit
No parameters No parameters

Serial Over 4 2, 4, 8, 16
bits

1 2

Hamming 3 6, 32 bits 7 16, 32, 64,
128

Random
Walk

2 64, 320
bits

3 128, 1024,
10016

Close Pair 2 2, 4
Linear Com-
plexity

1

Lempel-Ziv
Compression

1

Auto Corel-
lation

2 lad 1, 2

Runs test 1
Frequency
test within a
Block

1

Appearance
Spacing

1

Discrete
Fourier
Transform

2

Periods in a
String

1

Binary Ma-
trix rank

3 32x32,
320x320,
1024x1024

TABLE 1: TestU01 tests for binary se-
quence

The description of each of the tests are given in
the TestU01 manuals.

4 Accessing the Randomness

Source

In our earlier paper [3], we demonstrated that a mod-
ern CPU exhibits randomness that is not triggered
by asynchronous events such as interrupts. We noted
that this randomness scales with system complexity
(both hardware and software). If the assumption
of inherent randomness of the computing platform
holds, then the main task would be to decide on
which technique to use in capturing this source of
entropy for the generation of a binary stream. There
are potentially many approaches to harness bits from
a randomness source. One of the objectives of this
work was to devise a simple method to harvests the
inherent randomness. The application that does this

should ideally run in user space. Unlike the appli-
cations that sample physical processes, we set to de-
velop a program that extracts the system entropy
without the need for post-processing.

The approach we used to harvest the systems
entropy involved writing a multi-threaded applica-
tion, in which several threads share an unprotected
memory variable. If the threads do not make make
use of an explicit mechanism to prevent access of the
variable from being simultaneous, then a data race
can occur. A race condition is in general the result
of nondeterministic ordering of a set of events [12].
The most common symptom of a race condition is
unpredictable values of variables that are shared be-
tween multiple threads. To detect if the occurrence
of a race has corrupted data, the value of the vari-
able after an execution can be compared against a
theoretically correct execution.

Our thesis is that the non deterministic execu-
tion a code sequence can impact the occurrence of
a race condition. To illustrate this, consider two
threads running on a uniprocessor system with pre-
emption and a fixed scheduling quanta. Let us sup-
pose that both the threads are updating a shared
variable, e.g. incrementing the variable by 1. If the
execution times of both threads are constant with no
variations, it is possible that race conditions would
occur after some duration with a noticeable pattern.

On the other hand, if the execution times of the
two threads varies by infinitely small amount and the
variance is uniformly distributed, then the pattern of
race occurrence will vanish for a sufficiently long run
of execution. The variations can be attributed to
the previously discussed jitter inherent in the sys-
tem. Similarly for systems with multiple execution
cores, if the two threads are scheduled on different
cores, any infinitely small jitter in the thread exe-
cution time can potential affect the ordering of the
store operation.

Conceptually, by allowing a data race to occur,
we can indicate this outcome by say the bit 1, and
the non-occurrence of a race by the binary digit 0
during an execution - thus we can emit a random
bit stream. The simplified view of the code is shown
below.

/*

* This is the TRNG!

*/

void * Thread(void *v) {

unsigned long n;

for (n = 1; n <= N; ++n) {

++count;

}

4

return NULL;

}

void generate_sequence(int *samples){

int i,n;

pthread_t t[NUM_THREADS];

for(i=0;i<*samples;i++){

count=0;

for (n = 0; n < NUM_THREADS; ++n){

if(pthread_create(t+n, ...)){

perror("pthread_create");

exit(-1);

} }

for (n = 0; n < NUM_THREADS; ++n){

if(pthread_join(t[n],NULL)){

perror("pthread_join");

exit(-1);

} }

/* check the occurence of a race */

if(count != N*NUM_THREADS){

/* emit 1 */

} else {

/* emit 0 */

}

}

return;

}

In the actual implementation, we make use of
the value stored in the shared variable (count in the
above code) as a source of the bit stream. If there is
a race i.e.

count != N*NUM_THREADS

we take the least significant byte of the variable and
add it to the pool of random numbers. This pool is
then written to a binary file.

5 Approach

In this section, we describe the strategies used in re-
lation to two main tasks, namely harvesting the en-
tropy of the systems and performing the statistical
tests. We first describe the design options available
for the random number generator.

Several parameter values can be varied in to con-
trol the quality of the RNG output. The main pa-
rameters of the RNG are:

Number of Threads Determines the number of
concurrent access to the shared variable.

Number of Runs The number executions for
which the number of occurrence of the condi-
tions is recorded. Statistically, this is the sam-
ples drawn from an infinite population.

Number of iterations The number of loops
through which a thread iterates when updating
the shared variable.

File Size The size of the binary file, expressed in
bits that the RNG produces.

Number of Samples The number of files to out-
put in an execution of the RNG.

The first decision to make is the number of the
threads updating the shared variable. The sim-
plest is the case where we have only 2 threads. We
have generated the samples used for the test using
4 threads, to take advantage of the Quad processor
available to us and determine the effect of CPU pin-
ing.

As stated in section 4. above, we use the occur-
rence of a race condition to generate the random bit
sequence. For a given execution of the the threads,
we want to know how many instances have resulted
in a race condition. To determine this, we need a
reasonable large number of runs. We have arbitrar-
ily chosen the value of 1000, though any large value
would be appropriate. In statistical terms, this corre-
sponds to how many observations are made for which
the events race or no race will be recorded.

The threads in our RNG compete to update the
value of an unprotected shared variable. If the num-
ber of updates is low, the probability of a race con-
dition is also low. This value is represented by the
variable N, the number of loops that the threads it-
erates through when updating the variable. We in-
vestigated the effect of different values of N on the
number of races for an idle system. For a small value
of N only a few races occur in 1000 runs, but when
the value of N is increased, the number of races also
increases, but the probability never reaches 100%.
This distribution of races for against the number of
loops is depicted in figure 2.

5

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 0
 2

00
00

0
 4

00
00

0
 6

00
00

0
 8

00
00

0
 1

e+
06

 1
.2

e+
06

 1
.4

e+
06

number of races per 1000 runs

nu
m

be
r

of
 it

er
at

io
ns

 in
 1

00
0

ru
ns

R
ac

e
P

ro
ba

bi
lit

y
fo

r
In

te
l D

ua
l C

or
e

2.
8

G
H

z

’d
ua

lc
or

e’

FIGURE 2: Races Probability

In the design of the RNG, one fundamental ques-
tion is this - What is the optimal value of N? We posit
that it is dependent on 1) the architecture and 2)
the system load. By studying the plot of N against
the number of races, we can determine the appro-
priate value for a given hardware architecture. To
handle changes in the load of the system, its is not
possible to manually manipulate the value of N. To
deal with this challenge we developed an adaptive
piece of code, which is still require fine tuning, that
would increase or decrease the value with the follow-
ing strategies:

• ensure that the number of races is close to 60%
of the number of runs

• ensure that changes are within given range, to
avoid generating biased bit streams

We have also allowed for the specification of the
size of the binary file to be generated. With this
option, it was possible to create small files, and test
them in order to see the effect of other parameters.
Our strategy for generating very large files (e.g. 1GB
to enable validation for cryptographic applications)
is to generate within a loop 10 samples of 1MB each
which can later be combined. For this paper, we have
performed tests on 1 MB files generated using this
approach.

To perform preliminary statistical tests, we used
the the ENT test suite. The ENT has a small set of

simple tests, which are easy to interpret. We then
used the TestU01 suite to test the statistical proper-
ties of the binary sequence generated by our RNG.
We chose to use TestU01 since it is the most compre-
hensive of the publicly available and it encompasses
most of the test in the other suites such as DIEHARD
and the NIST suites. Specifically, we used the test
batteries Alphabit and Rabbit which are collections
of tests designed to verify the randomness properties
of sequences stored in a binary file.

The experimental platform for used in our work
consisted of Intel processors with varied complexity.
For the results presented in this paper, the RNG was
tested and executed on the following platforms, all
based on the Debian distribution (lenny) with the
Linux kernel 2.6.26 series:

• 3.0 GHz Intel Xeon Quad - sample 1

• 2.8 GHz Intel Pentium Dual Core - sample 2

6 Results and Analysis

Our first examination of the data set produced by our
RNG was to confirm if indeed the occurrence of the
race condition is a stochastic process. Based on the
Central Limit Theorem that states that for a large
sample many random events converge to a Gaussian
distribution, we expect the plot of frequencies of the
number of races in a large sample of the run of our
RNG to exhibit an approximate bell curve. The fre-
quency distribution of races over a sample of 100000
runs with 4 threads on the 2.8 MHz Pentium Dual
Core machine is given is given in Figure 3. The data
was fitted to the Gaussian distribution with param-
eters a=170.86, b=604.932 and c=0.0306713 based

on the function g(x) = ae
−

(x−b)2

2c2 .

6

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

 2
50

 3
00

 3
50

 4
00

 4
50

 5
00

 5
50

 6
00

 6
50

 7
00

Race Frequency

N
um

be
r

of
 R

ac
es

 p
er

 1
00

0
ru

ns

R
ac

e
F

re
qu

en
cy

 fr
om

 1
00

00
 S

am
pl

es

’ra
ce

_f
re

qu
en

cy
’

ga
us

s(
x)

FIGURE 3: Race Frequency fitted to a
Gaussian Distribution

We performed tests from the ENT test suite on
1 MB files from the two system, termed as sample 1
and sample 2. For comparison purposes, we include
test on the Linux /dev/random from the Xeon Quad
machine. The runtime option used during the test,
-b tells the test to treat the input file as a bit stream.
The results is presented in the table 2.

Sample1 Sample2 dev/random
Test
Entropy 1.000000 1.000000 1.000000
Chi
square

1.909247
(16.70%)

2.112779
(14.61%)

0.507247
(47.63%)

Arithmetic
mean

0.499761 0.499749 0.499888

Monte
Carlo
value for
Pi

3.144624
(0.10%)

3.144636
(0.10%)

3.142313
(0.02%)

Serial cor-
relation

0.000066 -0.000484 0.000059

TABLE 2: Results of the ENT Tests

The value for entropy, which represents the infor-
mation density of the file’s content is not appropriate
in this case, since the input files are viewed as a bit
stream. The Chi square distribution values for our
RNG are higher that those of /dev/random. The
percentage values which indicates how frequently a
truly random sequence would exceed the value calcu-
lated are in respectable range, and far much better
than the degree to which the dev/random sequence
is suspected of being non-random.

The values for Arithmetic Mean are better for
/dev/random than the output of our RNG. The es-
timated value of Pi using the Monte Carlo method
and the Serial Correlation of the bytes in the file are
close to the expectation. In our analysis, the val-
ues based on this five basic tests show that the high
quality of the entropy source, especially for a com-
plex processor such as the Quad CPU.

The same data set used in the ENT test were
subjected to the TestU01 battery suites Rabbit and
Alphabit. A description of the tests in these bat-
teries can be found in TestU01 documentation. The
results of the tests are given in the Table 2.

Battery Statistics Failures
Sample 1 Sample 2

Alphabit 17 0 0
Rabbit 39 0 1

TABLE 3: Results of TestU01

All the tests in the Alphabit battery were passed
by the two samples. The output from the Dual core
system failed the Hamming Correlation test for a
block size of 128 bit, returning a p-value of 0.00099.

The test using ENT and TestU01 show that for
the 1 MB binary sequence from the two architec-
tures, the Xeon Quad Processor and the Pentium
Dual Core Processor produce high quality random
sequences.

7 Conclusions

In this paper, we have presented the results of the
statistical tests of the random bit pattern extracted
from the inherent non-determinism of contemporary
computing platform. First, we developed a simple
random number generator based on the execution of
multiple threads. By allowing threads to race on an
unprotected variable we have produced quality ran-
dom binary sequences.

We then subjected the output of the random

7

number generator a number of statistical tests. The
results from the ENT test suite show that the sta-
tistical values of Arithmetic means and Monte Carlo
simulation of PI are all in the reasonable ranges of
random numbers. So are the values of Chi square
and Serial correlation. The bit streams also passed
the tests in the Rabbit and Alphabit batteries of
the TestU01 statistical test suite, providing evi-
dence that the RNG that we developed to harness
the inherent randomness of instruction execution in
the underlying computational architecture generate
quality random numbers.

The results presented in this paper are based on
an idle systems, with only the basic services run-
ning. We are currently working on the parameters
that would filter out the effects of system loads. We
are also investigating an approach that would au-
tomatically change system parameters to allow the
RNG to produce non-biased bit streams even in the
presence of high system load.

In the future, we plan to conduct further test
on hardware of varying complexity, from simple pre-
2006 processors to the newer generation Intel pro-
cessors. We hope to extend the analysis to other
architectural families.

Our proposal to use the statistical properties of
random sequence as attributes of a system random-
ness metric needs deeper investigation. As opposed
to being a single value of merit, we expect that the
metric of inherent system randomness to be com-
posed of several statistics. Thus we need to further
investigate which of the statistics produced by the
test suites as suitable attributes of the envisioned
metric.

References

[1] Measuring Performance in Real-Time Linux,
Fredrick M. Proctor, In the Proceedings of

the 3rd Real-Time Linux Workshop, Mi-

lan, 2001.

[2] Design for time-predictability, Lothar Thiele
and Reinhard Wilhelm, In: Proceedings of

the Dagstuhl Perspectives Workshop on

Design of Systems with Predictable Be-

havior, 2004.

[3] Analysis of inherent randomness of the Linux
kernel, Nicholas Mc Guire, Peter Okech, Georg
Schiesser, In Proceedings of the 11th

Real-Time Linux Workshop, Dresden,

2009.

[4] Benchmarking - Cache issues, Nicholas Mc
Guire and Qingguo Zhou, In Proceedings

of the 11th Real-Time Linux Workshop,

Lille, 2006.

[5] LibMT-PRNG: A Multitheaded Pseudo Ran-
dom Number Generator, Mathew Davis and
Sameer Niphadkar, Dr Dobb’s Journal,

April 2009.

[6] The Art of Computer Programming, Volume 2:
Seminumerical Algorithms (2nd Edition), Don-
ald E. Knuth, Addison-Wesley, 1981.

[7] ENT: A Pseudorandom Number Sequence Test
Program, http://www.fourmilab.ch/random/

[8] Diehard Battery of Tests of Randomness,
http://www.stat.fsu.edu/pub/diehard/

[9] NIST, Special Publication 800-22, A
statistical Test Suite for Random and
Pseudo-random Number Generators for
Cryptographic Applications, Available at:
http://csrc.nist.gov/groups/ST/toolkit/rng/

[10] TestU01: A C Library for Empirical Testing
of Random Number Generators, Pierre Lecuyer
and Richard Simard, ACM Transactions on

Mathematical Software, 2007.

[11] Federal Information Processing Standards Pub-
lication 140-1, Security Requirements for Cryp-
tographic Modules, U.S. Department of Com-
merce/NIST, 1994, Springfield, VA: NTIS

[12] Modern Operating Systems, 3rd Edition, An-
drew S. Tanenbaum, Prentice Hall, 2007.

8

