
FLOSS for safety: Mastering mission critical development with GIT

Andreas Platschek

Opentech EDV Research GmbH

Augasse 21, 2193 Bullendorf - AUSTRIA

andreas.platschek@opentech.at

Nicolas McGuire

Opentech EDV Research GmbH

Augasse 21, 2193 Bullendorf - AUSTRIA

der.herr@hofr.at

Abstract

Writing code for safety critical systems implies a lot of constraints and requirements in the software
development process. Depending on the field a specific development process has to be followed and fully
documented. In order to be compliant with a standard ,e.g. DO-178B, ISO61508, ISO26262, MISRA-C,
stringent traceability requirements must be met, allowing to justify the development process it self.

In this paper, we try to give some examples of features of git that are - in our eyes - useful in helping
the developers to fulfill the traceability and documentation requirements of safety related development
life-cycles for bespoke components. Examples for such techniques are a history for each and every line of
code, or the sign-off and ack mechanism, to find out who is responsible for any part of the code base -
providing a method to ensure you know who to blame.

These git specific features can even be improved by using git hooks in combination with different tools,
including formal methods, and backend scripting, allowing to fully automate these QA related extensions.

The intention behind all of these techniques is to build a toolchain for extended traceability [version
control] around git, simplifying the verification process.

Although this paper targets safety critical systems in particular, some of the presented techniques may
well be suited for enhancing the Linux kernel development as well as for standard user space programing
tasks.

[DISCLAIMER:] None of the proposed techniques replaces common sense, they are just a way of
improving your code and development process.

1 Introduction

GIT [1], the ”information manager from hell” is a
version control system. The project was started by
Linux Torvalds out of the need for an FLOSS ver-
sion control system for the Linux Kernel, which was
capable of distributed development. Before GIT, the
Linux Kernel development was based on BitKeeper a
proprietary version control system, which was avail-
able for free use (here: ”free as in free beer”), but
got restricted in 2005 and therefore was no longer
available for the development of the Linux Kernel.
Since the FLOSS version control systems, such as
subversion or CVS were no option either (mainly due

to their centralized approach), Linus designed GIT
which became self hosted in April 2005. Shortly after
this, GIT was already used to host the linux kernel
(starting from linux-2.6.12-rc2).

The main properties that GIT provides, are -
as already mentioned - distributed development (de-
tails follow below), complete history, revision track-
ing and branching and merging are fast and easy.
Furthermore no network access or central server are
mandatory during development.

The remainder of this section is going to give
you a short comparsion between centralized and
distributed development, and discuss some require-

1

ments on the software development life cycle, in-
troduced by popular standards such as MISRA-C,
DO-178B, ISO-61508, ISO-26262 and others, that we
think could be enforced, or at least be supported by
git features and/or git hooks.

After this git hooks are introduced, and their ca-
pabilities as well as their limitations are discussed.
The last section gives some simple examples which
could have a big impact on the development of your
mission critical software.

The more practical part of this paper requires a
basic knowledge of GIT. If you are unfamiliar with
GIT, you can find many tutorials and books (e.g. [2])
on the internet.

2 Centralized vs. Distributed

Development

In Centralized RCS (revision control system) systems
(i.e. subversion, CVS, ...), there is always one master
repository (server). When a user checks the reposi-
tory out, the local copy only contains the tip of the
repository. Everytime the user wants to checkout a
different branch, or an older version of the reposi-
tory, he has to connect to the master repository and
fetch the desired version.

In contrast to centralized revision control sys-
tems in GIT every copy of the repository is the same,
this means, that in contrast to centralized RCS , you
do not just checkout the tip of the repository, but
you clone the whole repository. Therefore, after a
clone, the new tree is exactly the same as the origi-
nal (hence: clone).

This sounds like, a clone would take a very long
time, but the good news is, that a clone is just
marginally slower than a svn checkout. If you are
interessted in a comparison between RCS systems in
use, you might want to look at [8].

So the big question now is, what is the big ad-
vantage of having an exact clone of the repository?
First of all obviously if you decide to have a dedi-
cated server (often called depot in git), and for some
reason the repository on this server gets corrupted,
all you have to do, is to clone the local repository
from a developer, and you are back in buisness.

Another advantage is, that you do not need a
network connection to the server, when you are work-
ing, since you can commit into your own, local reposi-
tory while beeing offline, and just push all those com-
mits to the depot the next time you have a network
connection.

Furthermore, this distributed approach, where
every repository has the same priority allows you
to implement workflows other than a centralized
server where everybody commits to. In example,
you could want a hierachical workflow (Dictator and
Lieutenants Workflow), where the maintainer of the
main repository (the dictator) pulls from a limited
group of people’s repositories (lieutenants), who pull
from the repositories of all the ”normal” developers.

Lieutenant 1

Developer A Developer B Developer C Developer D Developer E

Dictator Blessed
Repository

Lieutenant 2

FIGURE 1: Dictator and Lieutenants
Workflow

Integration
Manager

Blessed
Repository Developer A

public
Developer B

public
Developer C

public

Developer A
private

Developer B
private

Developer C
private

FIGURE 2: Integration Manager Work-
flow

In git there really are no real limits to the work-
flow, it really is just a matter of how you want to
do it, and which approach fits you project the best.
After all a ”main” repository (or depot) is just a con-
vention in git and technically does not differ from any
other clone of the repository.

3 Requirements for Mission

Critical Software

3.1 What Standards say about that

matter

Before we look at requirements that can be assured
with the proposed techniques, we will have a short

2

look at what widely used safety standards say about
the development of mission critical software.

IEC 61508 a) apply administrative and techni-
cal controls throughout the software safety
lifecycle, in order to manage software
changes and thus ensure that the specified
requirements for software safety continue
to be satisfied;

b) guarantee that all necessary operations
have been carried out to demonstrate that
the required software safety integrity has
been achieved;

c) maintain accurately and with unique iden-
tification all configuration items which are
necessary to maintain the integrity of the
E/E/PE safety-related system. Configu-
ration items include at least the following:
safety analysis and requirements; software
specification and design documents; soft-
ware source code modules; test plans and
results; pre-existing software components
and packages which are to be incorporated
into the E/E/PE safety- related system;
all tools and development environments
which are used to create or test, or carry
out any action on, the software of the
E/E/PE safety-related system;

d) apply change-control procedures to prevent
unauthorized modifications; to document
modification requests; to analyse the im-
pact of a proposed modification, and to
approve or reject the request; to docu-
ment the details of, and the authorisation
for, all approved modifications; to estab-
lish configuration baseline at appropriate
points in the software development, and
to document the (partial) integration test-
ing which justifies the baseline (see 7.8);
to guarantee the composition of, and the
building of, all software baselines (includ-
ing the rebuilding of earlier baselines);

[IEC 61508-3 Section 6.2.3.]

DO-178B Section 8.2 Software Quality Assurance
Process Activities: ”The SQA process should
take and active role in the activities of the
software life cycle processes, and have those
performing the SQA process enabled with the
authority, responsibility and independence to
ensure that the SQA process objectives are
satisfied.”[DO-178B, Section 8.2]

3.2 Generic Description

Coding Style - There are various reasons why
defining a coding style that is followed through-
out a project is a good idea. In example, read-
ing code of co-developers becomes much easier,
if everyone uses the same indentation. Below
in the examples section, we will use the check-
patch.pl script, used to enforce the linux kernel
coding style [3].

Coding Guidelines typically include:

• line length restrictions

• naming conventions

• identation

• source code documentation standards

• banishing of ambiguous expressions

• . . .

One very famous coding guideline that is very
widely used in the automotive industry is
MISRA-C [4], and checking against a MISRA-
C checker would be a perfect use-case of the
techniques proposed in this paper (see section
6.1).

Quality Assurance - Since quality is a rather sub-
jective construct, defining an appropriate as-
surance of the same is not a simple task to
do. In most cases quality is assured by pe-
riodic reviews, using various tags, GIT can be
used to keep track of which revisions have been
reviewed and by whom. g

Test Applications - RCS systems are often used to
do a nightly build. In section 7, we are going to
present a simple way to extract more informa-
tion from such a nightly build than just ”build
failed” or ”build succeeded”.

Formal Checks Recently, various formal tools are
used to find bugs in the Linux kernel. Those
tools, like e.g. static code checkers can be used,
to find potential threats periodically, and re-
port their appearance and disappearance in a
database.

Force Common Toolchain - Forcing all develop-
ers to agree and to use a common toolchain is
- especially for FLOSS projects - impossible to
achieve. To make sure that a commited ver-
sion is compilable with the common toolchain,
a server side git hook (for details look at section
5) that compiles the commited version with the
official toolchain and rejects the commit into
the common repository, if the compile fails.

3

4 GIT features

This section discusses some features provided by GIT
that support you to ensure the requirements de-
manded by the standards you follow. Most of these
features are going to be used in some of the practical
examples, we are going to present below.

git log of course git offers the possiblity to browse
through the history of development. The basic
capabilities provided by git log (there is also
a graphic tool called gitk) are extended by git
blame, git diff, ...

git blame git blame shows you on a line basis who
edited this line last. So you can reliably find
out who to blame if you found the responsible
person (I guess the times where one person is
elected to be the scapegoat are now offically
over...).

git bisect is a very powerful tool to find issues.
Let’s assume your software contains a feature
that you know as already worked in some com-
mit ABC, and you are at commit XYZ and for
some reason, this feature does not work. In-
stead of testing every commit between those
two, you can now just use git bisect to find the
issue. What git bisect does is to checkout the
commit exactly in the middle between ABC
and XYZ, say MNO then you can check if your
feature works in this commit. If it works, git
bisect next checks out the commit exactly in
between MNO and XYZ, if it does not work
it checks out the commit between ABC and
MNO. Using this technique you will find the
last version where your feature worked very
fast. Especially if it is an error that can be
checked automatically.

git tag Tags are a very useful took, to mark com-
mits, in example a commit could be tagged
with ”review april 1 2010”. At the next pe-
riodic review, there won’t be any doubt which
version already has been reviewed.

Signed-off-by Git allows to tag patches with tags,
describing who has been involved with the
patch. These tags include Signed-off-by,
Acked-by, Tested-by, Reviewed-by, Reported-
by and Cc. Although these tags have very spe-
cific meaning in the linux kernel tree[5], this
meaning is only a convention, and could be dif-
ferent within your software project. Neverthe-
less, these tags are a great tool to describe a
chain of people associated with a patch.

git diff can be used to easily show the difference
between an already reviewed version of the de-
velopment tree and the current version.

5 GIT Hooks

GIT Hooks provide an easy way for everyone to ex-
tend git to their needs. There is a number of different
hooks available, (just cd into your repository and do
a ls .git/hooks to list them all) the difference be-
tween all those hooks is when they are called - or in
other words, the action that triggers them. For ex-
ample the pre-commit hook (which we will be using
later in the examples) is called every time before you
perform a commit. A pre-commit hook offers the
possiblity to run tests on the patch/the new version
before you actually add it to the repository. Other
hooks, like the post-receive hook are more suitable
for depots, where they could e.g. be used to send an
e-mail to a group of people everytime some pushes
to the repository (a great way to produce spam...).

To implement a hook, all you have to do is
to implement the hook (obviously), put it into the
your-git-repo/.git/hooks, name it properly (i.e.
according to the event that should trigger it, e.g. pre-
commit. Usually you already have a sample for every
possible trigger in your .git/hooks directory after
initialization.) and make it executable (e.g. chmod

+x pre-commit).

6 Simple Examples

This section contains some very simple examples.
They are simplified and do not cover all possible com-
mit scenarios. Most of them are restricted to C-Code
only commits, so if you want to use them, you will
have to extend them to your needs.

6.1 Coding Style

The very first git hook that we experimented
with is a very simple pre-commit hook, that runs
checkpatch.pl against the patch that is commited
(the diff between the last commit and this commit),
if checkpatch returns an error, the patch is rejected,
warnings are displayed, but do not lead to a rejection
of the patch.

As mentioned above, checkpatch.pl is a script
that checks the linux kernel coding style. You can
find the script in the source of the linux kernel in the
directory scripts.

4

#!/bin/sh

git diff --cached > .git/hooks/tmp/diff.txt

.git/hooks/./checkpatch.pl --no-tree \

--no-signoff .git/hooks/tmp/diff.txt \

> .git/hooks/tmp/out.txt

cat .git/hooks/tmp/out.txt

if grep "ERROR" .git/hooks/tmp/out.txt; then

echo "Coding Style Errors! COMMIT \

REJECTED!" >&2

exit 1

fi

exit 0

The advantage of running the script against the
diff, is obviously the speed, since you do not have
to check the whole code base, but only the current
commit.

Of course, there could be an exception, where
breaking the coding style is inevitable, in such a
case it is possible to add a --no-verify to the git

commit. Of course this simple example could be
rewritten to use a MISRA-C checker very easily, and
could therefore be used to enforce the MISRA-C rules
from the very beginning of the project.

6.2 Avoiding Complex Patches

The next example will deal with the avoidance of
complex commits. This is done using cscope to build
a (partial) callgraph. The Hook checks if the func-
tions patched in this example call each other (this
means, if you want to patch f1 and f2 and f1 calls
f2 or f2 calls f1), and are therefore directly depen-
dent. If they are directly dependent, the commit is
rejected.

#!/bin/sh

funcs=$(git diff -p -U0 --cached | egrep ^@@ | \

sed ’s/(/ /g’ | awk ’{print $6}’ | uniq);

echo $funcs

for i in $funcs; do

tmp=$(cscope -R -L3 $i | awk ’{print $2}’)

for j in $funcs; do

if ["$i" != "$j"]; then

out=$(echo $tmp | egrep "$j")

if ["$out" = ""]; then

echo "checked function"

echo $i

else

echo "dependent! COMMIT REJECTED"

exit 1

fi;

fi;

done;

done;

echo "independent!"

exit 0

A completely different way to avoid complex
patches - which we won’t show here - , could be by
using software metrices.

7 Automated Nightly Tests

Many FLOSS projects use nightly builds to provide
binaries with the latest features for testing to the
users. The example given in this chapter has a dif-
ferent aim, namely to check whether the current ver-
sion is even compilable, and in case is not, to find
out which commit broke the build process, and who
is the person responsible for that patch.

Furthermore, these automated nightly builds are
server side scripts, and can therefore also be used to
assure, that the tree builds with a certain toolchain.

7.1 Finding bad builds

Basically this means, that a Testmachine (Testclus-
ter) pulls the repository during the night and tries
to build the last commit. If the build succeeds, the
testmachine is done for that night, else it performs
a git bisect on the last commit and the commit
where the testsuite succeeded last (called last good

in the code). This allows the testmachine to throw
back more than just ”BUILD SUCCEEDED” or
”BUILD FAILED”, but also the exact commit where
it stopped to succeed and the developer responsible
for this commit. The use of git bisect allows the
script to find the point where the build process fails
very fast, even if many commits have been made dur-
ing the day.

#!/bin/bash

BEFORE FIRST USAGE:

#

create a file last_good.one and copy the

hash of the newest commit considered as

good into this file. The hash will be

updated every time this script is run.

kill possible aborted bisect!

5

git bisect reset master

rm run_check.log

finish_flag=0

last_good=$(cat last_good.one)

echo $last_good

cp config_guest .config

make -j4 bzImage #2&> /dev/null

ret=$?

if [$ret -eq 0]

then

make distclean

echo DONE.

else

make distclean

git bisect start HEAD $last_good \

> run_check.log

cat run_check.log

while [$finish_flag -eq 0]

do

cp config_guest .config

make -j4 bzImage #2&> /dev/null

ret=$?

if [$ret -eq 0]

then

git bisect good >> run_check.log

cat run_check.log

if (cat run_check.log | \

grep "is first bad commit")

then

finish_flag=1

fi

else

git bisect bad >> run_check.log

cat run_check.log

if (cat run_check.log | \

grep "is first bad commit")

then

finish_flag=1

fi

fi

make distclean

done

fi

cat run_check.log

first_bad=$(cat run_check.log | \

grep "is first bad commit" | \

awk ’{print $1}’)

git checkout $first_bad

print information about last good/first bad

git log -n1 HEAD \

--pretty=tformat:"First Bad Commit: %H"

git log -n1 HEAD --pretty=fuller

git log -n1 HEAD \

--pretty=tformat:"Last Good Commit: %P"

also dump it into the .log file

git log -n1 HEAD \

--pretty=tformat:"Last Bad Commit: %H" \

>> run_check.log #last good one

git log -n1 HEAD --pretty=fuller \

>> run_check.log #last good one

git log -n1 HEAD \

--pretty=tformat:"Last Good Commit: %P" \

>> run_check.log #last good one

git log -n1 HEAD --pretty=tformat:"%P" \

> last_good.one #last good one

git bisect reset master

git checkout master # go back to tip

7.2 Finding Potential Threats with

Stanse

One example we implemented, uses the static code
checking tool stanse [9], to find potential threats like
memory allocation errors or bad locking disciplines.

Stanse has already proven it’s usefulness by find-
ing dozens of bugs in the linux kernel (for more infor-
mation, have a look at the project’s homepage [9]).

In this example, we tried to automate the pro-
cess of finding new (potential) bugs on the example
of the linux kernel. The workflow of this example is
as follows: The repository is pulled periodically (e.g.
every night). After that, stanse runs a variety of dif-
ferent checkers over the whole tree, generating XML
files with all the potential threats found. This XML
file is then read by a python program, and all threats
that have appeared for the first time, are added into
an SQL database, and a list of new found threats is
sent to the maintainer per e-mail.

In addition to the information provided by
stanse, the database will include the hash of the com-
mit where the threat was found first, a status flag,
indicating the state of the threat (NEW, BEEING
PROCESSED, RESOLVED), a hash of the commit
where the threat is resolved as well as the possibility
to write a note about the threat (e.g. ”why this a
false positive”, or ”what I tried so far to resolve it,
but did not work”).

6

8 Conclusions

In the words of DO-178B: the quality assurance pro-
cess should play an ACTIVE role in the develop-
ment of safety/mission critical software. This paper
showed some basic techniques how git can be used
to easily implement mechanisms which not only sup-
port the quality assurance process, but also provides
prove of a (hopefully) thorough elaborated and uti-
lized quality assurance process.

Although this paper gives only very simplistic,
examples, we think that those examples are repre-
sentative enough to boost you imagination on what
is possible. As mentioned before, a key criteria is
definitly the speed of the response. If a check after a
commit takes more than a couple of minutes, it def-
initely gets uninteressting (even 1 minute might be
too long), so time is the restricting criteria for these
checks. Fortunately git operations are very fast, so
there are many useful checks possible.

Acknowledgements

This paper has been produced during Task 4.2:

Validation capability at the validation tool

level of the OVERSEE project (FP7-ICT-2009-4,
Project ID 248333).

References

[1] GIT - the fast version control system, GIT Home-
page, http://git-scm.com/

[2] Pro GIT, 2009, Scott Chacon, http://progit.org/

[3] The Linux Kernel Coding Style,
2007, Greg Kroah Hartman,
http://www.kernel.org/doc/Documentation/CodingStyle

[4] MISRA-C:2004 - Guidelines for the use of the C
language in critical systems, 2004, MISRA Con-
sortium

[5] 5: POSTING PATCHES, Linux Kernel Docu-
mentation , linux/Documentation/development-
process/5.Posting

[6] IEC 61508 - Functional safety of electri-
cal/electronic/programmable electronic safety-
related systems, IEC, 1998

[7] DO-178B - Software Considerations in Airborne
Systems and Equipment Certification, RTCA,
December 1, 1992

[8] Why GIT is better than X, Scott Cha-
con,http://whygitisbetterthanx.com/

[9] Stanse - Taking a firm stanse on bugs, ITI,
Faculty of Informatics, Masaryk University,
http://stanse.fi.muni.cz/

7

