
A Latency Model of Linux 2.6 for Digital Signal Processing in Real

Time

Sergio A. Rodriguez

Dept. Telecomm. and Control Engineering
Escola Politecnica, University of Sao Paulo

Itacolomi,423 CEP 01239-020 Sao Paulo SP, Brazil
sergio.rodriguez@poli.usp.br

Phillip M. S. Burt

Dept. Telecomm. and Control Engineering
Escola Politecnica, University of Sao Paulo

PTC/EPUSP 05508-900 Sao Paulo SP, Brazil
phillip@lcs.poli.usp.br

Abstract

This paper develops a new qualitative latency model of the Linux 2.6 OS for the Intel x86 architecture.
The proposed model analyses aspects related to digital signal processing in real time. In this context,
the study identifies all latency sources since the arrival of a signal sample (or block of samples) up to the
execution of the first instruction related to processing that sample. The interrupt latency is divided into
seven components, including hardware latency sources such as microprocessor operation and interrupt
controller queue. The dispatch latency is divided into six components, adding new components such as
interrupts stack latency and deferrable functions latency to the known sources such as scheduler latency
and switch context latency. The paper also identifies further overhead sources such as memory allocation
by demand paging. Finally some of the new latency components are measured using an instrumented
kernel. The measures are obtained with and with out computational load for the purpose of analyzing its
influence in the latency components.

1 Introduction

During the last years there has been an increase in
the processing capacity of personal microcomput-
ers. This increase suggests the possibility of using
microcomputers instead of specific-use processors in
several applications. An example of great practical
interest would be the use of microcomputers com-
patible with the IBM-PC (Intel x86) running Linux
for real time digital signal processing (DSP) applica-
tions, instead of using digital signal processors. How-
ever, the performance of such a system would be lim-
ited due to the fact that although the improvements
for real time in version 2.6, Linux was not devel-
oped taking into account the requirements of real
time DSP applications [1, 2].

In real time DSP applications one important fac-
tor is the sampling period, since each digital sample
(or block of samples) has to be fully treated in this
fixed time period. For this reason, the purpose of
this paper is to study the Linux latency for DSP ap-
plications in real time. This latency establishes the
lower bound for the sampling period; consequently it
establishes an upper bound for the frequency of the
signals that can be processed.

This work consists of two main parts. In the first
part a qualitative model for the Linux latency in a
DSP real time application is proposed. This model
divides the latency into several components, consid-
ering the delays of both the microprocessor and the
operating system. In the second part the Linux ker-
nel is modified in order to allow measuring some of

1



the components defined in the model.

2 Background and main as-

sumptions

2.1 Real time DSP program structure

Programs that perform real time digital signal pro-
cessing have a particular structure, as shown in Fig-
ure 1. The central part of the program is basically a
loop where 4 operations are executed: read the input
sample, process the input sample, generate an out-
put datum and check the end of the processing. This
structure is similar to the one of a real time program
[3, 4]. However, there is an important specificity:
the input sample must be processed in a fixed time
period known as the sampling period. The sampling
period is limited by the frequency content of the in-
put signal, according to the Sampling Theorem [5].

From the discussion above it follows that a real
time DSP program needs a time mechanism to sig-
nalize the sampling time instant to it. Although
Linux has software timers, reference [6] recommends
the use of hardware timers in real time applications
in order to be more precise. Consequently, it is as-
sumed in this work that an interrupt request signal
(IRQ) signalizes the sampling time instant. This in-
terrupt is named IRQsa.

FIGURE 1: DSP program block diagram

2.2 Functional Model

For greater simplicity, a two-process functional
model is assumed for a real time DSP application
running in a multiprocessing operating system such
as Linux. The first process is the DSP process.
The second process (”NDSP process”) is an abstrac-
tion that encloses all the other processes and kernel
threads that are sharing the system. Figure 2 shows
the dynamic of this model.

FIGURE 2: Functional model

The dynamic may be explained as follows:

1) At instant t0 a sampling signal is raised
through the IRQsa. At this instant the DSP pro-
cess is in the blocked state and the NDSP process
is in the execution state. The main goal of the op-
erating system is to put the DSP process into the
execution state in a short time interval, because it is
assumed that the digital processing is in real time.

2) The system requires a period of time to start
the handling of the IRQsa. This time interval is
known as Interrupt Handling latency.

3) At instant t1 the interrupt service routine
(ISR) starts to be executed. The functions of this
routine are: to read the digital sample (or block
of samples) from the external device, to change the
state of the DSP process into the ready state and to
inform the operating systems that a process change
is needed.

4) At instant t2 the ISR finishes and the oper-
ating system starts the process change. The time
interval since t2 up to the instant when the DSP
process passes into the execution state (t3) is known
as Dispatch latency. This latency is historically di-
vided into two components: Scheduler latency and
Switch Context latency [7, 8].

5) The DSP process deals with the input sample
between the instants t3 and t4.

2



6) At instant t4 the DSP process releases the
Central Processing Unit (CPU), so it passes to the
blocked state and calls the scheduler. The reason for
this is that the DSP process needs to wait for the
next sampling signal.

7) The operating system exchanges the processes
between the instants t4 and t5. As the model as-
sumes that there are only two processes in the sys-
tem, at instant t5 the NDSP process passes to the
execution state.

Two remarks about this model are in order:

1) The model implicitly assumes that the digital
signal processing is performed by a process running
in User Mode.

2) It is necessary that the digital signal process-
ing finishes before the arrival of the next sampling
signal. In case this doesn’t happen the system is in
an under-sampling condition.

3 Qualitative Model for the

Linux Latency

Let the Linux latency be divided in three parts. The
first part is the latency before the ISR execution,
which, as previously defined in Section 2.1, is called
Interrupt Handling latency. The second part is the
latency after the ISR execution, called Dispatch la-
tency. The third part is the latency due to the loss of
the DSP process computation time caused by some
operating system tasks (Section 3.3), which will be
called Execution latency.

In the following the Handling Interrupt latency
and the Dispatch latency are analyzed in detail.
Consequently, a new model for the Linux latency is
established.

3.1 Interrupt Handling Latency

This latency is divided into seven components as ex-
plained below.

3.1.1 Interrupt Checking Latency

A microprocessor of the x86 family checks whether
an interrupt signal has been raised only when an in-
struction is completely executed [9, 10]. Therefore,
there is a time interval between the interrupt sig-
nal raising and the microprocessor checking it. This
time interval is defined as Interrupt Checking la-
tency. This latency depends on the execution time of

the instruction that is being processed by the CPU
when the interrupt is raised.

The x86 family has a CISC (Complex Instruc-
tion Set Computer) architecture; consequently it has
instructions with different execution times. Besides
this, the execution time of some instructions depends
on the values of the operands.

Both these factors lead to a greater variance of
the Interrupt Checking latency, if compared with the
variance which would be obtained with specific-use
processors or RISC (Reduced Instruction Set Com-
puter) architecture [11] processors.

3.1.2 Maskable Interrupt Latency

In a microprocessor of the x86 family, a maskable in-
terrupt can be in two states: masked or unmasked.
A masked interrupt is ignored by the control unit
of the microprocessor as long as it remains masked
[9]. The Maskable Interrupt latency is defined as the
time interval during which an interrupt is ignored
because it is masked.

In Intel microprocessors the interrupts are
masked in two ways. In the first one, when an inter-
rupt is being handled the microprocessor automat-
ically masks all the interrupts (cleaning the IF bit
of the EFLAGS register). The purpose of this is to
avoid that more than one interrupt is treated by the
system at the same time [10] until the operating sys-
tem unmasks the interrupts.

In the second one, the operating system masks
the interrupts by handling the IF bit of the EFLAGS
register by means of appropriated functions (lo-
cal irq enable and local irq disable). The purpose of
this is to avoid a race condition and to execute crit-
ical regions of the kernel code without disturbance.
Normally this happens when an exception is handled
or a deferrable function is being executed [6].

3.1.3 PIC Queue Latency

The I/O devices demand an interruption of the mi-
croprocessor through a signal called interrupt request
(IRQ). The IRQ lines are connected to a circuit called
Programmable Interrupt Controller (PIC). This de-
vice monitors the IRQ lines and signalizes the micro-
processor when an interrupt is raised [10].

When an IRQ line is activated, the PIC executes
the following actions [10]:

1) Stores the interrupt vector in a PIC I/O port,
thus allowing the CPU to read it via the data bus.

3



2) Raises a signal to the microprocessor INTR
pin.

3) Waits until the CPU acknowledges the inter-
rupt signal.

4) Clears the INTR line.

It can be observed that there is a time interval
between the IRQ signal activation and the release of
the INTR. In case an interrupt is raised during this
time interval,the controller puts it into a pending
state and deals with it when the INTR line is re-
leased. The controller establishes a priority, so that
if one or more interrupts are pending, the one with
the greater priority will be the first to be attended.

The PIC Queue latency is defined as the time
during which an interrupt remains pending in the
controller queue to be attended.

3.1.4 Microprocessor Operating Latency

When the microprocessor detects an interrupt, it
needs to execute some instructions before starting
the execution of the Linux interrupt handler. In mi-
croprocessors of the x86 family, the most important
operations are [10]:

1) Save the state of the EFLAGS, CS and EIP
registers in the stack.

2) Load the CS and EIP registers with the values
that define the logical address of the routine which
handles the interrupt.

The Microprocessor Operating latency is defined
as the time interval demanded by these operations.

3.1.5 Registers Saving Latency

The microprocessors of the x86 family don’t save all
the common use registers. So the first operation of
the Linux interrupt handler is to save all the registers
that were not automatically saved by the micropro-
cessor [6].

In Linux all interrupts raised by I/O devices are
directed to the same address. This is performed by
putting the same address on every one of IDT (In-
terrupt Descriptor Table) entrances that belong to
interrupts raised by I/O devices [6]. The aim of this
procedure is to deal with this type of interrupt in the
same way.

The Registers Saving latency is defined as the
time interval demanded for this saving.

3.1.6 Interrupt Handler Entrance Latency

Linux implements software layers to abstract certain
hardware characteristics such as the following: dif-
ferent types of PIC, dynamic allocation of IRQ lines
and sharing of an IRQ line by several I/O devices.

These software layers delay the beginning of the
ISR execution and consequently they produce la-
tency.This delay is caused by several operations such
as [6]:

a) Check the interrupt number.

b) Control of nested interrupt handler execution.

c) Change from kernel stack to IRQ stack.

d) Update fields of the interrupt vector descrip-
tor.

The Interrupt Handler Entrance latency is de-
fined as the time interval demanded by these opera-
tions performed by Linux before the ISR execution.

3.1.7 Shared IRQ Lines Latency

Linux supports the sharing of IRQ lines by more than
one I/O hardware device. When there is a sharing,
the interrupt code doesn’t identify the I/O device
anymore. Consequently when a shared IRQ is raised,
the Linux needs to the check all devices that signalize
by means of this interrupt [6].

This is performed by a loop that runs along a
linked list of descriptors which contain information
about each ones of the I/O devices associated with
the IRQ line.

The Shared IRQ Lines latency is defined as the
time interval demanded for this loop.

3.2 Dispatch Latency

In this section, the delay after the ISR execution is
analyzed. As in the previous section, this latency is
divided into several components.

3.2.1 Interrupt Handler Exit Latency

This latency is caused by operations performed after
the ISR execution. As already analyzed in Section
3.1.6, these operations are caused by the software ab-
straction layers implemented by Linux to handle an
interrupt. Examples of these operations are [6]:

a) Check if the device is a source of random
events.

4



b) Check if the interrupt was handled. The pur-
pose of this is to detect spurious interrupts raised by
malfunction of the hardware.

c) Update fields of the interrupt vector descrip-
tor.

d) Control of nested interrupt handler execution.

Interrupt Handler Exit latency is defined as the
time interval demanded for these operations per-
formed at the end of the interrupt handling.

3.2.2 IRQ Handlers Stack Latency

Linux allows interrupt nesting but it doesn’t allow
kernel preemption while an interrupt is being treated
[6]. In this way it is possible that when an IRQsa is
raised, the operating system is treating one or more
interrupts. This creates a stack of interrupts being
treated, called IRQ Handlers stack. A necessary re-
quirement for this is that all the interrupts in the
stack could be treated with the unmasked interrupts
[6]. A field in the interrupt descriptor signalizes to
the operating system if the handler is executed with
the interrupts enabled or disabled.

In this scenario a process change is only per-
formed when all interrupts in the stack have been
treated. The IRQ Handlers Stack latency is defined
as the time interval demanded to empty the IRQ
Handlers stack.

3.2.3 Deferrable Functions Latency

Linux has a mechanism called softirqs or deferrable
functions that it is used to execute operations that
need to be delayed. A common example is the imple-
mentation of software timers. In several points of the
kernel code, Linux verifies if some of these functions
need to be processed [6].

One of these checking points is in the interrupt
handler, when all the interrupts in the IRQ Han-
dlers stack have been treated (Section 3.2.2). Con-
sequently, a time interval is demanded to check and
execute the deferrable functions. This time interval
is defined as Deferrable Functions latency.

3.2.4 Kernel Preemption Disable Latency

Version 2.6 of Linux could be compiled to have or not
kernel preemption by means of the compilation pa-
rameter CONFIG PREEMPT. Even when the kernel
is compiled to have kernel preemption, the operat-
ing system disables the kernel preemption to execute

some procedures. An example is during the execu-
tion of a deferrable function [6].

As a consequence, at the end of all interrupt
treatments Linux needs to check whether the ker-
nel preemption is enabled or not. Therefore, if the
IRQsa is raised when the kernel preemption is dis-
abled, the process change will only occur when the
operating system enables it again. This delay in the
process change is defined as Kernel Preemption Dis-
able latency.

3.2.5 Scheduler Latency

The interrupt service routine that treated the IRQsa
signalizes that the scheduler has to be called by the
operating system because a process change is re-
quired. This occurs due to the fact that the DSP
process was changed into the running state (Section
2.1).

The time needed by the scheduler routine to find
the DSP process in the waiting queues is defined as
Scheduler latency.

3.2.6 Context Switch Latency

After the DSP process is found in the waiting queues,
the operating system needs to switch the data struc-
tures of the current process to the ones of the DSP
process. The time required for this update is defined
as Context Switch latency.

3.3 Execution Latency

Execution latency can be defined as the difference
between the time spent in the input sample process-
ing and the time that would be spent if the procedure
were executed as an atomic procedure. The factors
that can delay the input sample processing are de-
scribed below.

3.3.1 I/O Interrupt

The DSP process can be delayed by the raise of hard-
ware interrupts, since the operating system uses com-
putational time of the DSP process to treat them.

3.3.2 Deferrable Functions

Linux runs the deferrable functions using processing
time of the current process. Linux checks if any of
these functions needs to be processed at the end of

5



either an exception or an interrupt handling (Refer-
ence [6] mentions that although there are standard
checking points, there are possibly other checking
points depending on the version and the distribu-
tion). Consequently, it is possible that when the DSP
process executes a system call, a deferrable function
is executed using CPU time of the DSP process.

3.3.3 Virtual Memory

As Linux implements virtual memory, it is possible
that when the IRQsa is raised part of the program
or part of the data is not in the RAM (Random Ac-
cess Memory) memory. In this case, a Page Fault
exception is raised and the operating system has to
load the memory page from the hard disk, causing a
great impact in the processing time latency.

4 Latency Measurement

Method in Linux

4.1 Basic Idea of the Method

The basic idea of the measurement method proposed
in this paper can be divided in two parts:

1) Introduction of time markers in the kernel rou-
tines that treat the interrupts. Theses markers read
timing circuits of the system, marking both the ini-
tial and final instants of execution of the kernel code
portion under analysis. Latency can be calculated
by the difference between those instants.

2) Development of a program that behaves as
DSP program and manages the measurement, ob-
tains the markers values, calculates and stores the
latencies in the user space memory. Before finishing,
the process writes a text file with the data. This
process is called Management process.

The advantage of kernel instrumentation is the
direct measuring of the execution time. The disad-
vantage is that the use of the markers implies alter-
ations in the kernel code. These alterations cause
systematic errors due to the processing time of the
markers. These errors can be minimized by measur-
ing the execution time of the markers and making
the corresponding corrections.

As this method is based only on software, the
markers can be placed only after the registers sav-
ing. Due to this, the latencies due to the hardware
can only be measured aggregately. Consequently,
the Hardware latency is defined as being the sum of
the following latencies: Interrupt Checking, Mask-

able Interrupt, PIC Queue, Microprocessor Operat-
ing and Registers Saving.

The measurement of the Hardware latency needs
synchronization between the external device that
raises the interrupt and the kernel. The proposed
method satisfies this requirement by using the IRQ0
(timer interrupt) to measure the Hardware latency.
The IRQ0 is raised when the PIT (Programmable In-
terrupt Controller) timer expires. Thus, it is enough
for the first marker to read the PIT to obtain the
Hardware latency.

An advantage of using the IRQ0 is that it is a pe-
riodical interrupt, allowing periodical measurements.
The disadvantage is that the IRQ0 is the interrupt
with the highest priority so it has PIC Queue latency
equal to zero. This limitation can be overcome mea-
suring the Hardware latency by using the interrupt
raised by the CPU Local timer in a similar way as it
is done with IRQ0.

This method can been modified to use the in-
terrupt raised by the HPET (High Precision Event
Timer) in systems which use this timer circuit in-
stead of the PIT.

4.2 Implementation Aspects

A data structure was created in the Linux 2.6 kernel.
Its main purpose is to store the data measured by the
markers in the kernel space memory. The structure
also has fields to control the measurement and avoid
wrong measures in case of nested interrupts. It is
initialized during the load of the operating system.

There are two type of markers. The first one was
already mentioned and uses the PIT timer to mea-
sure the hardware latency. The second one uses the
TSC (Time Stamp Counter) register and is used to
measure the other latencies originated by the kernel
routines.

Two system calls were developed. The first one
starts and ends a set of measures. Its functionality
is similar to the open and close file commands. The
second system call blocks the management process,
placing it in a waiting queue. It also transfers the
values from the data structure in the kernel space
memory to a structure in the user space memory of
the management process.

The service interrupt routine that attends the
IRQ0 was altered. The two purposes of this alter-
ation are to put the management process into the
running state and to signalize the operating system
that the scheduler has to be called.

6



5 Experimental Methodology

The microcomputer that was used was a Pentium III,
with 700 MHz clock frequency and 640 MB RAM.

In the Linux 2.6.19 kernel, markers were placed
to measure the following latencies: Hardware, Inter-
rupt Handler Entrance, Interrupt Handler Exit and
Dispatch.

The kernel was compiled with the standard val-
ues for the compilation parameters and to load the
standard daemons. It is important to mention that
in this configuration Linux has no kernel preemption.

An additional control program was developed.
This control program makes 100 calls to the Man-
agement program (item 4). The time interval be-
tween the calls is 120s, controlled by a Linux timer
(SIGALARM). The Management program performs
100 measures that are saved in a text file. Following
this method, 10.000 measures were obtained in ap-
proximately 3 hours and 20 minutes. The purpose
of the control program is to obtain a greater time
interval between the measures blocks than it would
be possible using only the IRQ0 signal. In this way
there is equilibrium between the time interval and
the data size.

The measurement was performed with the sys-
tem in two conditions: loaded and unloaded. In
the unloaded condition the control program was exe-
cuted directly from the shell. In the loaded condition
the control program was executed from the graphic
environment. An extra CPU bound program was ex-
ecuted as a way of loading the system. In both cases
the standard scheduling of the Linux was used.

This test can be considered a worst case be-
cause the kernel has no preemption and the real time
scheduling of Linux 2.6 was not used.

6 Experimental Results

This section shows the CDF (Cumulative Distribu-
tion Function) and the mean of four latency compo-
nents: Hardware, Interrupt Handler Entrance, Inter-
rupt Handler Exit and Dispatch. A data analysis is
also presented.

6.1 Results

FIGURE 3: CDF Hardware Latency

FIGURE 4: CDF Interrupt Handler En-

trance Latency

7



FIGURE 5: CDF Interrupt Handler Exit

Latency

FIGURE 6: CDF Dispatch Latency

6.2 Data Analysis

1) The mean of the Dispatch latency approximately
increased in 800% with load. Such an increase may
be explained by two factors: the kernel had no pre-
emption and the real time mechanism of the sched-
uler was not used.

2) The mean of the Hardware latency approx-
imately increased in 300% with load. As an I/O
bound program was not used, such an increase
may be principally explained by the synchronization
mechanisms of the kernel than unable the interrupts.

3) The load also influences the execution of the
interrupt handler. This may be observed by the 20%
increase in the means of the Handler Interrupt En-
trance latency and the Handler Interrupt Exit la-
tency. This increase is expected because with load
the cache hits diminish.

7 Conclusions

This paper proposed a new qualitative latency model
of the Linux 2.6 OS for the Intel x86 architecture.

This work also developed a latency measurement
method based on an instrumented kernel.

References

[1] The Evolution of Real-Time Linux, Dietrich
S, Walker D, Nov 2005,Proceedings of
7th Real-Time Linux Workshop, Lille,
France

[2] A Real-Time Linux, Yodaiken V, Barabanov M,
Jan 1997,Proceedings of Linux Applica-
tions Development and Deployment Con-
ference (USELINUX), Anahein, USA

[3] Software Engineering, Sommervile I, 2007,
Pearson Education Limited

[4] Real-Time Systems Design and Analysis, La-
plante P A, 2004, IEEE Press

[5] Signals & Systems, Oppenheim A, Willsky A,
Nawab S, 1996, Pearson Education

[6] Understanding the Linux Kernel, Bovet P D, Ce-
sati M, 2005, OReilly Media Inc.

[7] A Measurement-Based Analysis of the Real-Time

Perfomance of Linux, Abeni L, Goel A, Krasic
C, Snow J, Walpole J, Set 2002,Proceedings
of the 8th IEEE Real-Time and Embedded
Technology and Applications Symposium
(RTAS)

[8] Linux Scheduler Latency, Clark W, 2002,Red
Hat, Inc.

[9] Intel 64 and IA-32 Architectures Software Devel-

opers Manual Volume 3A: System Programming

Guide, Part 1, Nov 2006,Intel Corporation

[10] Architectures Software Developers Manual Vol-

ume 3B: System Programming Guide, Part 2,
Nov 2006,Intel Corporation

[11] Microprocessors Outperform DSPs 2:1, Blalock
G, Dez 1996Microprocessor Report The
Insiders Guide to Microprocessor Hard-
ware

8


