Bringing open POWERLINK to MIPS (Loongson 2F)

Minqgiang Yang, Chanjuan Li, Qingguo Zhou, Nicholas Mc Guire
“Distributed & Embedded System Lab, SISE, Lanzhou University, China
Tianshui South Road 222,Lanzhou,P.R.China

mqgyoung@gmail.com

Abstract

Ethernet is not exactly known as a fieldbus - but it is a reliable, fast and inexpensive technology
and openPOWERLINK has a strong potential to turn Ethernet into a full featured field bus for the
automation industry. At the same time, due to Loongson 2F’s low power-consumption, fanless operation,
availability of RT-PREEMPT based on GNU/Linux RTOS and integration in form-factors suitable for
industrial usage, we have been working on porting openPOWERLINK to the Loongson 2F. In this paper,
we will state the motivation for the port to Loongson 2F and concentrate on key technical issues of porting
Ethernet driver for openPOWERLINK, which hopefully will aid others in similar tasks. The problems we
faced, some possible problems to be aware of and some tips how to tackle the porting task should provide
some initial guidance for a openPOWERLINK porting job. Further we will present some benchmark
results based on RT-PTREEMPT comparing the result on different platforms(Loongson and VIA C3)

and a short outlook on future work in this area.

Keywords: openPOWERLINK, Loongson, Real Time, Ethernet fieldbus, RTL8169

1 Introduction

The POWERLINK homepage [1] states that "POW-
ERLINK is CANopen over Ethernet” but actually
it is more than that. The statement fails to cover
the real-time features of POWERLINK. Further-
more the International Electrotechnical Commis-
sion (IEC) has accepted Ethernet POWERLINK
(EPL)[2] as a Publicly Available Specification (PAS).

OpenPOWERLINK is an open source Industrial
Ethernet solution for EPL. EPL, which operates with
standard Ethernet controllers, gives users Ethernet’s
flexibility and its characteristic benefits while achiev-
ing cycle times as small as 0.5 milliseconds in this
Open Source implementation while ensuring high
synchronicity. Supported by co-processors, POW-
ERLINK even ensures cycle times of 0.1 ms.

The Loongson CPU which is designed by the In-
stitute of Computing Technology (ICT), at the Chi-
nese Academy of Science is a family of 64-bit, su-

perscalar, low power MIPS processors designed to
address all applications requiring high level of per-
formance and reduced power consumption.

The Fuloong(2F) Mini PC made by Lemote are
based on the 2nd generation of Loongson CPUs. The
reason why we see the Loogson 2F’s as the perfect
platform for openPOWERLINK are it’s low power-
consumption, fanless operation, the availability of
RT-PREEMPT based GNU/Linux RTOS as well as
the integration in form-factors suitable for industrial
usage. Furthermore, due to the collaboration be-
tween STMicroelectronics and Loongson, more and
more consumers can be expected to chose Loong-
son boards for their applications. Therefore we have
been working on porting openPOWERLINK to the
Loongson 2F to extend its application in the field of
real-time field-bus.

In the following sections, we will state the moti-
vation for the port to Loongson 2F and concentrate
on key technical issues of our work and problems we

*Research supported by National Natural Science Foundation of China under Grant No.60973137; Gansu International

Sci.&Tech.

Cooperation under Grant No.090OWCGAS891; the National HighTechnology Research and Development Pro-
gram(”863” Program) of China under grant No.2009AA01A138

faced during our work. Furthermore we will address
possible future problems, show off some benchmarks
we conducted and finally give a short outlook on fu-
ture work.

2 Motivation

Due to the features of EPL and Loongson, we decided
that it is to bring openPOWERLINK to Loongson.
Our work will generate a profile of the performance
of openPOWERLINK which will provide some valu-
able information for people who want to use open-
POWERLINK on MIPS-based embedded platforms.
Furthermore we intend to demonstrate the suitabil-
ity of Loongson based platforms for automation ap-
plication.

2.1 Ethernet-based fieldbus - EPL

Bringing together Ethernet, CANopen, and a newly
developed stack for real-time data communication,
POWERLINK integrates features and abilities from
three different worlds. In contrast to a number of
competing products, POWERLINK keeps very close
to the Ethernet standard, retaining original Ether-
net features, and thus reducing the cost of indus-
trial deployment. It expands Ethernet with a mixed
Polling and Time slicing mechanism named SCNM
(Slot Communication Network Management, refer to
Figure 1).

Managing Node(MN)

Isochoronous Phase

eq
toCN2

Asynchronous Phase

PR PR
s SoA i Asnd
from MN H
Ide

Phase

Controlled Node(MN)

Fig. 1: EPL Cycle

The major advantages gained from using POW-
ERLINK are:[3]

e Guaranteed transfer of time-critical data in
very short isochronic cycles with a configurable
response time

e Time-synchronisation of all nodes in the
network with very high precision of sub-
microseconds

e Transmission of less time critical data in a re-
served asynchronous channel

The protocol’s second major advantage is the
integration of the CANopen technology, a robust
and proven protocol widely used throughout the au-
tomation world, which greatly simplifies setting up

networks because of its extensive standardization.
CANopen is one of the most popular higher layer
protocols for CAN-based networks. Therefore there
are a number of device and application profiles un-
der development or already available which are used
in example in building related applications like door
control or lifts, for ships, trains, municipal vehicles or
railways as well as for medical applications. Besides
these standardized profiles, another big advantage of
CANopen is it’s use in a wide range of proprietary
systems and applications.

The EPL object dictionary is identical to the
structure of CANopen an object dictionary. There-
fore, all CANopen application and device profiles can
be directly used with EPL. The only exception is the
index range between 1000h and 1FFFh which does
not contain CANopen related data but EPL related
data.[4] The third advantage of POWERLINK’s suc-
cess rests on technologies developed by the EPSG,
and primarily on the POWERLINK stack, which
adds real-time capabilities to the protocol.

The above listed properties of openPOWER-
LINK are the reason why we think that it has a
strong potential to turn Ethernet into a full featured
field bus for industrial automation and promote and
push Ethernet as such.

2.2 Why Loongson is ready for indus-
trial automation.

For those readers who are not familiar with the
Loongson 2F CPU, here is a short list of main fea-
tures:

e Scalable CPU frequency, up to 1GHz clock fre-
quency

e 64-bit superscalar architecture

e Best-in-class power consumption: 4 W @ 1

GHz TDP (thermal design power)
e On-chip DDR2 memory controller
e Based on MIPS, a 64-bit RISC architecture

e availability of RT-PREEMPT based

GNU/Linux RTOS

Loongson processors maximize the performance
per dollar and per watt, and are therefore the per-
fect choice for price- and power-sensitive computers,
thin clients, home media center devices and green in-
dustry. Currently, the Fuloong mini-PC’s are mainly
used in education and rural-informatization.

The properties of Loongson CPU’s described
above is extended by the versatility of the Linux OS

which is a reliable and secure OSS that greatly re-
duces system cost, supports by a rich set of software
development tools and also can be configured as a
real-time operating system using the RT-PREEMPT
patch. Using RT_.PREEMPT on Loongson 2F you
are provided with a performant real-time operating
system. Performance tests proving this point can be
found in [8]. Relative benchmark between Loongson
2F and VIA C3 have shown that the Loongson 2F
has less jitter, and latencies are smaller.

Another very nice feature of Lemote’s Loongson
2F is it’s integration in a form-factor suitable for in-
dustrial usage. This makes the platform ready for
it’s usage in the industry.

3 EPL Stack

The Standard Ethernet Data Link Layer of Ether-
net POWERLINK is extended by an additional bus
scheduling mechanism which makes sure, that at a
time only one node is accessing the network. The
schedule is divided into an isochronous phase and an
asynchronous phase. During the isochronous phase,
time-critical data is transfered, while the asyn-
chronous phase provides bandwidth for the transmis-
sion of non time-critical data. The Managing Node
(MN for short) grants access to the physical medium
via dedicated poll request messages. As a result, only
one single node (Controlled Node, CN for short) has
access to the network at a time, which avoids col-
lisions, usually present on Standard Ethernet. The
CSMA /CD mechanism of standard Ethernet, which
causes non-deterministic Ethernet behavior, is deac-
tivated by the collision avoidance mechanism of the
Ethernet POWERLINK scheduling mechanism.

EPL provides a virtual Ethernet driver interface
to Linux which will send its packets during SoA!
phase, as well as configure the interface with stan-
dard Linux commands.

The abstract model of EPL is illustrated as the
following figure 2 [15].

EPL Application Layer HTTP
FTP
Object Dictionary Other
Application Layer
PDO SDo (Asynchronous data)
NMT Transport Layer
Network Layer
_{ EPL Data Link Layer l
I DataLink Layer
l MAC l
l Physical Layer (PHY) l Physical Layer
. .
Fig. 2: Abstract representation of the EPL

OSI model

As shown in figure 2, EPL is a protocol residing
on top of the standard IEEE 802.3 MAC layer, which
has its own Data Link Layer using SCNM instead of
CSMA/CD. The virtual Ethernet driver provides a
TCP/IP stack which can be used to process non-
time-critical data, while time-critical-data only can
be handled by the EPL stack directly.

4 Implementation

The EPL protocol stack core components are tar-
get independent, porting to a new platform requires
you to implement the Ethernet driver for EPL,
modify target dependent files for architecture(e.g.
timer), configure your own object dictionary and
adapt the API. For further information about the
EPL stack please refer to Ethernet POWERLINK
Protocol Stack[17].

Since the generic parts of the stack did not re-
quire any changes, we will mainly describe our work
on writing an Ethernet driver for EPL. The following
functions needed to be modified to adapt to our new
NIC(network interface card).

Hardware-dependent functions of EPL driver:

/* Hardware initialization x/
EdrvInitOne ()

/* Resource giveup */
EdrvRemoveOne ()

/* Packet transmit */
EdrvSendTxMsg ()

/* Request tx buffer x*/
EdrvAllocTxMsgBuffer ()
/* Release tx buffer x/
EdrvReleaseTxMsgBuffer ()
/* Interrupt handler x*/
TgtEthIsr ()

4.1 Driver for RTL8169

The Realtek RTL8110SC(L) Ethernet adapter built
into the Fuloong 2f, is a highly integrated, high per-
formance PCI Gigabit Ethernet Media Access Con-
troller. In this paper, it is referred to as RTL8169 or
NIC provides the following features:

e Fully implements the 33/66MHz, 32/64-bit
PCI v2.2 bus interface

e Compliant with the TEEE802.3 specification
for 10/100 Mbps Ethernet and IEEE 802.3z for
1000Mbps

e Compliant to Microsoft NDIS5 (IP, TCP,
UDP) Checksum and segmentation Task-
offload features, and supports ITEEE802.1Q
VLAN

LEPL frame types, SoA: Start of Asynchronous, SoC: Start of Cyclic, PReq: Poll Request

e Pad any packets less than 64 bytes automati-
cally

The RTL8110SC(L)/RTL8169SC(L) supports a
new descriptor-based buffer management, utilizing
3 descriptor rings. One is high priority transmis-
sion descriptor ring, the second is a normal priority
transmission descriptor ring and the last one is the
receive descriptor ring. Each descriptor ring may
consist of up to 1024, 4-double-word consecutive de-
scriptors. By writing a ’1’ to a specific bit of Trans-
mit Polling Register, driver notifies the NIC that
there are packet(s) waiting to be transmitted, the
NIC will automatically transmit the packets in the
buffer. The NIC clears the Transmit Polling Regis-
ter bit after all the packets in the buffer have been
transmitted, and generates an TOK(Transmit OK)
interrupt after each successfully transmitted packet.

Upon receiving a packet over the wire, the NIC
copies it to the Rx Buffer Manager, and notifies the
driver via a ROK(Receive OK) interrupt.

In the following we listed some of the most im-
portant flags used to handle buffer management, in
order to clarify this descriptor-based buffer manage-
ment mechanism. They are split up into fields/flags
used to transmit/receive data:

4.1.1 Transmit Descriptor

e OWN - This bit - when set - indicates that the
data relative to this descriptor is ready to be
transmitted. The NIC clears this bit when the
relative buffer data is transmitted.

e EOR - This bit indicates whether this is the
last descriptor in descriptor ring.

e FSLS - These two bits indicate this is the
first/last segment of the packet.

e IPCS, UDPCS, TCPCS - The driver sets this
bits to ask the NIC to offload the checksum.

e Frame_Length - Transmit frame length.

e TxBuffL - Low 32-bit address of transmit
buffer.

e TxBiffH - High 32-bit address of transmit
buffer.

4.1.2 Receive Descriptor

e OWN - This bit - when set - indicates that the
descriptor is ready to receive a packet. It will
be cleared by the driver when the relative data
has been read.

e EOR - This bit indicates whether this is the
last descriptor in descriptor ring.

Buffer_Size - This field indicate the receive
buffer in bytes.

o RxBuffL - Low 32-bit address of receive buffer.
e RxBuffH - High 32-bit address of receive buffer.

4.2 NIC Driver
The EPL driver for RTL8169SC(L) mainly includes

initialization, allocating transmit and receive buffer
rings and mapping, interrupt handling, and other
related functions (allocate buffer/send/error handle
etc). All those parts will be described in detail in the
following.

4.2.1 Initialization

Like other drivers in Linux, the EPL driver needs to
register a PCI driver, enable it and install an inter-
rupt handler for it. Furthermore the registers of the
NIC have to be initialized.

4.2.2 Allocate DMA Ring Buffer

As described before, the RTL8169 supports a
descriptor-based transmit and receive, we need to al-
locate buffer rings for transmitting and receiving and
write the start address of descriptor array to Descrip-
tor Registers. The start address of each descriptor
group should be 256-byte alignment. Descriptors can
be chained to form a packet in both Tx and Rx.
The Tx Buffer Manager DM As packet data from
system memory and places it in the transmit FIFO
of the NIC, and pulls data from the FIFO to send to
the Tx MAC. The Rx Buffer Manager uses the same
buffer management scheme as used for transmits.
We must use physically contiguous memory
which will be accessed by the DMA device on a physi-
cally addressed bus, so be sure you allocate the buffer
by kmalloc() with flag GFP_DMA rather than vmal-

loc().

4.2.3 Transmit

RTL8169 will poll the transmit descriptor ring auto-
matically after the specific bit of the TPPolling Reg-
ister has been set. Take note of the caching effect
of descriptor ring, while you could prevent from it
by using pci_alloc_consistent() which allocates a re-
gion of consistent memory, and you could freely read
or write the region without having to worry about
caching effects. Pay special attention to the fact
that the RTL8169SC sequentially polls the descrip-
tor from the first item to the last, but EPL needs

to reserve several buffers for frequently transmitting
packets(SoA, SoC, PReq, etc.). The first packet EPL
sends may not be in the first buffer. So you can not
associate the descriptors and the buffers in sequential
order when initializing, but you will have to assign a
buffer to the descriptor while sending.

Tx Desc Ring Buffer Array Packets
td[0] buff[0] SoC
td[1] ; K bufffl] |—{ PRes
td[2] buff[2] SoA
td[3] < buff[3] PReq
td[n-1] buff(i]

Fig. 3: DMA Transmitting

The figure shows that how our driver handles the
descriptors and DMA buffers to send packets with
the following sequence:

So0A - SoA - SoC - PReq

4.2.4 Interrupt handler and receive events

The EPL driver is not able to work in NAPI[12]
mode. Therefore its interrupt handler must handle
all the interrupts that are part of the driver, such as
transmit interrupts, receive interrupts etc.

The driver will call the handlers of the data link
layer when both ROK and TOK interrupt occur. In
the interrupt handler, you may also need to consider
error handling. When a packet is received success-
fully, it will be handed to the upper layer of the stack.

4.3 Tools

e GDB tracepoint[13]
As a powerful debug tool, GDB tracepoint
could observe the behavior of your real-time
program whose correctness depends on its real-
time behavior, delays introduced by a debugger
might cause the program to change its behav-
ior drastically, or perhaps fail, even when the
code itself is correct. Please refer to GTP[14].

o Wireshark
For diagnostics using Wireshark, the computer
must be connected to the POWERLINK net-
work. You may need an additional NIC which
must not send packet. Be careful with the

timestamps in Wireshark. Timestamping is
done by network drivers?. The accuracy of the
timestamp is depend on the working mecha-
nism (e.g. if it works in NAPI mode) of your
network driver and some delays (There’s a de-
lay between the arrival of that last bit and the
interrupt for the packet and a delay between
the start of interrupt handling and the point
in the code path where the timestamp is at-
tached to the packet).

o ftrace
Ftrace is an internal tracer designed to help
out developers and designers of systems to find
what is going on inside the kernel. It can be
used for debugging or analyzing latencies and
performance issues of your program.[10]

5 Benchmark

The jitter® of SoC makes a great impact on the real-
time performance of EPL. To benchmark the per-
formance of EPL on Loongson2F, the timestamps of
SoC packets are recorded(utilizing a typical multi-
node setup). As a comparison, we also do the bench-
mark on VIA3C. The result shows that the jitter on
VIA3C and Loongson2F under no-load condition are
almost the same. While under overload condition,
EPL on Loongson2F has less jitter but bigger aver-
age deviation.

EPL cycle deviation on VIA3C(noload)
120

Avg: 0.9 Max: 81
cycle=1000ps

100

deviation(us)

0 100000 200000 300000

samples

400000 500000 60000C

Fig. 4: Jitter on VIA3C(no-load)

2How the timestamp works is OS dependent. In some UNIXes that code is in the network drivers; it’s higher up in the
networking code path in other UNIXes. In Windows, with WinPcap, timestamping is done by the WinPcap driver. Here we are

referring to UNIX like OSes.

3The variation of the latency is called jitter. But here the jitter refers to the variation of the deviation of communication

cycle.

EPL cycle deviation on Loangson2F(noload)
120 T T T T T

Avg: 0.8 Max: 73
cycle=1000ps

80 r 8

a +
=
5 60t * 1
&
>
@
o
0 100000 200000 300000 400000 500000 60000C
samples
Fig. 5: Jitter on Loongson2F (no-load)
EFL cycle deviation on VIA3C(overload)
160 T T T T T
AVD 7.5 Max: 123
140 L cycle=1000ps 1
120 r s .
4
— 100 + i S
E3 4 + * + o+ N +
= + + Te+s % £
s + + + + -+ +
T e S R N B T S
N R o
° 60+¢ * T+ +£+ ¢i++ 1+i+++£
+ +
: by v
0 100000 200000 300000 400000 500000 60000C
samples
Fig. 6: Jitter on VIA3C(overload)
EPL cycle deviation on Loongson2F(overload)
1680 T T T T T
Avg: 8.8 Max: 118
140 + cycle=1000ps. 1
120 ¢ 8
n
— 100 f 1
)
=
5 wof +
= +
=
S g0 wd® g A e T f*:*%fr !
40 #
20
0
0 100000 200000 300000 400000 500000 £60000C
samples
Fig. 7: Jitter on Loongson2F (overload)

Another point worthy of our attention is the
time-drift on Loongson2F is notable smaller than it

on VIA3C. This provides more space to optimization
to EPL on Loongson.

Time Crifting of EPL on VIA3C and Loongson2F
140000 T T T T T

120000 | 1
100000 | VIASC .
~ 80000 | .
o
=
£
S| 60000 |- .
40000 |- .
Loongson2F
20000 | \ 1
0 ; :
o 100000 200000 300000 400000 500000 60000C
samples(cycle:1000ps)
Fig. 8: Time drift

6 Conclusion

In this paper, we showed a case study for porting op-
erPOWERLINK to Loongson2F, in which the most
important work was porting EPL driver to the new
hardware. The benchmark results show that the new
drivers performance is comparable to the original
8139 driver.

To conclude the paper, we are now going to sum-
marize the problems we faced, some possible prob-
lems that might arise in the next steps to be taken
and give some hints on how to tackle the porting task
to provide some initial guidance for a openPOWER-
LINK porting job.

e Ethernet adapter
Be careful of the descriptor based transmission,
as described above RTL8169 always polls the
data from the first transmit buffer after it is
driven and then the next one, but EPL never
observes this order. Regarding the speciality of
EPL, to put the NIC into promiscuous mode.

e Memory issues
Make sure that Tx/Rx DMA buffers are allo-
cated correctly, and refer to the datasheet of
the NIC and follow its alignment requirement.
If necessary you might use memory barriers,
but be careful since incorrect use might intro-
duce excrescent latency.

e Kernel driver
Nowadays NIC drivers in kernel use the NAPI
mode and many data structure EPL can not
use, nevertheless we could reuse the code by
removing their corresponding code. You could

even neglect the configuration for PHY regis-
ters in the beginning of your porting.

e Others tips

Follow the guides of EPL and RT-PREEMPT
to configure your kernel, and make sure your
rt-kernel works before you get down to work
on EPL. A hub rather than a switch should
be used to connect EPL nodes[5]. Be sure you
separate EPL nodes and your other working
station.

At the moment the RT-PREEMPT patch for the
network protocol is being optimized. After this task
has been completed, we will be able to further im-
prove the performance of EPL over RT-PREEMPT
on Loongson to further improve the performance and
all for even stricter real-time requirements.

References

[1] http://www.ethernet-powerlink.org/

2] http://openpowerlink.sourceforge.net/

Ethernet POWERLINK, http://en.wikipedia.
org/wiki/Ethernet_Powerlink

=)

[4] Ch.Schlegel, Extending CANopen Applications
with ETHERNET Powerlink, 2007-09-24

[5] EPSG, Ethernet POWERLINK V2.0 Communi-
cation Profile Specification, Version 1.0.0

[6] RealTek, RTL8169SC/RTL8111SC(L) REGIS-
TERS DATASHEET, 2005, Rev. 0.9

[7] RT-preempt, http://rt.wiki.kernel.org/

[8] Porting RT-PREEMPT to loongson 2F, Zhangjin
Wu, Nicholas Mc¢ Guire, 2009

[9] http://dev.lemote.com/code/rtdls
[10] ftrace, Documentation/trace/ftrace.txt
[11] http://rt.wiki.kernel.org/index.php/Cyclictest

[12] NAPLhttp://www.linuxfoundation.org/ collab-
orate/workgroups/networking/napi

[13] GDB tracepoint, http://sourceware.org/gdb/
current/onlinedocs/gdb/Trace-
points.html#Tracepoints

[14] GTP, http://dslab.lzu.edu.cn/modules/lifetype/

index.php?op=ViewArticle&articleld=31&blogld=22

[15] Bo Hansen et al., Ethernet Powerlink in For-
mula Student racing car

[16] Understanding the LINUX KERNEL 3sd Edi-
tion, Daniel P.Bovet & Marco Cesati, O’REILLY,
2005

[17] openPOWERLINK: Ethernet POWERLINK
Protocol Stack, 2010

