
Open Source Implementation of Hierarchical Scheduling for

Integrated Modular Avionics ∗

Juan Zamorano, Juan A. de la Puente
Universidad Politécnica de Madrid (UPM)

E-28040 Madrid, Spain
jzamora@fi.upm.es, jpuente@dit.upm.es

Alfons Crespo
Universidad Politécnica de Valencia (UPV)

E-46022 Valencia, Spain
alfons@disca.upv.es

Abstract

This paper describes the porting of a Ravenscar compliant kernel (ORK+) to the hypervisor XtratuM
to build up an open source ARINC 653 platform for avionics systems. The Integrated Modular Avionics
(IMA) architecture requires a specialized operating system layer that provides temporal and spatial iso-
lation between partitions. The ARINC 653 standard defines an architecture and an applications program
interface (API) for such an operating system or application executive (APEX), in ARINC terms. There
are diverse ARINC 653 implementations available from multiple vendors, and the standard has been suc-
cessfully used in a number of commercial and military avionics systems. However, there was not an open
source ARINC 653 platform available. The combination of both tools (ORK+ and XtratuM) provides an
IMA platform that allows different criticality applications to share the same computer board.

1 Introduction

Current trends in avionic systems envisage systems
with increased functionality and complexity. Such
systems are often composed of several applications
that may have different levels of criticality. In such a
scenario, the most critical applications must be iso-
lated from the less critical ones, so that the integrity
of the former is not compromised by failures occur-
ring in the latter. Isolation has often been achieved
by using a federated approach, i.e. by allocating dif-
ferent applications to different computers. However,
the growth in the number of applications and the
increasing processing power of embedded comput-
ers foster an integrated approach, in which several
applications may be executed on a single computer
platform. In this case, alternate mechanisms must

be put in place in order to isolate applications from
each other. The common approach is to provide a
number of logical partitions on each computer plat-
form, in such a way that each partition is allocated a
share of processor time, memory space, and other re-
sources. Partitions are thus isolated from each other
both in the temporal and spatial domains. Temporal
isolation implies that a partition does not use more
processor time than allocated, and spatial isolation
means that software running in a partition does not
read or write into memory space allocated to another
partition.

This approach has been successfully imple-
mented in the aeronautics domain by so-called In-
tegrated Modular Avionics (IMA) [10]. The IMA
architecture requires a specialized operating system
layer that provides temporal and spatial isolation be-

∗This work has been partly funded by the Spanish Ministry of Science, project TIN2008-06766-C03-01 (RT-MODEL)

1



tween partitions. The ARINC 653 standard defines
an architecture and an applications program inter-
face (API) for such an operating system or applica-

tion executive (APEX), in ARINC terms. Temporal
isolation is provided by using a two-level schedul-
ing scheme. A partition scheduler allocates processor
time to partitions according to a static cyclic sched-
ule, where each partition runs in turn for the dura-
tion of a fixed slice of time (cf. figure 1). The ARINC
global scheduler is a variant of a static cyclic exec-
utive, while the local schedulers are priority-based.
Spatial isolation between partitions is provided by
implementing a separate address space for each par-
tition, in a similar way as process address spaces are
protected from each other in conventional operat-
ing systems. There are diverse ARINC 653 imple-
mentations available from multiple vendors, and the
standard has been successfully used in a number of
commercial and military avionics systems. However,
there was not an open source ARINC 653 platform
available.

This paper describes the porting of an improved
version of the Open Ravenscar Kernel (ORK+) [11]
to the hypervisor XtratuM [9] to build up an open
source ARINC 653 platform [3] for avionics systems.
The combination of both tools provides an IMA plat-
form that allows different criticality applications to
share the same computer board. Section 2 describes
the main features of the hypervisor XtratuM. Sec-
tion 3 details the architecture of ORK+ and changes
needed to port it to XtratuM. Finally, some con-
clusions about the resulting ARINC 653 complaint
operating system are drawn and plans for the near
future are explained in section 4.

FIGURE 1: ARINC 653 hierarchical archi-

tecture.

2 XtratuM Overview

XtratuM [7, 8, 6] is a type 1 hypervisor that uses
para-virtualisation. It was designed to meet safety
critical real-time requirements. The most relevant
features are:

• Bare hypervisor.

• Employs para-virtualisation techniques.

• An hypervisor designed for embedded systems:
some devices can be directly managed by a des-
ignated partition.

• Strong temporal isolation: fixed cyclic sched-
uler.

• Strong spatial isolation: all partitions are exe-
cuted in processor user mode, and do not share
memory.

• Fine grain hardware resource allocation via a
configuration file.

• Robust communication mechanisms (AR-
INC653 sampling and queuing ports).

XtratuM provides a virtual machine closer to the
native hardware. The virtual machine provides the
access to the system resources: cpu registers, clock,
timer, memory, interrupts, etc., through a set of sys-
tem calls (hypercalls). Each virtual machine is re-
ferred as “guest”, “domain” or “partition” and can
contain a bare code or an operating system with the
applications. To execute an operating system as a
guest partition, it has to be para-virtualised which
implies the replacement of some parts of the operat-
ing system HAL (Hardware Abstraction Layer) with
the corresponding hypercalls.

In this approach, a partition is a virtual com-

puter rather than a group of strongly isolated pro-
cesses. When multi-threading (or tasking) support
is needed in a partition, then an operating system or
a run-time support library has to provide it.

Figure 2 shows the XtratuM architecture and the
relation with the partitions.

The services provided by XtratuM are sum-
marised in the table 1. Additionally to these gen-
eral services, XtratuM provides specific services that
strongly depend on the native processor that are
shown in table 2.

2



FIGURE 2: XtratuM and its development environments.

Group of ser-
vices

Hypercalls Partition
type

Clock man-
agement

get clock; define timers Normal

IRQ Man-
agement

enable / disable IRQs,
mask / unmaks IRQs

Normal

IP Commu-
nication

create ports; read / re-
ceive / write / send
messages

Normal

IO manage-
ment

read/write IO Normal

Partition
management

mode change, halt / re-
set / resume / suspend
/ shutdown partitions
(system)

System

Health mon-
itoring man-
agement

read / seek / status
HM events

System

Audit facili-
ties

read / status System

TABLE 1: XtratuM hypercalls

SparcV8 hypercalls

XM sparcv8 atomic add
XM sparcv8 atomic and
XM sparcv8 atomic or
XM sparcv8 ush regwin
XM sparcv8 get ags
XM sparcv8 inport
XM sparcv8 iret
XM sparcv8 outport
XM sparcv8 set ags

TABLE 2: XtratuM SparcV8 hypercalls

Currently, version 2.2 is being used by CNES as
a TSP-based solution for building highly generic and
reusable on-board payload software for space appli-
cations [1]. TSP (time and space partitioning) based
architecture has been identified as the best solution
to ease and secure reuse. It enables a major decou-
pling of the generic features that are being devel-
oped, validated, and maintained in mission-specific
data processing [2].

3 ORK+ Overview

ORK [4] is an open-source real-time kernel which
provides full conformance with the Ravenscar task-
ing profile on embedded computers. The kernel has a
reduced size and complexity, and has been carefully
designed to allow the building of reliable software for
embedded applications. This kernel is integrated in a
cross-compilation system based on GNAT, support-
ing the subset of Ada tasking which is allowed by the
Ravenscar profile in an efficient and compact way.

ORK+ [11] includes support for the new
Ada 2005 timing features, such as execution time
clocks and timers. The ORK+ kernel provides all the
required functionality to support real-time program-
ming on top of the LEON2 hardware architecture.
The kernel functions are grouped as follows:

1. Task management, including task creation,
synchronization, and scheduling.

2. Time services, including absolute delays and
real-time clock.

3. Interrupt handling.

3



FIGURE 3: ORK+ architecture.

That kernel functionality is implemented with
the following components (figure 3):

• System.BB:1 Root package (empty interface).

• System.BB.Threads: Thread management, in-
cluding synchronization and scheduling control
functions.

• System.BB.Threads.Queues: Different kernel
queues such as alarm queue and ready queue.

• System.BB.Time: Clock and delay services in-
cluding support for timing events.

• System.BB.Time.Execution Time Support:
Execution time clocks and timers as well as
group budgets support.

• System.BB.Interrupts: Interrupt handling.

• System.BB.Parameters: Configuration pa-
rameters.

• System.BB.CPU Primitives: Processor-
dependent definitions and operations.

• System.BB.Peripherals: Support for periph-
erals in the target board.

• System.BB.Peripherals.Registers: Defini-
tions related to input-output registers of the
peripheral devices.

• System.BB.Serial Output: Support for serial
output to a console.

That software architecture make easy to port
ORK+ to different hardware or software platforms.
Most of kernel components are fully independent
from the underlying platform and the lower level
components have specifications that are also plat-
form independent. In this way, it is only needed to
re-implement the lowest level functions on top of the
provided XtratuM functions to obtain the full ORK+
functionality.

The modified components were System.BB.Time,
System.BB.Interrupts, System.BB.CPU Primi-

tives, System.BB.Time.Execution Time Support

and System.BB.Peripherals.

1“BB” stands for “bare-board kernel”.

4



4 Conclusions and future work

The combination of both tools builds up an AR-
INC 653 complaint operating system providing an
IMA platform that allows different criticality appli-
cations to share the same computer board. Those
applications can be developed in an independent way
and the ARINC 653 platform provides at run-time
their corresponding time slots and memory in a safe
and secure way.

Applications can be developed by either using
ORK+ or XtratuM primitives to support threads
and have timing facilities among others. However,
ORK+ provides an additional level of temporal iso-
lation by means of execution time clocks and timers.
In this way, it is possible to bound the execution time
of threads in such a way that they are not allowed
to execute longer than previously calculated.

XtratuM and ORK+ are currently targeted to
LEON2 [5] based computers2. LEON2 has not Mem-
ory Management Unit but a reduced set of fence
registers, therefore the spatial isolation is not full
because LEON2 fence registers do not have protec-
tion against read operations. Moreover, that lim-
ited memory protection mechanism also imposed a
rigid memory sharing scheme between different par-
titions. These limitations can be overcome with the
next-generation of LEON processors, LEON3, sup-
porting full-featured MMUs. We plan to port the
whole system to LEON3 platforms as well to other
standard hardware such as the ix86 PC compatible
architecture. This will enable it to be used in other
application domains, and also in real-time systems
education.

References

[1] P. Arberet, J.-J. Metge, O. Gras, and A. Crespo.
TSP-based generic payload on-board software.
In DASIA 2009. DAta Systems In Aerospace.,
May. Istanbul 2009.

[2] P. Arberet and J. Miro. IMA for space : sta-
tus and considerations. In ERTS 2008. Embed-

ded Real-Time Software., Jannuary. Toulouse.
France 2008.

[3] ARINC. Avionics Application Software Stan-

dard Interface — ARINC Specification 653-1,
October 2003.

[4] Juan A. de la Puente, José F. Ruiz, and
Juan Zamorano. An open Ravenscar real-time
kernel for GNAT. In Hubert B. Keller and
Erhard Plödereder, editors, Reliable Software

Technologies — Ada-Europe 2000, number 1845
in LNCS, pages 5–15. Springer-Verlag, 2000.

[5] Gaisler Research. LEON2 Processor User’s

Manual, 2005.

[6] M. Masmano, I. Ripoll, A. Crespo, and J.J.
Metge. Xtratum: a hypervisor for safety crit-
ical embedded systems. In Eleventh Real-Time

Linux Workshop, 2009.

[7] M. Masmano, I. Ripoll, A. Crespo, J.J.
Metge, and P. Arberet. Xtratum: An open
source hypervisor for TSP embedded systems
in aerospace. In DASIA 2009. DAta Systems In

Aerospace., May. Istanbul 2009.

[8] M. Masmano, I. Ripoll, S. Peiró, and A. Crespo.
Xtratum for leon3: an open source hypervisor
for high integrity systems. In European Con-

ference on Embedded Real Time Software and

Systems. ERTS2 2010., 2010.

[9] Miguel Masmano, Ismael Ripoll, Alfons Crespo,
and Jean-Jacques Metge. Xtratum: a hyper-
visor for safety critical embedded systems. In
11th Real-Time Linux Workshop, Dresden. Ger-
many., 2009.

[10] John Rushby. Partitioning for safety and se-
curity: Requirements, mechanisms, and as-
surance. NASA Contractor Report CR-1999-
209347, NASA Langley Research Center, June
1999. Also to be issued by the FAA.

[11] Santiago Urueña, José Antonio Pulido, José Re-
dondo, and Juan Zamorano. Implementing the
new Ada 2005 real-time features on a bare board
kernel. Ada Letters, XXVII(2):61–66, August
2007. Proceedings of the 13th International
Real-Time Ada Workshop (IRTAW 2007).

2LEON2 is a radiation-hardened implementation of the SPARC V8 architecture, which has been adopted by the European
Space Agency (ESA) as the new standard processor for spacecraft on-board computer systems.

5


