CACSD under RTAI Linux with RTAI-LAB

Roberto Bucher
University of Applied Sciences of Southern Switzerland
Galleria 2, Manno 6928, Switzerland
roberto.bucher@supsi.ch

Lorenzo Dozio
Dipartimento di Ingegneria Aerospaziale del Politecnico di Milano
Via La Masa 34, Milano 20156, Italy
dozio@aero.polimi.it

Abstract

This paper describes a tool named RTAI-Lab, which provides a common structured framework to
design, build, run and monitor any suite of RTAI-based single/multitasking controllers and real time
simulators, either specifically coded in a high level procedural language, typically C/C++, or automati-
cally generated by proprietary MATLAB / Simulink/Real-Time-Workshop, and/or fully free open source

SCILAB/Scicos/CodeGeneration.

1 Introduction

Computer Aided Control System Design (CACSD)
subsumes a broad variety of computational tools
and environments for control system design, real
time simulation, with and without hardware in the
loop, making the best use of high desktop computer
power, graphical capabilities and ease of interaction
with low hardware cost. Integrated CACSD soft-
ware environments allow an iteractive control sys-
tem design process to be automated with respect to
multi-objective performances evaluation and multi-
parameter synthesis tuning. Visual decision support
provides the engineer with the clues for interactively
directing an automated search process to achieve a
well balanced design under many conflicting objec-
tives and constraints. Local/remote on line data
down/upload makes it possible a seamless interac-
tion with the control system, in order to supervise
its operation and to adapt it to changing operational
needs.

RTAI-Lab is an open source project having the
goal to provide a common structured framework
for the integration of RTAI into CACSD environ-
ments. The present implementation includes sup-
port for the commercial MATLAB/Simulink/Real-
Time-Workshop (RTW) suite and the open source

SCILAB/Scicos suite. The RTAI-Lab internal archi-
tecture should allow easy porting to other CACSD
software. Moreover it can be used to run and moni-
tor any suite of RTAl-based single/multitasking con-
trollers not derived by any CACDS tool, but specifi-
cally coded in a high level procedural language, typ-
ically C/C++.

Basically RTAI-Lab relies completely upon the
CACSD software for the control system code design
and generation, with only the addition of some spe-
cific blocks and building options. The generated code
is then embedded in a RTAI framework to be ex-
ecuted in soft/hard real time and monitored by a
generic graphical user interface, with no more need
of the related CACSD environment. The interface
to the real time application involves changing tun-
able parameters on the fly, and scoping and log-
ging signals and generic multidimensional data. The
building/running and interfacing frameworks repre-
sent the two main aspects of RTAI-Lab, which will
be separately outlined in the next section.

It is believed that automatic control system gen-
eration from visual block schemes cannot meet the
performances achievable by direct coding. In fact the
intrinsic generalization of such procedure restricts
the level of the final optimization of the whole as-
sembled code, even if a single built-in piece of code

implementing a specific operation could be highly ef-
ficient. This could be a problem for real time sys-
tems. Nonetheless the high computational power af-
forded by today general-purpose CPUs makes it pos-
sible to avoid caring some efficiency loss in favour of a
faster and shorter development cycle allowed by the
tighter design, simulation and control system imple-
mentation that comes with such integrated CACSD
environments.

2 RTAI-Lab architecture

The basic concept of RTAI-Lab is to allow two sep-
arate systems, the host and the target, to commu-
nicate. In a remote implementation, the host is the
machine where the RTAI-Lab graphical user inter-
face (GUI) is executing in soft real time, the target
is the machine where the generated hard real time
code runs. In a local setup, the two processes run on
the same hardware communicating by means of lo-
cal messages. The remote interfacing is implemented
by exploiting the features of the small and effective
RTALI real time middleware layer, called net_rpc. The
host sends/receives messages using net_rpc request-
ing the target to accept parameters changes and to
send signal data for graphical displaying and/or file
logging.

Such a scheme has been derived by the na-
tive client/server architecture of some CACSD soft-
ware such as the MATLAB external mode. In this
environment MATLAB/Simulink is the client and
the target is the server. External mode works by
establishing a communication channel between the
Simulink process and the Real-Time-Workshop gen-
erated code. This channel is implemented by a low-
level independent transport layer that handles physi-
cal transmission of messages. In RTAI-Lab this layer
is fully integrated into the real time code via net_rpc
without the need to adapt and link it with an ad
hoc transport layer implementation. Thus it is pos-
sible to run on the same machine many RTAI-Lab
GUTI sessions, in order to monitor and interface many
sets of targets simultaneously. Moreover the adopted
scheme allows to extend the present support by pro-
viding the capability to communicate with a network
of PCs running a distributed control system. The
interoperability of local /remote/distributed usage is
provided by setting some identifiers, as well as the re-
mote node address. The identifiers refer to the real
time objects of the executables which are devoted
to the host interface, and thus permit to distinguish
and separate corresponding environments of RTAI-
Lab sessions simultaneously executing on the same
host.

From the code building/running side, the set-

ting up of the control system within the CACSD
supported environments is performed in three main
steps. First, the designer creates a Simulink/Scicos
block visual diagram that represents the system im-
plementing the chosen control strategy. Such a dia-
gram is composed by blocks coming from the CACSD
software built-in library, along with some specific
RTATI and DAQ blocks providing the interface to the
RTAI-Lab monitoring and I/O support, respectively.
In this way the integration of sensors and actuators
in the control scheme is fully accomplished. The sec-
ond step involves the C code generation. The pro-
cess is completely straightforward and the user has
to choose only the right template makefile for the
target language compiler to have the control pro-
gramming automatically generated by a mouse click.
At this point the generated code should be compiled
by using the mating generated makefile and linked
with the RTW/Scicos specific interface code to the
RTAI-Lab GUI framework, called rtmain, to obtain
the real time target executable. The code building
is such that the final standalone executive can be
run along with a set of options that allow choosing
between soft/hard real time execution modes, peri-
odic/oneshot timing, internal/external timer source,
infinite/finite final time. The standalone code can
be put on any machine running the same version of
RTAT used to build it without the need of the related
CACSD software.

The module rtmain creates a suitable frame onto
which the generated control system runs. This ar-
chitecture involves a task, called rt-Main(), that
initializes all the real time stuff and manages the
start/stop/final-time events of the real time execu-
tive, a task, called rt_HostInterface(), that creates
a double way communication channel from/to the
RTAI-Lab interfacing counterpart, and as many hard
timed tasks as the number of different sampling rates
of the corresponding CACSD model containing the
computation of the control system operations along
with the I/O analog-to-digital and digital-to-analog
ones. Taking the MATLAB/Simulink/RTW devel-
opment environment as an example, there are two
execution modes, called singletasking and multitask-
ing. In the first mode, the model operations are in-
cluded in one hard timed task called rt_BaseRate(),
which runs at the selected base rate of the model.
In the multitasking mode, multiple tasks are cre-
ated, one for each sample rate in the model. The
task rt_BaseRate() executes the components of the
Simulink model code run at the highest sample
rate and thus it is the highest priority RTAI task.
The module rtmain also spawns a separate thread
rt_SubRate() for each additional sample rate in the
system, scheduled in a rate monotonic order.

3 RTAI-Lab GUI

The RTAI-Lab graphical user interface (GUI) has
been fully redesigned for the latest version of RTAI
(rtai-24.1.12) using the last version of the EFLTK li-
brary. This graphical library is an FLTKv2 fork with
some extended capabilities of the available FLTK
widgets and the addition of some powerful widgets
especially developed for the building of a simple,
fast and minimal memory usage desktop environ-
ment called Equinox.

The RTAI-Lab GUI (Figure 1) is based on a Mul-
tiple Document Interface widget, that allows to have
a main application window with a menu bar, a tool
bar, and a status bar. All the managers and instru-
ments windows are created inside the central wid-
get. The menu and tool bars contain the user com-
mands to connect/disconnect to/from the real time
target, to start/stop the real time application, and to
open/close the manager/instrument windows. The
connect command opens a dialog widget to select the
identifiers of the remote real time code. The param-
eters to insert includes the remote node address (0 if
the application is local), and the strings associated
to the real time objects of the available instruments.
These values should be the same of those used in the
running target options. The default names corre-
spond to a target executed without specifying those
options.

FIGURE 1:
terface

RTAI-Lab graphical user in-

The present version makes available to the user
three types of measurement instruments, digital
scopes, leds and meters, with their corresponding
manager windows, one manager to view and change
the target tunable parameters on the fly, and one
window to manage the logging of generic multidi-
mensional data.

Each scope canvas (Figure 2) can show multi-
ple traces of different colors, offsets and amplitude
scales. The manager of the digital scopes (Figure 3)
shows on the left side the list of available scopes with

the name given by the user in the CACSD design di-
agram, and allows to view/hide each trace indipen-
dently, to view/hide the grid, to change the back-
ground and grid colors, to pause the scope visualiza-
tion, to select the second per division value, and to
manage the logging of the signal data.

FIGURE 2: RtaiLab - Scope

FIGURE 3: RtaiLab - Scope Manager

FIGURE 4: RtaiLab - Led

The led instrument is a simple panel of coloured
binary leds (Figure 4). The related manager win-
dows (Figure 5) allows to show/hide the selected led
panel and to change the corresponding active/passive
color.

Leds Manager

. |— g RT&I_LED

FIGURE 5: Rtailab - Led Manager

The meter instruments (Figure 6) are digital rep-
resentations of analog meters, along with the visual-
ization of the current value . The meters manager
(Figure 7) allows to view/hide the meter selected in
the left side list, to set the minimum and maximum
values of the graduate scale, and to change the color
of the arrow, the grid and the background.

NARN LN
oY (L

N 9z P ooz S

Q\\ 04 04 -
s 08" =
=08 08—
= 40 40 i
e 0001 =
= g 12 =
- o

FIGURE 7: Rtailab - Meter Manager

The target tunable parameters can be viewed
and modified by means of a specific manager win-
dow (Figure 8). It lists the scalar, vector and matrix

blocks of the CACSD model; for each block it shows
the name and the current value of the related pa-
rameters. The single parameter can be changed by
simply typing the new value inside the correspond-
ing input widget. By default, the new value will
be downloaded to the real time target when the en-
ter key is pressed. If the batch download option is
selected, many values can be modified without af-
fecting directly the related target ones. The changes
will be effective only when the download button is
clicked.

Parameters Manager

FIGURE 8: RtaiLab - Parameter Manager

The generic data logging manager window have
been included to allow to log multidimensional data.
The log options are quite similar to those included
in the logging part of the scopes manager, with the
capability to select the number of points to save and
the name of the log file.

4 Supported CACSD environ-
ments

4.1 Matlab/Simulink/RTW

The Matlab/Simulink/RTW suite [1] is a commer-
cial product widespread in universities and indus-
tries. Near to an accurate graphical interface it
gives the possibility to create C code, using the
Realtime-Workshop Toolbox. The generated code
can be easily adapted and downloaded to different
targets (see [3]. [4] e [5]). The first integration of a
CACSD system in the Linux RTAI environment was
implemented using Matlab/Simulinik/RTW in ker-
nel space ([6]), followed by a similar implementation
in user space under LXRT ([7]). The present im-
plementation works with newlxrt and integrates the
possibility to use the COMEDI drivers [8].

One of the advantages of this suite is the integra-
tion of sensors and actuators in the control scheme.
Sensors and actuators are directly realized as C-MEX

S-Functions and integrated into the generated code.
No more steps are needed before using the resulting
executable.

On the other hand it should be mentioned that
licences for Matlab are very expensive, in particular
the licence for RTW. This licence is required if the
user wants to change parameters and monitor signals
using the RTW external mode.

The core of the implementation under Matlab
is represented by the 2 target files "rtai.tlc” and
"rtai.tmf” and by the different C-MEX S-Functions
that implement the data transfer to the RTAI-Lab
environment and to the drivers of the DAQ cards
(COMEDI or user specific). Different input sig-
nals can be simply implemented using the normal
Simulink source blocks. Figure 9 shows the current
Simulink RTAT Library.

COMEDI RTAI
b RTAI |
AD Scope Meters peak_canin
RTAl_SCOPE

GOMEDI_DATA_READ RTAI_METER canin

comED! Tl
Log RTAI t
Synchro e e
COMED|_DATA WRITE RTALLOG Y/
RTAI_SYNCHRONOSCOPE
COMEDI b
DI
GCOMEDI_DIO_READ RTAI
LEDS
COMEDI
Do

RTA|LED

GOMEDI_DIC_WRITE

FIGURE 9: Simulink RTAI Library

4.2 Scilab/Scicos/CodeGen

The Scilab/Scicos suite [2] is a full open source
project wich integrates similar functionalities like
Matlab. The graphical environment is less sophis-
ticated than that of Simulink, but it is complete and
functional. The code generator is now integrated
in the Scicos macros, and it has been modified to
allow the generation of RTAI-Linux specific code.
Basically, the code generator macro ”CodeGenera-
tion” transforms a part of the Scicos scheme included
within a Super block into a dynamic function used
to speed up the simulation under Scilab/Scicos. A
modification of this macro allows the preparation of
the files needed to create the RTAI executable.

Under Scicos, the integration of the I/O blocks
can’t be made directly in the scheme. The user has
to integrate I/O blocks in a second step, before the
compilation.

The I/O blocks have been developed separately
and are available in a library (ulibsci.a), including
blocks to integrate COMEDI drivers into the Scicos
executable. A common interface for all the blocks fa-
cilitates the program and integration of new blocks

in this library. A set of utilities to automate these
operations is provided.

5 A simple example

5.1 Scheme

In the following, a simple example will be anal-
ized in both environment, Matlab/Simulink and
Scilab/Scicos. The system is represented by a trans-
fer function

20
G ==
s(s) s2 +4s
with unity feedback,
In both cases the system has been implemented

as discrete-time transfer function

9.9872 4+ 9.973
22 —1.996z + 0.996

with a sampling time of 1ms. Different signals
are sent to scopes, meters, and leds.

In both cases the model is saved with the name
"test”.

Gz(z)=10"°

5.2 Implementation under the Mat-
lab environment

Figure 10 shows the Simulink scheme of this system.

num(z)
den(z)
Discrete
Transfer Fen

[
o

Pulse Gain
Generator

RTAI
Meters:

Gaini METER

RTAI
P Scope

u

RTAI
i3 LEDS

05 RTA|LED

GConstant

FIGURE 10: Simulink scheme

The I/O blocks are integrated as C-MEX S-
Functions in this scheme. The code generation runs
along the following steps:

e choose "rtai” as ”System target file” under
”Real-Time Workshop - Options”

e start ”Real-Time Workshop - Build Model”

An executable with the same name as the model
("test”) will be generated.

5.3 Implementation under Scilab

Under Scilab/Scicos the code generation is not as
simple as under Matlab/Simulink. Figure 11 repre-
sents the Scicos scheme of the example.

FIGURE 11:

Scicos scheme

In order to generate the code this scheme must
be transformed into a ”Super Block” which can be
used to generate the code. The result is a compiled
function into the scheme (Figure 12).

W

= test

v
L
Dg-.
Lt -
>

yrey

FIGURE 12:
the compilation

Super block before and after

The next steps are to be executed outside of the
Scilab environment. First, the user must declare the
input and the 4 outputs of the system using a config-
uration file. The file ”config” needed by the example
is:

rtai_scope out 1 2 I0 0 0 0 0 O
square inp 1 0 0 1.0 10.0 5.0 0.0 0.0
rtai_scope out 21 U0 0000
rtai_led out 31 LED0OO0OOO
rtai_meter out 4 1 METER 0 0 O O O

end
For each block following items have been defined:

e the type (example: rtai_scope)

input (inp) or output (out) port

port number
e identifier or channel number

® a name

5 parameters (block dependent)

Some parameters are not used in some blocks.

| _name (unused)

| |_id/ch (unused)
| |_port on scicos model
| _sensor

_type is square generator

Example:

square inp 1 0 0 1.0 10.0 5.0 0.0 0.0
(I I I | | | | _delay
I I N I I | _bias
| T | | _pulse width
| T O | _period
| | 1 | |_amplitude
(I
|

Using the utility ”gen_io” the file ”test_void_io.c”
generated by scicos will be modified into the file
"test_io.c”, which includes now the calls to the I/O
functions.

The last step is given by the compilation of the
”test_standalone” executable file, which is performed
with the following command:

make -f test_Makefile test_standalone

6 Laboratory applications

6.1 Plant

The following example shows how RTAI-Lab can be
used to design and implement a controller for the 4th
order plant shown in Figure 13.

FIGURE 13: Plant

Two rotating motor-disk systems are connected
by a spring. The position of the left disk must be con-
trolled by appliying the control signal to the motor
on the right. Both motor positions are collected. The
left motor can be used to introduce a disturbance sig-
nal to the left mass. A CAN bus dongle plugged in
the parallel port (Figure 14) connects the controller
(PC with Linux RTAI) to the motor drivers. The
controller works with a sampling time of 10ms. The

system was developed as student project at the Uni-
versity of Applied Sciences of Southern Switzerland
(SUPSI).

FIGURE 14: Peaks can dongle

The identification task takes advantage of the
RTAI-Lab capability to collect signals in real time.
The identification task has been designed under
Simulink (Figurel5): the two current inputs Iy and
I5 and the two outputs @1 and o are collected.

peak_canout

Band-Limited motor
White Noise

RTAI
Scope

peak_cann —m

phi RTAI_SCOPE

FIGURE 15:

scheme for the identification

A parametric identification routine delivers the
state space model

$1 ®1

Yl g9 4B [4L }
Y2 ®2 IQ
(.;.)2 wo

where ¢ and w represent angle and velocity of
the two masses, I1 and I represent the input current
to the motors.

Starting from this model a state feedback con-
troller with integral compensation of the static error
has been implemented in both Matlab and Scilab
environments. The feedback values have been calcu-
lated using a LQR approach. A reduced order ob-
server has been implemented to obtain the missing
states. Under Matlab/Simulink the controller has
been implemented using a state space realization as
shown in the Figure 16.

A mathematical model of the disks and spring
plant (Figure 17) used for simulating the closed loop
systems has to be substituted with a block containing
the I/O interfaces (Figure 18) before the compilation
of the RTAI real-time controller.

disks and spring

FIGURE 17: Model of disks and spring

eg

phit
motore_i1 phit
M2
phi2
motore2_i2 phi2
FIGURE 18: [/0 interfaces of the system

Under Scilab/Scicos the compilation of ”Super
block” containing state space models is not yet possi-
ble. In order to solve this problem the controller has
been implemented using discrete-time transfer func-
tions. Figure 19 shows the controller implemented
under Scicos.

—
Do
]
D o Sl /D
=
DS
T Mux._=|z>
, .
D - D

FIGURE 19:

Scicos controller

The I/O blocks have been implemented using the
following configuration file:

s
>
—p
dioks and sprng
-

FIGURE 16:

Simulink scheme

square inp 1 0 0 1 20 1000
pcan inp 2 1537 0 8000 4000 0 0 O
pcan inp 3 1538 0 1000 500 0 0 O
square inp 4 O 0 3000 10 3023
pcan out 1 1537 0O 8000 4000 0 0 O
rtai_scope out 2 2 Scope 0 0 000
pcan out 3 1538 0 1000 500 0 0 O
end

Figure 20 shows the running system.

FIGURE 20: Running system

7 Conclusions

RTAI-Lab represents a powerful tool to implement
control applications for the Linux RTAI environ-
ment. This application has been extensively used by
the SUPSI and by the DIAPM together with Matlab
and Simulink, in order to control electromechanical
systems with different control complexity, from PID
controller to state feedback controller and fuzzy sys-
tems.

In order to obtain a full open system, the imple-
mentation with Scilab/Scicos allows to obtain a full
open source system for Rapid Controller Prototyp-
ing. Even if there is a great margin of improvement,
this system has shown that it can be successfully
used for complex controllers too.

In future, only the development under (new)lxrt
in user space will be officially supported. At the
author’s homepage ([6]) the needed files for the Mat-
lab/Simulink implementation in kernel space are still
provided for the last RTAI release 2.24.12.

References

[1] www.mathworks.com

[2] www.scilab.org

[3] www.lme.die.supsi.ch/0851-DAVID.jpg
[4] www.lme.die.supsi.ch/08R1-HOVER.jpg
[5] www.lme.die.supsi.ch/08S1-TICTR.jpg
[6] www.die.supsi.ch/~bucher

[7] G. Quaranta, P. Mantegazza, 2001, Using
MATLAB-Simulink RTW to Build Real Time
Control Applications in User Space with RTAI-
LXRT, REALTIME LINUX WORKSHOP, Milano,
Ttaly

[8] www.comedi.org

[9] Roberto Bucher, 2003, Rapid Controller Proto-
typing with Matlab/Simulink and Linuz, ACE
2003, Oulu, Finland

[10] L. Dozio, P. Mantegazza, 2003, Linux Real Time
Application Interface (RTAI) in low cost high
performance motion control, MOTION CON-
TROL 2003, ANIPLA, Milano, Italy

[11] L. Dozio, P. Mantegazza, 2003, Real Time
Distributed Control Systems Using RTAI
SIXTH IEEE INTERNATIONAL SYMPOSIUM ON
OBJECT-ORIENTED REAL-TIME DISTRIBUTED
COMPUTING, Hokkaido, Japan

