
Real-Time Reactive Control Layer Design

for Intelligent Silver-Mate Robot on RTAI

Hyung Sun Lee, Sang Woo Choi, and Byung Kook Kim

Real-Time Control Laboratory

Department of Electrical Engineering and Computer Science

Korea Advanced Institute of Science and Technology

373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea

{hslee@rtcl, swchoi@rtcl, bkkim@ee}.kaist.ac.kr

Abstract

Intelligent robots are capable of handling complex tasks that includes recognition of vocal commands,
logical inference, autonomous navigation and manipulation, etc. To accomplish intelligent behaviors,
researchers have proposed a number of control software architectures such as tripodal schematic control
architecture (TSCA).

To achieve real-time performance for robot’s navigation, we have implemented software components
in the reactive layer of TSCA on RTAI (Real-Time Application Interface) for our intelligent robot. In
this article, we present our structures of the reactive layer components. Real-time performance of the
designed reactive control layer is demonstrated via experimental results.

1 Introduction

As medical technology advances with reducing
birthrate, many countries are becoming aging or
aged societies. To help solve problems of aging so-
ciety, more and more researches are conducted on
development of helper robots [1][2][3], namely Silver
Robots. These Silver Robots should be capable of
handling complex tasks including human-robot in-
teraction via voice and gesture, sensing environments
using various sensors, logical inference, as well as per-
forming jobs using manipulation and navigation.

In order to perform such complex tasks within
given time limits, a solid software architecture should
be used [4][5]. Tripodal Schematic Control Archi-
tecture (TSCA) developed at Korea Institute of Sci-
ence and Technology (KIST) has been successfully
implemented on three versions of their Public Ser-
vice Robot (PSR) series. TSCA uses a hybrid ap-
proach with three layers for its control: deliberate
layer, sequencing layer, and reactive layer. The delib-
erate layer includes software components for human-
robot interaction and task planning. The sequencing
layer has low-level configuration and process super-
visor that manages reactive layer components. The

reactive layer consists of real-time components such
as resource components for sensor management, con-
troller components for actuator management, and
sets of behavior components for basic real-time con-
trol. TSCA of PSR series robots were implemented
on a Windows-based PC, where the reactive layer is
not explicit.

In efforts to develop a next generation silver
robot, Silver-Mate Robot project has been initiated
by the Center for Intelligent Robotics (CIR) at KIST.
This project is composed of over twenty research
institutes for development of various functionality
of the Silver-Mate Robot, including our research
on real-time implementation. Through years of re-
search, we have proposed a modified TSCA which
uses a modified version of TSCA with real-time con-
trol capability as shown in Figure 1 [6].

To achieve real-time performance for robot’s
sensing, navigation and manipulation, we designed
and implemented software components in the re-
active layer using Real-Time Application Interface
(RTAI)1 on Linux. Software components in the reac-
tive layer require real-time performance, since sens-
ing and movement of mobile-base or manipulator
have direct effect on the safety issue of Silver-Mate

1http://www.rtai.org

1



Robots.
Throughout this paper, we explain how we de-

signed and implemented the reactive layer using
RTAI and evaluate its real-time performance via ex-
perimental results. Chapter 2 describes hardware
and software architecture of Silver-Mate Robot plat-
form. Chatper 3 describes detailed design method
of real-time reactive control layer components. Ex-
perimental results are shown in Chapter 4. Finally,
concluding remarks are made in Chapter 5.

FIGURE 1: Modified TSCA with Real-
Time Capabilities in Reactive Layer

2 Robot Platform

2.1 Hardware Architecture

Research on real-time reactive control architecture
was targeted to a versatile mobile platform from
Dasa Technology Inc.2 shown in Figure 2. Platform
consists of three single board computers (SBC) us-
ing P-4M 2.2GHz processor and 1GB SDRAM. Head
part consists of two stereo vision cameras, a pan-tilt
module, and sixteen microphones for voice process-
ing. Vision and voice hardwares are each controlled
by separate SBC for application with algorithms re-
quiring heavy computations.

All other hardware components which are largely
related to real-time software components are con-
nected to Main SBC as shown in Figure 3. A gyro
is connected through data acquisition (DAQ) board.
Two laser range finders (LRF), two infra-red (IR)
scanners and two sonar controllers, each in charge of
six sonar sensors are connected to Main SBC through

an 8-port serial board. Two BLDC motors, the only
actuators currently on the platform, are controlled
by a DSP-based BLDC control board which is also
connected through the serial board. BLDC control
board also manages encoders attached to each BLDC
motors, two front bumper sensors, and also battery
voltage.

FIGURE 2: Silver-Mate Robot Platform

FIGURE 3: Main SBC

2.2 Software Architecture

Software components comprising the proposed real-
time reactive control layer on Main SBC are struc-
tured as shown in Figure 4. The reactive layer is

2http://www.dasatech.co.kr

2



a behavior-based type with Resource, Actuator, Be-
havior, and Behavior Coordinator components as de-
scribed by Jeon [7]. Each Resource components con-
figures a given sensor hardware for periodic data
acquisition, manages hardware operation, and also
stores the sensor data in shared memory for other
software components. An Actuator component con-
figures and manages actuator hardware and sends
generated control outputs. A Behavior component
is a basis of reactive action which uses the sensory
data to compute the control output. Finally, a Be-
havior Coordinator (BC) component collects outputs
from a set of Behavior components and fuses them
for Actuator component.

There are ten Resource components, one for each
sensor hardware attached, one Actuator component
for the actuator on the platform, one BC compo-
nent, and two Behavior components. To communi-
cate with components in sequencing layer, RT Task
Supervisor (RTTS) component is used to manage all
real-time tasks and handle service requests issued to
reactive layer.

FIGURE 4: Reactive Layer Software Com-
ponents

2.3 Real-Time OS and Drivers

Designed reactive control layer was implemented us-
ing RTAI. Version 3.1 of RTAI distribution was used,
along with 2.4.27 version of Linux kernel and 0.7.69
version of COMEDI3 drivers for the DAQ board.

Since the Main SBC uses an 8-port serial board,
real-time serial driver included in RTAI distribution
was modified accordingly. COMEDI driver was also
modified to support hardware timer functionality of
the DAQ board.

3 Reactive Control Layer De-

sign

3.1 Resource Modules

3.1.1 Gyro Resource

A gyro sensor is connected to the system through
DAQ board. Hence Gyro Resource module uses
modified COMEDI driver to convert analog sensor
output to digital value periodically, using hardware
timer functionality of the DAQ board. Registered
callback function is called when a sensor data is avail-
able, hence the callback function stores sensor data
in shared memory for other software components.

FIGURE 5: Gyro Resource Structure

3.1.2 LRF Resources

Two LRF sensors, LMS200 model from Sick, are con-
nected through 8-port serial board. LMS200 can
operate in continuous scan mode, so once LRF Re-
source module configures LMS200 upon initializa-
tion, sensor data is received periodically. LRF Re-
source module largely consists of two parts. One
is callback function registered to RTAI serial driver,
which collects low level serial bytes from LRF to form
a serial packet. Second part is the RT task, which is
woke up by the callback function upon reception of
complete packets and parses them to extract sensor
data. Extracted data is stored in shared memory for
other software components.

3http://www.comedi.org

3



FIGURE 6: LRF Resource Structure

FIGURE 7: IR Resource Structure

3.1.3 IR Resources

Two IR scanners, PBS-03JN model from Hokuyo,
are also connected through 8-port serial board. PBS-

03JN does not support continuous scan mode and re-
quires virtual link management. Data receiving part
of IR Resource module uses a callback function and
an RT task as in LRF Resources, but it has addi-
tional RT task with 200ms period to generate com-
mands to request sensor readings and manage virtual
link. Data extracted by reception RT task is stored
in shared memory.

3.1.4 Sonar Resources

There are two sonar controller boards on the system,
one in charge of six sonar sensors around the front
half of the robot platform and the other in charge of
six sonar sensors around the rear half. To obtain a
sonar data periodically, an RT task is used. At ev-
ery given time interval, RT task issues fire command,
waits for some time and issues read data command
for each sonar sensor. Reception of serial data is
handled using a callback function and an RT task,
similar to LRF or IR Resource modules. Extracted
sonar data is stored in shared memory.

FIGURE 8: Sonar Resource Structure

3.1.5 Encoder, Battery, and Bumper Re-

sources

Two encoders of BLDC motors, two front bumper
sensors and battery voltage sensor are connected via
BLDC control board, as shown in Figure 3. Hence
they can only be accessed through serial protocol
provided by the BLDC control board. Software com-
ponent that manages BLDC control board hardware
is MBase Actuator module, which is explained in
Chapter 3.2, hence Encoder, Battery, and Bumper
Resource modules depend largely on functionalities
provided by MBase Actuator module.

MBase Actuator provides functionalities to reg-
ister or unregister a callback function for each of en-
coder, battery, and bumper hardware. These three
Resource modules register their callback functions
upon initialization. When a new data is generated,
callback function is called and it stores the sensor

4



data in designated shared memory. Periodic genera-
tion of sensor data is a job of MBase Actuator and no
other functions are needed for these three Resource
modules.

Encoder and battery data are generated peri-
odically. However, unlike other sensor hardwares,
bumper event is a sporadic event. Therefore, a new
bumper sensor data is only generated when there is a
change in bumper status. Reading “current bumper
data” can cause blocking of the calling task.

3.2 Actuator Module

Only one set of actuators exists on the platform as
shown in Figure 3, thus only one Actuator mod-
ule exists. We call it MBase Actuator in short for
Mobile-Base Actuator. MBase Actuator manages
a DSP-based BLDC control board. BLDC control
board is connected via serial port and it uses a layer
of serial protocol for exchanging command and sta-
tus data. MBase Actuator module provides a layer
of abstraction for the underlying serial protocol by
providing a set of API functions. A data structure
for command buffer, a serial callback function, and
a packet-parsing RT task are used.

As mentioned earlier, MBase Actuator module is
in charge of generating encoder, battery, and bumper
data. An RT task is used to periodically generate
data request commands and a set of callback regis-
tration API functions are provided. Registered call-
back functions are called within the packet-parsing
RT task.

In case of emergency, hardware reset button in
the BLDC control board may be pressed. To detect
such event and re-initialize MBase Actuator module,
a watchdog RT task is used to monitor periodic ex-
change of serial packets.

3.3 Behavior Modules

A Behaivor is a basis of action used to determine ac-
tual movement of the robot platform. Many different
kind of Behavior can co-exist, such as Move Behav-
ior that tries to move in a certain direction, GoTo
Behavior that tries to move to a certain position or
Obstacle Avoid Behavior that tries to avoid static or
dynamic obstacles in its path.

All Behavior modules have similar execution
flow. When it wakes up, it reads sensor data needed,
computes control output, passes it on to BC compo-
nent, and suspends itself as shown in Figure 9.

Current implementation of Move Behavior re-
ceives translational and rotational velocity com-
mands from the sequencing layer and outputs them
for BC. Obstacle Avoid Behavior reads LRF data to

find location of the nearest obstacle and generates an
output to avoid it [7].

FIGURE 9: A Behavior Execution Flow

3.4 Behavior Coordinator Module

A Behavior Coordinator (BC) manages all Behaviors
and fuse their outputs to generate actual control out-
put for Actuators. We implemented MBase BC for
MBase Actuator, which has a few operational modes.
For each operational mode, different sets of Behav-
iors are used. For instance, when MBase BC operates
in Move with Obstacle Avoidance Mode, both Move
and Obstacle Avoid Behaviors are active. For simple
Move Mode, only Move Behaivor is active.

3.5 Real-Time Task Supervisor

The reactive control layer components were imple-
mented as kernel modules. In order to exchange mes-
sages with sequencing layer components, IPC mech-
anisms provided by RTAI must be used. Real-Time
Task Supervisor (RTTS) component’s job is to inter-
face these two layers.

RTTS component is made up of a kernel module
and a C++ class. RTTS module uses RT-FIFOs to
receive service requests issued to the reactive layer
and to report status of the reactive layer back to
the sequencing layer. RTTS C++ class is used to
abstract complex RT-FIFO communication protocol
into simple class methods that can be used by other
sequencing layer compnents. Current implementa-
tion provides methods shown in Table 1

5



Method Description

SetOpMode Set New Opertion Mode
GetOpMode Get Current Opertion Mode

Move Issue a Move Commmand
SetPosition Set Current Position
GetPosition Get Estimated Position

Stop Stop Gracefully
EmgStop Emergency Stop
Activate Turn on/off BLDC Motors

TABLE 1: RTTS C++ Class Methods

4 Experimental Results

To analyze the real-time performance of imple-
mented reactive control layer, two experiments were
conducted: one to demonstrate performance of Re-
source components and the other to demonstrate
performance of Actuator-related components.

Resource Min Max Period ∆Pmax

Gyro 12.63 29.0 20.81 8.18
Battery 2007.9 2031.6 2019.8 11.9
Encoder 34.375 44.125 39.250 4.875

IR 194.06 206.88 200.47 6.41
LRF 207.56 217.69 212.62 5.06
Sonar 100.81 121.25 111.03 10.22

TABLE 2: Measured Sample Interval

4.1 Sensor Data Acquisition

One of the important job of the reactive layer is to
manage sensor hardwares and gather sensor data as
periodically as possible. There are six kinds of Re-
source components in our reactive layer. While run-
ning all Resource modules at the same time, over a
thousand consecutive data samples were collected ev-
ery three seconds from each Resource modules. Table
2 shows the minimum and maximum values of mea-
sured time interval between two consecutive samples.
From the relationship among actual sample period,
P , difference between maximum and minimum sam-
ple delays, ∆Pmax, minimum sample interval, Imin

and maximum sample interval, Imax, the values of P

and ∆Pmax can be calculated as shown in Table 2.

Calcuated actual sample period, P , and worst-
case delay in sample data, ∆Pmax, shows that gen-
eration of sample data using implemented reactive
layer is periodic and deterministic.

FIGURE 10: Measured Step Responses

FIGURE 11: Response to Velocity Com-
mands

4.2 Response to Velocity Commands

To prevent robot platform from damaging itself,
BLDC control board uses accepted velocity com-
mands to create movdified velocity profiles with in-
creasing or decreasing slopes. Four step translational
velocity commands from 0.1m/s to 0.4m/s were is-
sued and resulting velocity were measured by read-
ing encoder values every twenty miliseconds. Re-
sulting step velocity responses are shown in Fig-
ure 10, where velocity command of 0m/s were is-
sued three seconds later to stop the platform, and
acceleration/deceleration time is set to 0.25s. Fig-
ure 11 shows velocity response to a series of ve-
locity commands. These results show that imple-
mented reactive control layer can accomplish navi-
gation commands from sequencing layer within pre-
dictable amount of transition time.

6



5 Conclusion

In this paper, we explained how we implemented the
real-time reactive control layer structure of modi-
fied TSCA architecture for Silver-Mate robot using
RTAI. Experimental results demonstrates that our
implementation is able to obtain sensor data period-
ically in a predictable manner and execute navigation
commands in real-time.

As a further work, exhaustive testing will be
performed on our implementation. Furthermore,
our implementation will be integrated with result-
ing software components of other researchs for fi-
nal integration and test. Our research will focus on
use of Controller Area Network (CAN) and Ethernet
for distributed computing environment for intelligent
mobile robots.

6 Acknowledgements

This research was performed for the Intelligent
Robotics Development Program, one of the 21st Cen-
tury Frontier R&D Programs funded by the Ministry
of Commerce, Industry and Energy of Republic of
Korea.

References

[1] Hans, M., Graf, B. and Schraft, R. D., 2002,
Robotic Home Assistant Care-O-bot: Past–
Present–Future, in proceedings of IEEE RO-
MAN ’02, pp. 380-385.

[2] Hans, M. and Graf, B., 2004, Care-O-bot II
– Development of a Next Generation Robotic
Home Assistant, Autonomous Robot Jour-
nal, March 2004, vol. 16, issue 2, pp. 193-205.

[3] Kim, C. H., Kim, S. J. and Kim B. K.,
2004, RTAI Based Real-Time Control of Robotic
Wheelchair, 6th Real-Time Linux Work-
shop, Singapore.

[4] Hans, M., 2004, The Control Architecture of
Care-O-bot II, Advances in Human-Robot
Interaction, vol. 14, pp. 321-330.

[5] Kim, G., Chung, W., Kim, M. and Lee, C., 2003,
Tripodal Schematic Design of the Control Archi-
tecture for the Service Robot PSR, in proceed-
ings of the IEEE Conference on Robotics
and Automation, Taipei, Taiwan, pp. 2792-
2797.

[6] Lee, H. S. and Kim, B. K, 2004, Research on
Real-Time Implementation of Control Architec-
ture for Silver-Mate Robots, 3rd Technolog-
ical Workshop of Center for Intelli-
gent Robotics, Cheongpung, Republic of Ko-
rea.

[7] Jeon, S. Y., Kim, H. J., Hong, K. S. and Kim,
B. K., 2005, Reactive Layer Control Architec-
ture for Autonomous Mobile Robots, in pro-
ceedings of the 3rd International Confer-
ence on Mechatrinics and information
Techonology (ICMIT 2005), Chongqing,
China.

7


