
A Client-Server Based Real-Time Control Tool

for Complex Distributed Systems

Axenie Cristian
Computer Science Faculty at Dunarea de Jos University

Y Building, Stiintei street, Galati, Romania

haustiq 86@yahoo.com

Pascalin Andrei, Maftei Florentina, Perjeru Marius
Zanoschi Aurelian, Stancu Alexandru

Computer Science Faculty at Dunarea de Jos University

Y Building, Stiintei street, Galati, Romania

andrei i pascalin,aurelianz2004,jokerush,flor3nt1na,

stancu alex@yahoo.com

Abstract

Today’s trends in Control Engineering and Computer Engineering are blending gradually into a slightly
challenging area, the improvement of Real-Time implementations. Applications should timely deliver
synchronized data-sets, minimize latency and jitter in their response and by using an efficient scheduling
algorithm to be able to determine various system resources to meet optimal allocation and their perfor-
mance specifications. As Real-Time systems are increasing their complexity and safety-critical aspects,
there is a new trend to raise software development level of abstraction from programming languages to
concrete standard models. By accepting the challenge of developing a Real Time application we had
been able to design and build a slightly alternative method to implement control algorithms in industrial
distributed systems.
Keywords: Real-Time, Linux, RTAI, threads, Hard Real-Time, Soft Real-Time, C++, COMEDI , Java,
TCP/IP, Grafcet, distributed systems.

1 Introduction.

Architecture overview.

Better system reliability and easier test routines,
weight, space, wiring and power requirements re-
duced, decentralization of control and efficient main-
tenance. These are the main advantages of using
the networked control system pattern in designing
efficient solutions for the industry. Following, an ar-
chitecture overview is given to get familiarized with
the specific implementation details of the developed
solution. The main application is designed on the
client-server pattern because we are handling a ho-
mogeneous distributed system from the OS point of
view, because each node of the system uses a similar
OS but different programming languages for imple-
mentation. The main, server node or the controller
is a Linux OS based computer configured with the

Real-Time patch (the RTAI modules) and it offers
the possibility to implement the control algorithm,
due to it’s direct connection with the controlled in-
dustrial process. The second important node in the
distributed system is the data and command server,
designed as a Linux OS based computer that hosts
a second part of the application using a data server
to modify the parameters of the control algorithm
found in the running application on the main node
(identified as the main application server). To com-
plete the distributed architecture we included in our
design some clients, Linux OS based computers that
are only able to access logs, data charts from the
process and other parameters needed for monitor-
ing. The design pattern for developing the applica-
tion uses a specific architecture, consisting in sev-
eral compact layers gathered in a ”stack” like de-
pendence, based on specific command/control and
data flows. The base concrete level is the physical

1

level of the DAQ card that ensures direct communi-
cation with the controlled process. The raw or for-
matted data gathered from the process are sent to
the next level application running on the Linux OS
based server. The interface between the DAQ card
and the application is ensured by a set of drivers from
the Comedi/Comedilib library and the OS specific
functions, to maintain and enhance the Real-Time
features used in the data acquisition and processing.
The second concrete level introduces the C++ ap-
plication specific. It reveals an OOP design pattern
used to enhance productivity, flexibility and compat-
ibility in adjacent classes communication developed
inside the application. The center of the C++ appli-
cation is based on the common use of the RTAI spe-
cific methods for Real-Time tasks in data handling
and commands and of course the tool for implement-
ing the control algorithm. To maintain the flexibility
and portability of the application the Grafcet tool
was chosen because it’s real advantages in dividing
the process in sub-processes. Using this feature we
are able to choose a soft Real-Time or Hard Real-
Time implementation for the specific events in the
process’s evolution. Using the Grafcet we would be
able to easily modify the specific controlled elements
regarding the process components, implementing a
good parallel execution tool by describing the evolu-
tion of the process and it’s actions offering a proven
independence over the technology. The third con-
crete level is the communication level between the
C++ application and the Java application running
on the data and command server(in a client(Java)-
sever(C++) model). The communication channel
uses a TCP/IP protocol that offers an efficient and
safe method to maintain parameters interchange and
command communication. Between the two software
applications we managed to create a certain compat-
ibility pattern to easily ensure the communication,
so we designed a similar class architecture using a
data class, a Grafcet class, a control server class, a
sensor class, an actuator class and a system class
that all are encapsuling functionality. The last two
concrete levels due to their resemblance in implemen-
tation are treated together so the Java control and
data server application in responsible to send con-
trol commands to the Grafcet class and also send /
receive data from the process through the C++ ap-
plication and via TCP/IP, it interacts as the server
with the Java clients. The client nodes are based on
a data client class that is designed as a Java GUI
to permanently interact with the user that monitors
the process at a certain time.
We must emphasize the difference between the con-
crete and the abstract architectural levels, to the ex-
tent that some details from the physical DAQ level

and the communication specific are lost in the ab-
straction process. Hence, these two aspects aren’t
presented as architectural levels but only as inter-
face components in the main application levels.The
concrete components desciption was considered just
to offer a full depiction of all the aspects involved in
this approach.
The developed solution was designed to meet certain
accessibility features , including portability, the use
of free or low-cost auxiliary software (OS,SDK plat-
forms) and practical use in a large area of industrial
control processes.

2 Implementation details and
specific functionality.

The developed application is built on a layered mod-
ular pattern so that it can support enhancements
regarding method implementation. This extensibil-
ity feature is very important due to the application
main purpose of decentralized control, to the extent
that it has to be compliant to a whole range of in-
dustrial processes. This extensibility is implemented
by a specific mechanism offered by the flexible OOP
design pattern and the sequential Grafcet tool, for
implementing the control algorithm commands and
supporting data flow through the application lay-
ers. Next the synthetic and functional description
of the architecture is given in figure 1 to emphasize
the main clusters in this distributed control problem.

2

Data.class

System.classDataClient.class
Common TCP/IP network

Protocol

Common TCP/IP network
Protocol

Data flow

RemoteDateServer.
class

Data.class

System.class Grafcet.class

Control.class

DataServer Class

GRAFCET structure

ControlServer Class

Data flow

Commands/Control flow

Control Class

Sensor Class

Actuator Class

Real Time DAQ card
driver specific function

Calls
DAQ card

Data/Control flow Data/Control flow

CONTROLLED PROCESS

First abstraction level

the C++ application with
Linux+RTAI support for
specific function calls and
device specific driver
programming interface as
the control server.

Second abstraction level

the Java application that uses
common methods/function
calls for establishing the
communication between
adjacent classes in the two
applications as a data server
via TCP/IP.

Third abstraction level

the Java client application
It establishes only a data flow
communication via TCP/IP and
it!s purpose is to set the control
objectives and monitor the
system evolution.

DataClient.class

FIGURE 1: The main application architec-
ture

2.1 Base level presentation. The
Real-Time Linux C++ applica-
tion.

The first abstraction level is the C++ application
under Linux+RTAI that is identified as the control
server. To obtain the optimal solution in resource
utilization and interfacing under Linux, the Comedi
/ Comedilib drivers were used. To enhance pro-
ductivity this variety of drivers was implemented
as dynamically loadable kernel modules. So the
process scheduler and the virtual file system kernel
subsystems virtually are presenting a common ap-
plication programming interface used to initialize,
configure and calibrate Comedi specific devices. The
most important element at this level is probably the
Kcomedilib module dedicated to the Real-Time ap-
plications.
This level’s main architecture is now presented in
figure 2 and some specifications are given to make a
proper mental model for the application specific.

DataServer Class

GRAFCET structure

ControlServer Class

Control.class

Sensor Class Actuator Class

Data/Control flow Data/Control flow

Phase Class

FIGURE 2: The C++ application architec-
ture

The communication between the classes is es-
tablished via public and protected methods using a
data/control flow for transmitting parameters and
also other OOP specific mechanisms for class com-
munication. It is important to remind that the two
applications running are built on a symmetric pat-
tern so that similar tools are used for transmitting
data and commands via the TCP/IP network.
The base class for the C++ class hierarchy is the
Thread class that encapsulates specific pthread and
pthread mutex t OS data structure and implements
methods that will be overridden in the derived
classes. This class maintains permanent commu-
nication with the OS.
The Thread class has multiple realizations that are
used to abstract, in a down to top manner the details
of the hardware architecture.
The main purpose of the C++ application is to issue
direct commands to the actuator, so it is identified
as the control server in the application, but also it
is responsible to retrieve data from the sensors and
implement decision making through the specific con-
trol algorithm. All that is dpossible by using specific
means to maintain a bi-directional communication
in Real-Time with the DAQ card.
The class hierarchy abstracts the physical elements
comprised in the control system. So we designed a
DataServer class to continuously interchange data,
transmitting and restoring, during the phase execu-
tion with a potential client node connected to the
homologous Java application.
This communication is built on specific method calls
such solveRequests(), transferData(), emptyBuffer()
or debug(). Another class with the same function-
ality is the ControlServer class that offers an inter-
face to the upper layers (such the Java server or a
Java client) to easily issue commands to the control
system hardware like setControl(), serveRequest(),
getIPControl() or connect() .
The two presented classes are implementing the com-
munication functionality between the two synchro-

3

nized running applications and to the extent that are
modifying the control system hardware status. The
concrete tool for implementing control algorithms
is the Grafcet so we had to abstract all it’s specific
components so that we can benefit of it’s main ad-
vantages. In this context we managed to design a
Stage class and a Transition class.
The two classes are implementing the specific Grafcet
elements such as stages, phases, action, cycles, and
transitions. Methods like start(), stop(), execute()
are used to activate and so control the execution of
the stages and the associate phases and transitions.
Another kind of methods are used to maintain a con-
sistent and common interface such as add(), reset(),
setName(), getName() that give specific access to
describe the sequential or parallel execution. Hence,
building the Phase class gave us the possibility to
suitable group all possible events in the system evo-
lution in phases that are later executed.
Other Grafcet specific elements were abstracted in
classes like the Action class and Cycle class that
are fully described by specific methods like start(),
stop(), execute(), setPeriod(), initialize(), in order to
set the specific actions to execute, if some condition
variables in the transition evolution are met and to
iterate some specific cycles.
These elements are very important because these
are the main mean to implement the hard Real-
Time blending OS specific pthread methods to the
RTAI RT TASK specific methods.
The phases are composed of stages related through
transitions. The Grafcet tool describes the process
evolution mapping in a coherent way the control ob-
jectives by easy adapting to the process and main-
taining technological independence.
The C++ application relies on the Grafcet tool to
support a proper process separation in smaller pro-
cesses that are easier to implement on a single pro-
cessor architecture with a proper task management
and parallelism.
The two classes responsible with the direct commu-
nication with the controlled process are abstracted
as Sensor class and Actuator class and they’re role
is obvious. But it is interesting to study they’re
specific. We can start the description only based
on the Comedi specific in/out methods. The Sen-
sor class and Actuator class specific methods like
enable(), control(), configure(), get(), set() are con-
taining Comedi function calls.
The drivers from Comedi are organizing the hard-
ware in a specific hierarchy starting with the channel
as the low-level component responsible of the prop-
erties of a single data transfer channel; sub-device
that is a set of identically functional channels imple-
mented on the same interface and the device that is

a set of sub-devices physically implemented through
a generic interface. Each supported device has his
own set of specific parameters and Comedi vali-
dates/calibrates hardware types by specific methods
like comedi dio config().
The two classes are implemented in a slightly prac-
tical way with the possibility of supporting both the
acquisition or sending of analog and digital signals
through the Comedi comedi data read()and comedi
data write() methods.
Hence, we have an AnalogSensor class that inher-
its all the fields of the Sensor class, like the state,
frequency or value, but it also introduces his own
fields like activeChannel or voltage range. The most
important methods implemented in this class is the
physicalDataToVolt() method that returns the con-
verted data from the input into volts and the get()
method, that reads a sample from the DAQ input
channel and then returns an analogue value in volts
using also the conversion method.
Obviously we also designed a DigitalSensor class that
is generating objects containing the identifier for the
acquisition channel, a pointer to the Comedi device
and having an interface composed of a function call
to comedi dio config() and a get() method that re-
turns a digital value from the digital sensor object.
The Actuator class implements a similar function-
ality to both analog and digital domains. There we
have the AnalogActuator class and the DigitalAc-
tuator class that are inheriting the Actuator class
and are implementing also a field containing a mea-
sure of the maximum voltage. We now introduce
a voltsToPhysicalData() method used to convert
voltage into data trough an implementation spe-
cific formula given by the measurement scale and
extreme (minimum and maximum) values. The ac-
tive part of these classes is the set() method that
sends an analogue/digital value to one of the DAQ’s
analog/digital output channels through the Comedi
specific comedi data write() method.
The connecting class of the C++ architecture is the
Control class because it mediates access to the phase
execution and to the sensors and actuators specific
data. This class objects are encapsuling data like the
phase number, the parameters tables, the phases, the
sensors and actuators and also a RT TASK object
to implement Real-Time in the derived classes.
Methods like executePhase(), setParameters(), get-
Parameters(), getSensors(), setActuators(), set-
Phases() and stop() are used to fully extend it’s
power to control the desired evolution in the con-
trol system actions. It’s Real-Time character is used
and extended to it’s dependent/derived classes by a
specific mechanism introduced by the RTAI patch
installed over the Linux kernel and configured to use

4

the class facilities (mutexes and condition variables
introduced within the POSIX 1003.1c standard).
Hence, we managed to use and develop the architec-
ture facilities stored in the RTAI SCHED MODULE
like the rt task init(), rt task make periodic(),
rt task make periodic() and
rt task task delete() or in the LXRT MODULE like
rt make hard real time() and rt make soft real time()
to fully aggregate the use of Real-Time especially in
the Cycle class.
There we have designed methods that initialize the
Real-Time agent and creates a Real-Time task with
multiple facilities to set/return the execution period.
This was done by evaluating the finalization condi-
tions of the execution and the management of the
loop control tasks, that is a specific behavior for the
Real-Time applications.
Next to easily pass the description to the Java data
and control server application we have to focus on
the communication problem, emphasizing impor-
tant aspects and implementation details in using the
TCP/IP network protocol.

2.2 The communication interface be-
tween levels. Describing TCP/IP
specific use.

TCP/IP was chosen to fulfill the communication in-
terface between the C++ and the Java applications.
The Linux network system provides two transport
protocols with differing communication models and
quality of service. We chose the reliable streamed
TCP/IP over the unreliable message based UDP.
The application communication activities take place
in the background and are supported over a specific
range of methods that are used to transfer parame-
ters to the other entities of the application and other
data regarding the process evolution.
The main application is comprised of a Real-Time
control server (the C++ application), a control and
data server (the main Java application, that is a
client in the direct relation with the C++ applica-
tion) and a variable number of clients (simple Java
GUI applications, clients in the direct relation with
the Java control and data server) that completes the
distributed architecture. The C++ and Java entities
communicate through unidimensional arrays. The
two applications are built on compatible class struc-
ture so that the communication is established on
compatible modules in the level. Data are formatted
before sending it to the C++ control server that is
responsible of executing the control algorithm with
the received parameters. There is the possibility that
Java clients connect they’re self to the Java control
and data server but only with limited access, that

gives them the possibility only to gather information
about the system evolution through data/message
logs and graphs. To implement the communication
objectives the C++ application uses the DataServer
and ControlServer classes and the client-server con-
nection is based on sockets, using an IP address and
a port number. The ControlServer class commu-
nicates bi-directional with the Control class in the
Java server application to transfer the parameters
and the commands for the execution of the control
algorithm. Data is stored in matrices that can be
full or empty and we can insert/extract data. This
feature is offered by the DataServer C++ class that
implements specific formatting.
The Java control and data server is using the
TCP/IP interface through the Control class and
the DataClient class to communicate with the com-
patible classes in the C++ application and the Re-
moteDataServer class to communicate with the Java
clients. The Control class contains specific meth-
ods to initialize, connect and disconnect clients and
it’s main purpose is to mediate the communication
between the Real-Time C++ application, that com-
municates directly with the process and the Java
clients, that are executing a continuous monitor-
ing of the process. The RemoteDataServer class is
responsible for the efficient data transfer between
the C++ classes and the Java client classes. It
also serves the Grafcet passing requests, parameters
transfer and it processes event notifications from the
process evolution.

2.3 The second architectural level.
The control and data server Java
application.

The second abstraction layer is the Java data and
control server level that mediates and maintains
an efficient communication between the Real-Time
component of the main architecture and the passive
component that only accesses data from the process
and has also a local access for modifying the system
structure. The main conceptual architecture of this
level is now presented. Hence, we designed a Con-
trol class that is the client side for the C++ control
server, communicating directly with the C++ ap-
plication ControlServer class. Another convention,
that we considered, provides a clear look on the spe-
cific relations between the main components of the
application. So the server is identified with the C++
application and it’s unique client is the Java control
and data server that simultaneously is identified as
the local server for the Java clients. Hence, the Java
control and data server application plays a double

5

role in the main architecture, as a client and it the
same time as a server, this is an important feature
offered by the OOP paradigm specific mechanisms.
The Control class is highly dependent of the Data
class that is used to store data arrays to easy re-
store it by the data clients. The Control class is
responsible to command the phase execution or
to access the sensor’s and actuator’s specific data
through methods like Sensor.get(), Actuator.set(),
executePhase(). It also depends on the Grafcet class
that stores the Grafcet structure parameter values of
the process and it offers functionality to dynamically
modify phases and change the process parameters
through Grafcet.setControl(), Grafcet.forward(),
Grafcet.current(), Grafcet.write() or Grafcet.end().
The Grafcet class is higly dependent on an virtual
Action class that offers the mechanisms to maintain
the structure’s flexibility and dynamics. It is lately
extended in classes like the Phase class, that handles
the phase specific execution, commands and I/O op-
erations, the Parameters class, that is implementing
methods to set and get parameters and write/read
them from the data buffer to/from dedicated files.
The execution specific methods behind the Action
class are then implemented in the toDO class that
stores Action objects and brings up a method in-
terface to modify the number of iterations, or the
control operations done at each execution step. The
base architecture of this level is depicted here, in
figure 3, to emphasize the inheritance relations and
dependencies.

Grafcet.class DataClient.class

Event.classSystem.class

RemoteDataServer.class

Data.class

Control.class

Data flow

Commands/Control flow

FIGURE 3: The Java control and data
server application

As we can see, in figure 3, there is a System
class that permits the execution of the implemented
algorithm and it can mediate storing/retrieving of
data regarding the controlled process. All op-
erations in the system control process are done
using signals implemented in the virtual Event
class supporting both the System’s specific methods
like System.setGrafcet(), System.setEvent(), Sys-
tem.start(), System.stop(), System.save() or Sys-

tem.restore() and also specific communication ac-
tions like notifying and returning the active port on
which will occur an event or solving client requests
to set/get data or set/get port.
The latest specifications are implementing and de-
scribing functionality ofor the RemoteDataServer
class, that mainly serves Grafcet passing requests
and data or event handling. Another event depen-
dent class is the DataClient class that receives data
from the C++ control server application and stores
it internally in a buffer, with the facility of notifying
if there are new data across one event. It implements
methods like setServer() or getServer(), setEvent() or
getEvent(), setBuffer() or getBuffer(), connect() or
run() and finally getPort() and start(). The purpose
of these methods is obvious and there is an extensi-
bility feature to adjust they’re behavior.
Following a simple example of execution is presented
to understand the main pattern to design process
specific application behavior. Hence, we instantiate
a Control and a System object and then by specific
Control.setControl() , start() and stop() methods we
describe the execution steps.
We call the run() method, overridden in mostly
all active classes, because it represents the specific
Thread class mechanism to implement critical sec-
tions for executing Real-Time tasks. Then through
a serializable interface to Grafcet class we create two
Action objects that shall be executed in execute()
and ended with end(). On the other hand we use
the Control class through a serializable interface to
set/get parameters and execute and finalize phases.
Hence, when we first call the start() method a thread
is launched that will make the Grafcet object to ref-
erence actions and make them execute sequentially.
Next is a depiction of two possible implementations
for the Grafcet, a serial approach and a parallel one.
The serial approach presented in figure 4 presents
it’s advantages in proper understanding systems’s
dynamics and evolution.

6

A 10

cycle responsible
to issue commands
to control the
system’s 1st
actuator

cycle responsible
to issue commands
to control the
system’s 2nd
actuator

cycle responsible
to issue commands
to control the
system’s n th
actuator

auxiliary routine that
issues commands to
control the system’s
actuators in case of
an execution error

auxiliary routine that
issues commands to
control the system’s
actuators in case of
an execution error

auxiliary routine that
issues commands to
control the system’s
actuators in case of
an execution error

auxiliary routine that
issues commands to
control the system’s
actuators in case of
an execution error

Parameter initialization

Cycles finalization

......

AE 11

AE 12

AE NN

AE NN+1

A NN+3

C NN

C 11

C 12

T 10

T 11

T 12T 13

T 14

TE 11

TE 12

TE NN

TE NN+1

T NN-1

T NN
T NN+2

T NN+3

FIGURE 4: The serial phase execution
Grafcet concept structure

On the other hand the parallel Grafcet approach
presented in figure 5 is suitable for reaching optimal
concurrent execution with the possibility to divide a
main process in multiple more simple sub-processes,
and an easy debug routine implementation.

A 20

C 21 C 22 C 2N

AE 21 AE 22 AE 2N

A 2N^2

cycle responsible
to issue commands
to control the
system’s 1st
actuator

cycle responsible
to issue commands
to control the
system’s 2nd
actuator

cycle responsible
to issue
commands to
control the
system’s n th
actuator

......

auxiliary routine that
issues commands to
control the system’s
actuators in case of an
execution error

auxiliary routine that
issues commands to
control the system’s
actuators in case of an
execution error

auxiliary routine that
issues commands to
control the system’s
actuators in case of an
execution error

T 20

T 2N-1

TE 2NTE 21 TE 22

T 24
T 23

T 21

T 2N+2

FIGURE 5: The parallel phase execution
Grafcet concept structure

The System class controls the Grafcet execution
through Event objects executing asynchronous ac-
tions. Then, finally, the RemoteDataServer permits
to the Java client applications to access a Data ob-
ject and a System object to consult the results and
the notifications. So that we can summarize, we have
a System object that store/restores a Grafcet object
containing the Action structure of the system that
accesses the Control. On the other hand, phase ex-
ecution data is stored in a DataClient object and if
there are requests, data and event notifications are
sent to a Java client application via the specific Re-
moteDataServer methods.

2.4 The third application level. The
Java client architecture.

Being the highest level of the application it’s degree
of low level details abstraction is high, so that an user
will be absolved of any knowledge of implementation
and specific structure of the lower levels in the archi-
tecture. Hence, it’s architecture, shown in figure 6,
is quite simple .

Data flow

DataClient.class

System.class Data.class

Event.class

FIGURE 6: The Java client application ar-
chitecture

Based on the direct communication with the
data and control Java server through a Data-
Client class it works based on request and no-
tification signals from the Event objects. So,
it can implement an efficient monitoring sys-
tem through DataClient.serveRequests() and Data-
Client.serveNotifications() methods and set through
a limited access the structural details of the sys-
tem. The System class is a local copy of the control
and data server Java application System class. It
is an active class that uses start(), stop() and run()
methods to activate/stop the execution and main-
tain continuous state information about the process.
Finally the Data class stores the data transferred via
the TCP/IP network from the control and data Java
server.
Throughout the figures it had been used a specific
way to mark data flow and command/control flow
that’s because these entities are representing in fact

7

the numerical values of some parameters or the pa-
rameter passing actions for some methods. They’re
main purpose was to emphasize the dependency
between the adjacent classes in one application or
between the three application components.

3 Conclusions and future work.

Given the developed architecture, we shall concen-
trate on extending the application by adding new
characteristics that will enhance functionality of the
abstracted elements. We intend to obtain a flexible
and efficient solution that adapts itself to the control
specifications and the needs of an industrial process.
It is proposed to raise the steak by building a true
platform based on this application. So our first con-
cern is to develop a specific Linux kernel equipped
with al the necessary modules for supporting all
kinds of DAQ devices and especially to support the
Real-Time facilities, used in the application execu-
tion, all that in a consistent conceptual architected
kernel and a flexible concrete kernel.
At this moment with the first version of the applica-
tion we managed to control slowly variable systems
but also systems that require Real-Time facilities in
they’re control. Each application level will maintain
it’s initial purpose but the component classes will
be extended by adding new more efficient methods
so that it will ensure an easy modification of the
Grafcet structure for the controlled systems, effi-
cient and safe parameter transfer between associate
methods and of course more flexible inter-application
communication features.
Another approach for the future work would be in
the fault tolerant control area with the possibil-
ity of implementing specific mechanisms to detect
and isolate the faults occurred in complex systems,
as specific actions for the phase execution in the
Grafcet algorithm, both on the valid transitions and
also error transitions.
The main advantages of this application are resid-
ing in the intelligent use of the RTAI function calls
and data structures combined with the Comedi/
Comedilib drivers, that are most likely extensible
and of course the flexibility and diversity of the OS
specific features to support Real-Time.
Another aspect that emphasizes the efficiency of the

developed application resides in the facility to easily
change the control strategy and monitor the process
evolution in Hard Real-Time in a distributed system
architecture.
Finally we must emphasize that the costs were min-
imized by using open source, free software like the
Linux kernel (using RedHat9 and Ubuntu6.10 dis-
tros), the C++ and Java compilers for Linux, the
RTAI patch and the Comedi drivers, this supports
our focus in the enhancement of the current applica-
tion version.

References

[1] ,K Computing. Embedded and Real-Time Linux
development

[2] ,Kevin Dankwardt. What is real time? and
benchmarks on real time Linux - Part 1,2,3

[3] ,Distributed Operating Systems, Doreen L.
Galli, 2000, Springer

[4] ,Burns A, Wellings A:Real-Time Systems ans
Programming Languages,AddWesley,California
1996

[5] ,Real-Time Control Systems, K.E.Arzen course
Automatic Control Department IT Lund

[6] ,Charles Curley. Open source software for Real-
Time solutions. Linux Journal

[7] ,Dipartimento di Ingegneria Aerospaziale
Politecnico di Milano, RTAI Development
www.aero.polimi.it/rtai/about/index.htm

[8] ,Marcus Goncalves. Is Real-Time Linux for
real? Technical report, Real-Time Magazine

[9] ,James Norton and Clark Roundy. Real-Time
Linux - where is it now? Technical report, Real-
Time Magazine

[10] ,Charles Curley. Open source software for solu-
tions. Linux Journal, 66:1

[11] ,COMEDI,http://www.comedi.org/doc/index.html

[12] ,Grafcet,http://www.lurpa.ens-
cachan.fr/grafcet.html

8

