Evaluation of Linux rt-preempt for embedded industrial devices for

Automation and Power Technologies - A Case Study

Morten Mossige
ABB AS Robotics
Bryne, Norway
morten.mossige@no.abb.com

Pradyumna Sampath
ABB Corporate Research
Bangalore, India
pradyumna.sampath@in.abb.com

Rachana G Rao
ABB Corporate Research
Bangalore, India
rachana.rao@in.abb.com

Abstract

ABB is one of the leading solution providers for Industrial automation, Power technologies and
Robotics. This makes ABB a vendor of several mission critical embedded devices. Most of these de-
vices are characterized by stringent real time requirements. Real-time patches/extensions to Linux open
up new possibilities to applying open source software in industrial real-time embedded applications. This
paper presents a case study, where rt-preempt is evaluated in the context of an industrial controller.
The paper will reveal the methodologies used in this evaluation in terms of the test setup in detail and
the parameters measured from an industrial control perspective. This evaluation has had focus on Linux
in a distributed environment over Ethernet connectivity with corresponding time synchronization and

real-time capabilities.

1 Introduction

ABB’s core fields of expertise are Power and Au-
tomation technologies. Our wide range of products
and vast base of customers demand that we focus on
constant innovation and are always on the look out
for newer, more efficient possibilities to cater to our
customers in a better way.

Embedded systems in industrial automation,
robotics and power technologies are characterized
by certain factors unique to these market segments.
They are timing critical, safety critical and have very
long product life cycles. These factors play a key role
in the evaluation of a next generation operating sys-

tem for embedded applications. Another very impor-
tant aspect is real time Ethernet over a distributed
environment. Thus from a technical point of view,
the evaluation is centered around hard real time ca-
pabilities, real-time Ethernet performance, sustain-
ability and scalability.

Open source real time operating systems were given
the first consideration due to their obvious technical
and non-technical advantages.

2 Choices

In our evaluation, we considered some of the more
popular and proven open source projects that were



aimed at satisfying needs similar to ours.

2.1 Xenomail and RTAI

Xenomai[l] is a real-time development framework co-
operating with the Linux kernel, in order to provide a
pervasive, interface-agnostic, hard real-time support
to user-space applications, seamlessly integrated into
the GNU/Linux environment. Xenomai uses a co-
kernel approach and shares hardware interrupts and
system-originated events like traps and faults with
the Linux kernel using the Adeos virtualization layer.

RTAI[2] is a real-time extension for the Linux
kernel - which lets you write applications with strict
timing constraints for Linux. Xenomai and RTAI
enable smooth migration from traditional RTOS to
Linux without having to rewrite entire application,
while keeping stringent and deterministic real-time
guarantees. Also, there exists an open source hard
real-time network protocol stack called RTnet[3] for
Xenomai and RTAI.

2.2 RTLinux

RTLinux[4] is an operating system in which a small
real-time kernel coexists with the Posix-like Linux
kernel. RTLinux supports hard real-time (determin-
istic) operation through interrupt control between
the hardware and the operating system. Interrupts
needed for deterministic processing are processed
by the real-time core, while other interrupts are
forwarded to the non-real time operating system.
The operating system (Linux) runs as a low priority
thread.

2.3 rt-preempt

rt-preempt[5] patch implements real time behaviour
by allowing nearly all of the kernel to be preempted,
with the exception of a few very small regions of
code. It further incorporates high resolution timers.
The premption capabilities and the hrtimers give the
rt-preempt patch, its hard real-time[9] behaviour.

This patch is being considered for inclusion into
the mainline kernel in parts. This was the primary
motivation to consider rt-preempt for an evaluation
for ABB’s embedded applications.

Of equal importance to us, is to ensure license
compliance and to define a support structure that
is sustainable over long product life cycles with the
close collaboration with the Linux community.

3 Hardware System Structure

The hardware used to evaluate rt-preempt is custom
made for ABB and is based on the Lite5200 evalu-
ation board from Freescale. This board is the heart
of the paint process system for paint robots.

24¥DC Supply DCiDC Power
Supervision

DDEAM iterface [————
_DDRAM | ooy Cal_2
—
PowerPC
ne MFC 5200B
EEFROM
LA
[—

Locabhs Btacfure

Console Diebuz
Port Fort

Combined PClnem ary dterface I
I I | | | |
Optional Fast Fast
Disk FLASH Ethernet Ethernet
Interface L LaH
LAW
FGPA hl
EET2-5FI (DIGITAL I0)
Dioamload and
Upgrade thr' cpu
FIGURE 1: Hardware details of the board

The board is driven by the freescale processor
MPC5200B system on chip, which is an embedded
PowerPC processor based on the MPC603e Core.
This is a processor rated to 750MIPS and running
at 400MHz internally. The board is equipped with
64 MB DDR SDRAM and 32 MB Flash. The DDR
SDRAM is running on a dedicated memory bus used
only for that purpose. The Flash is connected to the
localplus bus which is a multifunction bus also used
by the PCI interface, the FPGA and the compact
flash interface.

There are three individual Ethernet ports on the
board. One is based on the internal controller in
the processor and other two are standalone Ethernet
controllers - Intel 8255 ER 10/100mbps - connected
to the internal PCI bus. PCI arbitration is done by
the FPGA. They do not have external EEPROM on
the board.

4 Software Deployment

The bootloader used is u-boot-1.2.0[6]. Changes
were made to support FPGA download via the PSC2
port.To begin with, we used Linux-2.6.16-rt29-tglx4
with the “ppc” tree of the kernel. With the Linux
community deciding to withdraw support for the
“ppc” tree, we shifted to the “powerpc” architec-
ture tree on Linux-2.6.20-rt3. Since then we have
constantly been keeping abreast of the developments
happening on the -rt branch. The following bench-
marks have been made on the Linux-2.6.21-rt3 ker-



nel. Bestcomm patch was added to enable Ethernet
and DMA support on the board.

4.1 Test Descriptions

The following parameters were deemed to be impor-
tant benchmarks for the real time operating system
on an Automation or Power platform user-space to
kernel space transition latency, interrupt latency and
network latency.

The FPGA program has been augmented to
convert the SPI pins to act as Digital IO ports to
facilitate the measurement of performance parame-
ters. The input signal at the required frequency was
generated using a signal generator and the output
signal was captured on the Cathode Ray Oscillo-
scope. The difference between the digital input and
the digital output was analyzed and the particular
latency determined.

A kernel character device driver was written to
access the memory mapped digital IO through the
FPGA and to handle the FPGA interrupts.

The test suite, is especially tailored to mea-
sure parameters important/relevant to the applica-
tion the board was designed for. It consists of three
tests.

4.1.1 Write Latency Test

This test attempts to evaluate the minimum, maxi-
mum and the average deviation times between writes
to a digital output. The interval between these writes
is user defined. The test application creates a thread
which sleeps for the user-defined interval of time and
then calls a function to write the data to the digital
output.

Kermel space User space
(driver) (Application)
— o
| Digout
FIGURE 2: Write Latency Test

4.1.2 Read, Write and Interrupt Latency
Test

This test attempts to evaluate the time taken for
the data to travel from the digital input to the dig-
ital output. The data from the signal generator is
received as an interrupt at the digital input. The
application reads the data, inserts it into an event
queue and sleeps for a user-defined interval of time.
On wake up, the callback write function is called to
write the data from the queue to the digital output.

User space
(Application)

Kermel space
(driver)

T A

EventQ

wakeup after sleep()

Task
Pricrity P

o

Digout

FIGURE 3: Read, Write Latency Test

4.1.3 Read, Write, Interrupt and Network
Latency Test

This test attempts to measure the communication
latency over Ethernet. The data from the signal gen-
erator is received as an interrupt at the digital input.
The application on boardl reads the data, inserts it
into an event queue and sleeps for a user-defined
interval. On wake up, the callback write function
is called to send out the data from the queue with
the timestamp of boardl, through the Ethernet net-
work to board2. The application on board2 reads
the data from the Ethernet , inserts it into an event
queue and sleeps for a user-defined interval of time.
On wake up, the callback write function is called to
write the data from the queue to the digital output.

An important point in this test case is that the
system clocks on the two boards are synchronized
through the TEEE1588[7] protocol (precision time



protocol).

BOARD 2

BOARD 1

Fead from ethemet
writh tomestamp
Priority p

Etnernet
Eead()
Priority p

Digin

>
‘ Wakeup after Weite to ethemet

Digout
| -
Sleep() writh tismestamp sleep() -

Task ]
L
Prionity P Priority P

FIGURE 4: Read, Write and network La-
tency Test

5 Test Setup and Results

The test setup consists is as shown below.For
network-related tests, the boards are time synchro-
nized using the IEEE1588 Precision Time Protocol.
The PTP daemon[10] runs on all the boards con-
nected to the network with one of the boards acting
as the master and the rest of them as slaves. The
master board periodically launches an exchange of
messages with the slave boards to help each slave
clock recompute the offset between its clock and the
masters clock. This offset will drift with time and so
these periodic exchanges mitigate the impact of this
drift on the clock synchronization.

Signal
Oscilloscope Generator
§| ‘e HG G
TEST TEST TEST
BOARD BOARD BOARD PC
SWITCH
FIGURE 5: Test Setup

The setup and the tests reflect a scenario in the
robotics domain.

5.1 Results

Two kinds of tests were conducted. Twenty four
hour tests which are representative of latencies over
a large number of samples. Incremental load tests

measure latencies over a range of loads. System load
is generated by running stress[8] on the board. The
parameters of stress are adjusted to achieve a par-
ticular load.The jitter in the following sections mean
max-min on that sample space.

5.1.1 Write Latency Test

The user-defined time delay between the writes was
given as 500us.

24 hour test (Results in us)

Min Max Avg Jitter
No Load | 457.136 | 539.530 | 499.508 | 82.394
With Load | 439.285 | 537.075 | 494.517 | 97.790

For this test the maximum allowed jitter is 100us
and from the table it is evident that the jitter is
within the specified limits for both load and no-load
conditions.

Incremental load test

Write latency with varying load
Micro second (us)

Average load

FIGURE 6: Write Latency Result

From the above graph, it can be seen that the vary-
ing CPU load does not affect the time taken for the
writes. It can also be observed that the average val-
ues are close to the ideal value, which is the user
defined sleep time of 500us. t,, is the write latency
calculated as the difference between the average val-
ues and the user-defined sleep time and is approxi-
mately 10us.

5.1.2 Read, Write and Interrupt Latency
Test

The input frequency was given as 500Hz and the
user-defined time delay between the digital input




read and digital output write was given as 200us.

24 hour test (Results in us)

Min Max Avg Jitter
No Load | 511.572 | 869.064 | 660.099 | 357.492
With Load | 473.216 | 854.517 | 659.304 | 381.301

Min Max Avg Jitter
No Load | 263.800 | 343.458 | 296.240 | 79.658
With Load | 266.043 | 364.067 | 286.358 | 98.024

For this test the maximum allowed jitter is 100us
and from the table it is evident that the jitter is
within the specified limits for both load and no-load
conditions.

Incremental load tests

Micro second (us)

520-

460-

400

340 ——a

280

220

160-

Average load
4 8 12 16 20

FIGURE 7: Read, Write and Interrupt La-
tency Result

From the above graph, it can be seen that the vary-
ing CPU load does not have a substantial effect on
the values measured. t,,, is the read(interrupt) and
write latency calculated as the difference between
the average values and the user-defined sleep time
and is approximately 100us. The difference between
tyw and t,, gives us the read(interrupt) latency, ¢,..

tr = trw — tw =~ 90us

5.1.3 Read, Write and Network Latency
Test

The input frequency was given as 500Hz. The user-
defined time delay between the digital input read and
Ethernet send on Board 1 was given as 200us.The
user-defined delay between the Ethernet receive and
the digital output write on Board 2 was given as
200pus.

24 hour test (Results in us)

For this test the maximum allowed jitter is 1000us
and from the table it is evident that the jitter is well
within the specified limits for both no-load and load
conditions.

Incremental load test

Micro second (us)

830

750

670-

590-

wn

Average load
4 8 12 16 20

FIGURE 8:
tency Result

Read, Write and Network La-

From the above graph, it can be seen that the re-
sults are constant across varying CPU load. t,y is
the read(interrupt), write and network latency cal-
culated as the difference between the average values
and the user-defined sleep time and is approximately
250us. The difference between t,.,, and t,,, gives us
the network latency, t,

— by ~ 150pus

tn = trwn

6 Conclusions

An industrial controller requires an extremely stable
operating system. Depending on the application it
runs, the real-time requirements can also be chal-
lenging. Linux has for a long time proven that its
stability is excellent, and now we see that the real-
time performance is really moving towards other
commercial real-time operating systems. The ability
to be able to run a real-time application on the same
processor as other standard applications is a win-
ning combination. This is really what favors Linux
as a real-time operating system compared to other
dedicated real-time operating systems.

During the course of this evaluation we have
validated and benchmarked certain real-time perfor-
mance parameters in the context of paint robots.



The results are optimistic and the prospects are
bright for the future with Linux.

7 Acknowledgments

We would like to thank our colleagues Srijit Kumar
and Girish Kathalagiri for their time and efforts.
References

[1] Xenomai - Implementing a RTOS emula-
tion  framework on GNU/Linuz, Phillipe
Gerum,April 2004

https://www.rtai.org/
http://www.rtnet.org/
http:/ /www.windriver.com

Internals of the RT Patch, Steven Rostedt and
Darren V. Hart, June 2007.

http://www.denz. de/wiki/UBoot/WebHome
http://ieee1588.nist.gov/
http://weather.ou.edu/ apw/projects/stress/
http:/ /rt.wiki.kernel.org/

http://ptpd.sourceforge.net



