@ Documentation/hwlat_detector.txt:4 @
+Introduction:
+-------------
+
+The module hwlat_detector is a special purpose kernel module that is used to
+detect large system latencies induced by the behavior of certain underlying
+hardware or firmware, independent of Linux itself. The code was developed
+originally to detect SMIs (System Management Interrupts) on x86 systems,
+however there is nothing x86 specific about this patchset. It was
+originally written for use by the "RT" patch since the Real Time
+kernel is highly latency sensitive.
+
+SMIs are usually not serviced by the Linux kernel, which typically does not
+even know that they are occuring. SMIs are instead are set up by BIOS code
+and are serviced by BIOS code, usually for "critical" events such as
+management of thermal sensors and fans. Sometimes though, SMIs are used for
+other tasks and those tasks can spend an inordinate amount of time in the
+handler (sometimes measured in milliseconds). Obviously this is a problem if
+you are trying to keep event service latencies down in the microsecond range.
+
+The hardware latency detector works by hogging all of the cpus for configurable
+amounts of time (by calling stop_machine()), polling the CPU Time Stamp Counter
+for some period, then looking for gaps in the TSC data. Any gap indicates a
+time when the polling was interrupted and since the machine is stopped and
+interrupts turned off the only thing that could do that would be an SMI.
+
+Note that the SMI detector should *NEVER* be used in a production environment.
+It is intended to be run manually to determine if the hardware platform has a
+problem with long system firmware service routines.
+
+Usage:
+------
+
+Loading the module hwlat_detector passing the parameter "enabled=1" (or by
+setting the "enable" entry in "hwlat_detector" debugfs toggled on) is the only
+step required to start the hwlat_detector. It is possible to redefine the
+threshold in microseconds (us) above which latency spikes will be taken
+into account (parameter "threshold=").
+
+Example:
+
+	# modprobe hwlat_detector enabled=1 threshold=100
+
+After the module is loaded, it creates a directory named "hwlat_detector" under
+the debugfs mountpoint, "/debug/hwlat_detector" for this text. It is necessary
+to have debugfs mounted, which might be on /sys/debug on your system.
+
+The /debug/hwlat_detector interface contains the following files:
+
+count			- number of latency spikes observed since last reset
+enable			- a global enable/disable toggle (0/1), resets count
+max			- maximum hardware latency actually observed (usecs)
+sample			- a pipe from which to read current raw sample data
+			  in the format <timestamp> <latency observed usecs>
+			  (can be opened O_NONBLOCK for a single sample)
+threshold		- minimum latency value to be considered (usecs)
+width			- time period to sample with CPUs held (usecs)
+			  must be less than the total window size (enforced)
+window			- total period of sampling, width being inside (usecs)
+
+By default we will set width to 500,000 and window to 1,000,000, meaning that
+we will sample every 1,000,000 usecs (1s) for 500,000 usecs (0.5s). If we
+observe any latencies that exceed the threshold (initially 100 usecs),
+then we write to a global sample ring buffer of 8K samples, which is
+consumed by reading from the "sample" (pipe) debugfs file interface.
@ Documentation/sysrq.txt:60 @ On PowerPC - Press 'ALT - Print Screen (or F13) - <command key>,
 On other - If you know of the key combos for other architectures, please
            let me know so I can add them to this section.
 
-On all -  write a character to /proc/sysrq-trigger.  e.g.:
-
+On all -  write a character to /proc/sysrq-trigger, e.g.:
 		echo t > /proc/sysrq-trigger
 
+On all - Enable network SysRq by writing a cookie to icmp_echo_sysrq, e.g.
+		echo 0x01020304 >/proc/sys/net/ipv4/icmp_echo_sysrq
+	 Send an ICMP echo request with this pattern plus the particular
+	 SysRq command key. Example:
+	 	# ping -c1 -s57 -p0102030468
+	 will trigger the SysRq-H (help) command.
+
+
 *  What are the 'command' keys?
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 'b'     - Will immediately reboot the system without syncing or unmounting
@ Documentation/trace/histograms.txt:4 @
+		Using the Linux Kernel Latency Histograms
+
+
+This document gives a short explanation how to enable, configure and use
+latency histograms. Latency histograms are primarily relevant in the
+context of real-time enabled kernels (CONFIG_PREEMPT/CONFIG_PREEMPT_RT)
+and are used in the quality management of the Linux real-time
+capabilities.
+
+
+* Purpose of latency histograms
+
+A latency histogram continuously accumulates the frequencies of latency
+data. There are two types of histograms
+- potential sources of latencies
+- effective latencies
+
+
+* Potential sources of latencies
+
+Potential sources of latencies are code segments where interrupts,
+preemption or both are disabled (aka critical sections). To create
+histograms of potential sources of latency, the kernel stores the time
+stamp at the start of a critical section, determines the time elapsed
+when the end of the section is reached, and increments the frequency
+counter of that latency value - irrespective of whether any concurrently
+running process is affected by latency or not.
+- Configuration items (in the Kernel hacking/Tracers submenu)
+  CONFIG_INTERRUPT_OFF_LATENCY
+  CONFIG_PREEMPT_OFF_LATENCY
+
+
+* Effective latencies
+
+Effective latencies are actually occuring during wakeup of a process. To
+determine effective latencies, the kernel stores the time stamp when a
+process is scheduled to be woken up, and determines the duration of the
+wakeup time shortly before control is passed over to this process. Note
+that the apparent latency in user space may be somewhat longer, since the
+process may be interrupted after control is passed over to it but before
+the execution in user space takes place. Simply measuring the interval
+between enqueuing and wakeup may also not appropriate in cases when a
+process is scheduled as a result of a timer expiration. The timer may have
+missed its deadline, e.g. due to disabled interrupts, but this latency
+would not be registered. Therefore, the offsets of missed timers are
+recorded in a separate histogram. If both wakeup latency and missed timer
+offsets are configured and enabled, a third histogram may be enabled that
+records the overall latency as a sum of the timer latency, if any, and the
+wakeup latency. This histogram is called "timerandwakeup".
+- Configuration items (in the Kernel hacking/Tracers submenu)
+  CONFIG_WAKEUP_LATENCY
+  CONFIG_MISSED_TIMER_OFSETS
+
+
+* Usage
+
+The interface to the administration of the latency histograms is located
+in the debugfs file system. To mount it, either enter
+
+mount -t sysfs nodev /sys
+mount -t debugfs nodev /sys/kernel/debug
+
+from shell command line level, or add
+
+nodev	/sys			sysfs	defaults	0 0
+nodev	/sys/kernel/debug	debugfs	defaults	0 0
+
+to the file /etc/fstab. All latency histogram related files are then
+available in the directory /sys/kernel/debug/tracing/latency_hist. A
+particular histogram type is enabled by writing non-zero to the related
+variable in the /sys/kernel/debug/tracing/latency_hist/enable directory.
+Select "preemptirqsoff" for the histograms of potential sources of
+latencies and "wakeup" for histograms of effective latencies etc. The
+histogram data - one per CPU - are available in the files
+
+/sys/kernel/debug/tracing/latency_hist/preemptoff/CPUx
+/sys/kernel/debug/tracing/latency_hist/irqsoff/CPUx
+/sys/kernel/debug/tracing/latency_hist/preemptirqsoff/CPUx
+/sys/kernel/debug/tracing/latency_hist/wakeup/CPUx
+/sys/kernel/debug/tracing/latency_hist/wakeup/sharedprio/CPUx
+/sys/kernel/debug/tracing/latency_hist/missed_timer_offsets/CPUx
+/sys/kernel/debug/tracing/latency_hist/timerandwakeup/CPUx
+
+The histograms are reset by writing non-zero to the file "reset" in a
+particular latency directory. To reset all latency data, use
+
+#!/bin/sh
+
+TRACINGDIR=/sys/kernel/debug/tracing
+HISTDIR=$TRACINGDIR/latency_hist
+
+if test -d $HISTDIR
+then
+  cd $HISTDIR
+  for i in `find . | grep /reset$`
+  do
+    echo 1 >$i
+  done
+fi
+
+
+* Data format
+
+Latency data are stored with a resolution of one microsecond. The
+maximum latency is 10,240 microseconds. The data are only valid, if the
+overflow register is empty. Every output line contains the latency in
+microseconds in the first row and the number of samples in the second
+row. To display only lines with a positive latency count, use, for
+example,
+
+grep -v " 0$" /sys/kernel/debug/tracing/latency_hist/preemptoff/CPU0
+
+#Minimum latency: 0 microseconds.
+#Average latency: 0 microseconds.
+#Maximum latency: 25 microseconds.
+#Total samples: 3104770694
+#There are 0 samples greater or equal than 10240 microseconds
+#usecs	         samples
+    0	      2984486876
+    1	        49843506
+    2	        58219047
+    3	         5348126
+    4	         2187960
+    5	         3388262
+    6	          959289
+    7	          208294
+    8	           40420
+    9	            4485
+   10	           14918
+   11	           18340
+   12	           25052
+   13	           19455
+   14	            5602
+   15	             969
+   16	              47
+   17	              18
+   18	              14
+   19	               1
+   20	               3
+   21	               2
+   22	               5
+   23	               2
+   25	               1
+
+
+* Wakeup latency of a selected process
+
+To only collect wakeup latency data of a particular process, write the
+PID of the requested process to
+
+/sys/kernel/debug/tracing/latency_hist/wakeup/pid
+
+PIDs are not considered, if this variable is set to 0.
+
+
+* Details of the process with the highest wakeup latency so far
+
+Selected data of the process that suffered from the highest wakeup
+latency that occurred in a particular CPU are available in the file
+
+/sys/kernel/debug/tracing/latency_hist/wakeup/max_latency-CPUx.
+
+In addition, other relevant system data at the time when the
+latency occurred are given.
+
+The format of the data is (all in one line):
+<PID> <Priority> <Latency> (<Timeroffset>) <Command> \
+<- <PID> <Priority> <Command> <Timestamp>
+
+The value of <Timeroffset> is only relevant in the combined timer
+and wakeup latency recording. In the wakeup recording, it is
+always 0, in the missed_timer_offsets recording, it is the same
+as <Latency>.
+
+When retrospectively searching for the origin of a latency and
+tracing was not enabled, it may be helpful to know the name and
+some basic data of the task that (finally) was switching to the
+late real-tlme task. In addition to the victim's data, also the
+data of the possible culprit are therefore displayed after the
+"<-" symbol.
+
+Finally, the timestamp of the time when the latency occurred
+in <seconds>.<microseconds> after the most recent system boot
+is provided.
+
+These data are also reset when the wakeup histogram is reset.
@ MAINTAINERS:3011 @ L:	linuxppc-dev@lists.ozlabs.org
 S:	Odd Fixes
 F:	drivers/tty/hvc/
 
+HARDWARE LATENCY DETECTOR
+P:	Jon Masters
+M:	jcm@jonmasters.org
+W:	http://www.kernel.org/pub/linux/kernel/people/jcm/hwlat_detector/
+S:	Supported
+L:	linux-kernel@vger.kernel.org
+F:	Documentation/hwlat_detector.txt
+F:	drivers/misc/hwlat_detector.c
+
 HARDWARE MONITORING
 M:	Jean Delvare <khali@linux-fr.org>
 M:	Guenter Roeck <guenter.roeck@ericsson.com>
@ arch/Kconfig:9 @ config OPROFILE
 	tristate "OProfile system profiling"
 	depends on PROFILING
 	depends on HAVE_OPROFILE
+	depends on !PREEMPT_RT_FULL
 	select RING_BUFFER
 	select RING_BUFFER_ALLOW_SWAP
 	help
@ arch/alpha/mm/fault.c:110 @ do_page_fault(unsigned long address, unsigned long mmcsr,
 
 	/* If we're in an interrupt context, or have no user context,
 	   we must not take the fault.  */
-	if (!mm || in_atomic())
+	if (!mm || pagefault_disabled())
 		goto no_context;
 
 #ifdef CONFIG_ALPHA_LARGE_VMALLOC
@ arch/arm/Kconfig:32 @ config ARM
 	select HAVE_GENERIC_HARDIRQS
 	select HAVE_SPARSE_IRQ
 	select GENERIC_IRQ_SHOW
+	select IRQ_FORCED_THREADING
 	select CPU_PM if (SUSPEND || CPU_IDLE)
 	help
 	  The ARM series is a line of low-power-consumption RISC chip designs
@ arch/arm/Kconfig:1681 @ config HAVE_ARCH_PFN_VALID
 
 config HIGHMEM
 	bool "High Memory Support"
-	depends on MMU
+	depends on MMU && !PREEMPT_RT_FULL
 	help
 	  The address space of ARM processors is only 4 Gigabytes large
 	  and it has to accommodate user address space, kernel address
@ arch/arm/kernel/early_printk.c:32 @ static void early_console_write(struct console *con, const char *s, unsigned n)
 	early_write(s, n);
 }
 
-static struct console early_console = {
+static struct console early_console_dev = {
 	.name =		"earlycon",
 	.write =	early_console_write,
 	.flags =	CON_PRINTBUFFER | CON_BOOT,
 	.index =	-1,
 };
 
-asmlinkage void early_printk(const char *fmt, ...)
-{
-	char buf[512];
-	int n;
-	va_list ap;
-
-	va_start(ap, fmt);
-	n = vscnprintf(buf, sizeof(buf), fmt, ap);
-	early_write(buf, n);
-	va_end(ap);
-}
-
 static int __init setup_early_printk(char *buf)
 {
-	register_console(&early_console);
+	early_console = &early_console_dev;
+	register_console(&early_console_dev);
 	return 0;
 }
 
@ arch/arm/kernel/perf_event.c:438 @ armpmu_reserve_hardware(struct arm_pmu *armpmu)
 		}
 
 		err = request_irq(irq, handle_irq,
-				  IRQF_DISABLED | IRQF_NOBALANCING,
+				  IRQF_NOBALANCING | IRQF_NO_THREAD,
 				  "arm-pmu", armpmu);
 		if (err) {
 			pr_err("unable to request IRQ%d for ARM PMU counters\n",
@ arch/arm/kernel/process.c:218 @ void cpu_idle(void)
 		}
 		leds_event(led_idle_end);
 		tick_nohz_restart_sched_tick();
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/arm/kernel/process.c:494 @ unsigned long arch_randomize_brk(struct mm_struct *mm)
 }
 
 #ifdef CONFIG_MMU
+
+/*
+ * CONFIG_SPLIT_PTLOCK_CPUS results in a page->ptl lock.  If the lock is not
+ * initialized by pgtable_page_ctor() then a coredump of the vector page will
+ * fail.
+ */
+static int __init vectors_user_mapping_init_page(void)
+{
+	struct page *page;
+	unsigned long addr = 0xffff0000;
+	pgd_t *pgd;
+	pud_t *pud;
+	pmd_t *pmd;
+
+	pgd = pgd_offset_k(addr);
+	pud = pud_offset(pgd, addr);
+	pmd = pmd_offset(pud, addr);
+	page = pmd_page(*(pmd));
+
+	pgtable_page_ctor(page);
+
+	return 0;
+}
+late_initcall(vectors_user_mapping_init_page);
+
 /*
  * The vectors page is always readable from user space for the
  * atomic helpers and the signal restart code.  Let's declare a mapping
@ arch/arm/kernel/signal.c:675 @ static void do_signal(struct pt_regs *regs, int syscall)
 	if (!user_mode(regs))
 		return;
 
+	local_irq_enable();
+	preempt_check_resched();
+
 	/*
 	 * If we were from a system call, check for system call restarting...
 	 */
@ arch/arm/mach-at91/at91rm9200_time.c:117 @ clkevt32k_mode(enum clock_event_mode mode, struct clock_event_device *dev)
 	last_crtr = read_CRTR();
 	switch (mode) {
 	case CLOCK_EVT_MODE_PERIODIC:
+		setup_irq(AT91_ID_SYS, &at91rm9200_timer_irq);
 		/* PIT for periodic irqs; fixed rate of 1/HZ */
 		irqmask = AT91_ST_PITS;
 		at91_sys_write(AT91_ST_PIMR, LATCH);
@ arch/arm/mach-at91/at91rm9200_time.c:131 @ clkevt32k_mode(enum clock_event_mode mode, struct clock_event_device *dev)
 		break;
 	case CLOCK_EVT_MODE_SHUTDOWN:
 	case CLOCK_EVT_MODE_UNUSED:
+		remove_irq(AT91_ID_SYS, &at91rm9200_timer_irq);
 	case CLOCK_EVT_MODE_RESUME:
 		irqmask = 0;
 		break;
@ arch/arm/mach-at91/at91sam926x_time.c:57 @ static struct clocksource pit_clk = {
 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 };
 
-
+static struct irqaction at91sam926x_pit_irq;
 /*
  * Clockevent device:  interrupts every 1/HZ (== pit_cycles * MCK/16)
  */
@ arch/arm/mach-at91/at91sam926x_time.c:66 @ pit_clkevt_mode(enum clock_event_mode mode, struct clock_event_device *dev)
 {
 	switch (mode) {
 	case CLOCK_EVT_MODE_PERIODIC:
+		/* Set up irq handler */
+		setup_irq(AT91_ID_SYS, &at91sam926x_pit_irq);
+
 		/* update clocksource counter */
 		pit_cnt += pit_cycle * PIT_PICNT(at91_sys_read(AT91_PIT_PIVR));
 		at91_sys_write(AT91_PIT_MR, (pit_cycle - 1) | AT91_PIT_PITEN
@ arch/arm/mach-at91/at91sam926x_time.c:81 @ pit_clkevt_mode(enum clock_event_mode mode, struct clock_event_device *dev)
 	case CLOCK_EVT_MODE_UNUSED:
 		/* disable irq, leaving the clocksource active */
 		at91_sys_write(AT91_PIT_MR, (pit_cycle - 1) | AT91_PIT_PITEN);
+		remove_irq(AT91_ID_SYS, &at91sam926x_pit_irq);
 		break;
 	case CLOCK_EVT_MODE_RESUME:
 		break;
@ arch/arm/mach-exynos/platsmp.c:66 @ static void __iomem *scu_base_addr(void)
 	return (void __iomem *)(S5P_VA_SCU);
 }
 
-static DEFINE_SPINLOCK(boot_lock);
+static DEFINE_RAW_SPINLOCK(boot_lock);
 
 static void __cpuinit exynos4_gic_secondary_init(void)
 {
@ arch/arm/mach-exynos/platsmp.c:111 @ void __cpuinit platform_secondary_init(unsigned int cpu)
 	/*
 	 * Synchronise with the boot thread.
 	 */
-	spin_lock(&boot_lock);
-	spin_unlock(&boot_lock);
+	raw_spin_lock(&boot_lock);
+	raw_spin_unlock(&boot_lock);
 }
 
 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
@ arch/arm/mach-exynos/platsmp.c:123 @ int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
 	 * Set synchronisation state between this boot processor
 	 * and the secondary one
 	 */
-	spin_lock(&boot_lock);
+	raw_spin_lock(&boot_lock);
 
 	/*
 	 * The secondary processor is waiting to be released from
@ arch/arm/mach-exynos/platsmp.c:152 @ int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
 
 		if (timeout == 0) {
 			printk(KERN_ERR "cpu1 power enable failed");
-			spin_unlock(&boot_lock);
+			raw_spin_unlock(&boot_lock);
 			return -ETIMEDOUT;
 		}
 	}
@ arch/arm/mach-exynos/platsmp.c:180 @ int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
 	 * now the secondary core is starting up let it run its
 	 * calibrations, then wait for it to finish
 	 */
-	spin_unlock(&boot_lock);
+	raw_spin_unlock(&boot_lock);
 
 	return pen_release != -1 ? -ENOSYS : 0;
 }
@ arch/arm/mach-msm/platsmp.c:42 @ extern void msm_secondary_startup(void);
  */
 volatile int pen_release = -1;
 
-static DEFINE_SPINLOCK(boot_lock);
+static DEFINE_RAW_SPINLOCK(boot_lock);
 
 static inline int get_core_count(void)
 {
@ arch/arm/mach-msm/platsmp.c:72 @ void __cpuinit platform_secondary_init(unsigned int cpu)
 	/*
 	 * Synchronise with the boot thread.
 	 */
-	spin_lock(&boot_lock);
-	spin_unlock(&boot_lock);
+	raw_spin_lock(&boot_lock);
+	raw_spin_unlock(&boot_lock);
 }
 
 static __cpuinit void prepare_cold_cpu(unsigned int cpu)
@ arch/arm/mach-msm/platsmp.c:110 @ int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
 	 * set synchronisation state between this boot processor
 	 * and the secondary one
 	 */
-	spin_lock(&boot_lock);
+	raw_spin_lock(&boot_lock);
 
 	/*
 	 * The secondary processor is waiting to be released from
@ arch/arm/mach-msm/platsmp.c:144 @ int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
 	 * now the secondary core is starting up let it run its
 	 * calibrations, then wait for it to finish
 	 */
-	spin_unlock(&boot_lock);
+	raw_spin_unlock(&boot_lock);
 
 	return pen_release != -1 ? -ENOSYS : 0;
 }
@ arch/arm/mach-omap2/omap-smp.c:32 @
 /* SCU base address */
 static void __iomem *scu_base;
 
-static DEFINE_SPINLOCK(boot_lock);
+static DEFINE_RAW_SPINLOCK(boot_lock);
 
 void __cpuinit platform_secondary_init(unsigned int cpu)
 {
@ arch/arm/mach-omap2/omap-smp.c:46 @ void __cpuinit platform_secondary_init(unsigned int cpu)
 	/*
 	 * Synchronise with the boot thread.
 	 */
-	spin_lock(&boot_lock);
-	spin_unlock(&boot_lock);
+	raw_spin_lock(&boot_lock);
+	raw_spin_unlock(&boot_lock);
 }
 
 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
@ arch/arm/mach-omap2/omap-smp.c:56 @ int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
 	 * Set synchronisation state between this boot processor
 	 * and the secondary one
 	 */
-	spin_lock(&boot_lock);
+	raw_spin_lock(&boot_lock);
 
 	/*
 	 * Update the AuxCoreBoot0 with boot state for secondary core.
@ arch/arm/mach-omap2/omap-smp.c:73 @ int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
 	 * Now the secondary core is starting up let it run its
 	 * calibrations, then wait for it to finish
 	 */
-	spin_unlock(&boot_lock);
+	raw_spin_unlock(&boot_lock);
 
 	return 0;
 }
@ arch/arm/mach-tegra/platsmp.c:31 @
 
 extern void tegra_secondary_startup(void);
 
-static DEFINE_SPINLOCK(boot_lock);
+static DEFINE_RAW_SPINLOCK(boot_lock);
 static void __iomem *scu_base = IO_ADDRESS(TEGRA_ARM_PERIF_BASE);
 
 #define EVP_CPU_RESET_VECTOR \
@ arch/arm/mach-tegra/platsmp.c:53 @ void __cpuinit platform_secondary_init(unsigned int cpu)
 	/*
 	 * Synchronise with the boot thread.
 	 */
-	spin_lock(&boot_lock);
-	spin_unlock(&boot_lock);
+	raw_spin_lock(&boot_lock);
+	raw_spin_unlock(&boot_lock);
 }
 
 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
@ arch/arm/mach-tegra/platsmp.c:68 @ int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
 	 * set synchronisation state between this boot processor
 	 * and the secondary one
 	 */
-	spin_lock(&boot_lock);
+	raw_spin_lock(&boot_lock);
 
 
 	/* set the reset vector to point to the secondary_startup routine */
@ arch/arm/mach-tegra/platsmp.c:104 @ int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
 	 * now the secondary core is starting up let it run its
 	 * calibrations, then wait for it to finish
 	 */
-	spin_unlock(&boot_lock);
+	raw_spin_unlock(&boot_lock);
 
 	return 0;
 }
@ arch/arm/mach-ux500/platsmp.c:60 @ static void __iomem *scu_base_addr(void)
 	return NULL;
 }
 
-static DEFINE_SPINLOCK(boot_lock);
+static DEFINE_RAW_SPINLOCK(boot_lock);
 
 void __cpuinit platform_secondary_init(unsigned int cpu)
 {
@ arch/arm/mach-ux500/platsmp.c:80 @ void __cpuinit platform_secondary_init(unsigned int cpu)
 	/*
 	 * Synchronise with the boot thread.
 	 */
-	spin_lock(&boot_lock);
-	spin_unlock(&boot_lock);
+	raw_spin_lock(&boot_lock);
+	raw_spin_unlock(&boot_lock);
 }
 
 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
@ arch/arm/mach-ux500/platsmp.c:92 @ int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
 	 * set synchronisation state between this boot processor
 	 * and the secondary one
 	 */
-	spin_lock(&boot_lock);
+	raw_spin_lock(&boot_lock);
 
 	/*
 	 * The secondary processor is waiting to be released from
@ arch/arm/mach-ux500/platsmp.c:113 @ int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
 	 * now the secondary core is starting up let it run its
 	 * calibrations, then wait for it to finish
 	 */
-	spin_unlock(&boot_lock);
+	raw_spin_unlock(&boot_lock);
 
 	return pen_release != -1 ? -ENOSYS : 0;
 }
@ arch/arm/mm/fault.c:299 @ do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 	 * If we're in an interrupt or have no user
 	 * context, we must not take the fault..
 	 */
-	if (in_atomic() || !mm)
+	if (!mm || pagefault_disabled())
 		goto no_context;
 
 	/*
@ arch/arm/plat-versatile/platsmp.c:40 @ static void __cpuinit write_pen_release(int val)
 	outer_clean_range(__pa(&pen_release), __pa(&pen_release + 1));
 }
 
-static DEFINE_SPINLOCK(boot_lock);
+static DEFINE_RAW_SPINLOCK(boot_lock);
 
 void __cpuinit platform_secondary_init(unsigned int cpu)
 {
@ arch/arm/plat-versatile/platsmp.c:60 @ void __cpuinit platform_secondary_init(unsigned int cpu)
 	/*
 	 * Synchronise with the boot thread.
 	 */
-	spin_lock(&boot_lock);
-	spin_unlock(&boot_lock);
+	raw_spin_lock(&boot_lock);
+	raw_spin_unlock(&boot_lock);
 }
 
 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
@ arch/arm/plat-versatile/platsmp.c:72 @ int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
 	 * Set synchronisation state between this boot processor
 	 * and the secondary one
 	 */
-	spin_lock(&boot_lock);
+	raw_spin_lock(&boot_lock);
 
 	/*
 	 * This is really belt and braces; we hold unintended secondary
@ arch/arm/plat-versatile/platsmp.c:102 @ int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
 	 * now the secondary core is starting up let it run its
 	 * calibrations, then wait for it to finish
 	 */
-	spin_unlock(&boot_lock);
+	raw_spin_unlock(&boot_lock);
 
 	return pen_release != -1 ? -ENOSYS : 0;
 }
@ arch/avr32/kernel/process.c:41 @ void cpu_idle(void)
 		while (!need_resched())
 			cpu_idle_sleep();
 		tick_nohz_restart_sched_tick();
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/avr32/mm/fault.c:84 @ asmlinkage void do_page_fault(unsigned long ecr, struct pt_regs *regs)
 	 * If we're in an interrupt or have no user context, we must
 	 * not take the fault...
 	 */
-	if (in_atomic() || !mm || regs->sr & SYSREG_BIT(GM))
+	if (!mm || regs->sr & SYSREG_BIT(GM) || pagefault_disabled())
 		goto no_context;
 
 	local_irq_enable();
@ arch/blackfin/kernel/early_printk.c:28 @ extern struct console *bfin_earlyserial_init(unsigned int port,
 extern struct console *bfin_jc_early_init(void);
 #endif
 
-static struct console *early_console;
-
 /* Default console */
 #define DEFAULT_PORT 0
 #define DEFAULT_CFLAG CS8|B57600
@ arch/blackfin/kernel/process.c:95 @ void cpu_idle(void)
 		while (!need_resched())
 			idle();
 		tick_nohz_restart_sched_tick();
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/cris/kernel/process.c:118 @ void cpu_idle (void)
 				idle = default_idle;
 			idle();
 		}
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/cris/mm/fault.c:114 @ do_page_fault(unsigned long address, struct pt_regs *regs,
 	 * user context, we must not take the fault.
 	 */
 
-	if (in_atomic() || !mm)
+	if (!mm || pagefault_disabled())
 		goto no_context;
 
 	down_read(&mm->mmap_sem);
@ arch/frv/kernel/process.c:95 @ void cpu_idle(void)
 				idle();
 		}
 
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/frv/mm/fault.c:82 @ asmlinkage void do_page_fault(int datammu, unsigned long esr0, unsigned long ear
 	 * If we're in an interrupt or have no user
 	 * context, we must not take the fault..
 	 */
-	if (in_atomic() || !mm)
+	if (!mm || pagefault_disabled())
 		goto no_context;
 
 	down_read(&mm->mmap_sem);
@ arch/h8300/kernel/process.c:84 @ void cpu_idle(void)
 	while (1) {
 		while (!need_resched())
 			idle();
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/ia64/kernel/asm-offsets.c:272 @ void foo(void)
 	BLANK();
 
 	/* used by fsys_gettimeofday in arch/ia64/kernel/fsys.S */
-	DEFINE(IA64_GTOD_LOCK_OFFSET,
-		offsetof (struct fsyscall_gtod_data_t, lock));
+	DEFINE(IA64_GTOD_SEQ_OFFSET,
+		offsetof (struct fsyscall_gtod_data_t, seq);
 	DEFINE(IA64_GTOD_WALL_TIME_OFFSET,
 		offsetof (struct fsyscall_gtod_data_t, wall_time));
 	DEFINE(IA64_GTOD_MONO_TIME_OFFSET,
@ arch/ia64/kernel/fsys.S:177 @ ENTRY(fsys_set_tid_address)
 	FSYS_RETURN
 END(fsys_set_tid_address)
 
-#if IA64_GTOD_LOCK_OFFSET !=0
+#if IA64_GTOD_SEQ_OFFSET !=0
 #error fsys_gettimeofday incompatible with changes to struct fsyscall_gtod_data_t
 #endif
 #if IA64_ITC_JITTER_OFFSET !=0
@ arch/ia64/kernel/fsyscall_gtod_data.h:9 @
  */
 
 struct fsyscall_gtod_data_t {
-	seqlock_t	lock;
+	seqcount_t	seq;
 	struct timespec	wall_time;
 	struct timespec monotonic_time;
 	cycle_t		clk_mask;
@ arch/ia64/kernel/process.c:333 @ cpu_idle (void)
 			normal_xtp();
 #endif
 		}
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 		check_pgt_cache();
 		if (cpu_is_offline(cpu))
 			play_dead();
@ arch/ia64/kernel/time.c:38 @
 
 static cycle_t itc_get_cycles(struct clocksource *cs);
 
-struct fsyscall_gtod_data_t fsyscall_gtod_data = {
-	.lock = __SEQLOCK_UNLOCKED(fsyscall_gtod_data.lock),
-};
+struct fsyscall_gtod_data_t fsyscall_gtod_data;
 
 struct itc_jitter_data_t itc_jitter_data;
 
@ arch/ia64/kernel/time.c:461 @ void update_vsyscall_tz(void)
 void update_vsyscall(struct timespec *wall, struct timespec *wtm,
 			struct clocksource *c, u32 mult)
 {
-        unsigned long flags;
-
-        write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
+	write_seqcount_begin(&fsyscall_gtod_data.seq);
 
         /* copy fsyscall clock data */
         fsyscall_gtod_data.clk_mask = c->mask;
@ arch/ia64/kernel/time.c:484 @ void update_vsyscall(struct timespec *wall, struct timespec *wtm,
 		fsyscall_gtod_data.monotonic_time.tv_sec++;
 	}
 
-        write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
+	write_seqcount_end(&fsyscall_gtod_data.seq);
 }
 
@ arch/ia64/mm/fault.c:92 @ ia64_do_page_fault (unsigned long address, unsigned long isr, struct pt_regs *re
 	/*
 	 * If we're in an interrupt or have no user context, we must not take the fault..
 	 */
-	if (in_atomic() || !mm)
+	if (!mm || pagefault_disabled())
 		goto no_context;
 
 #ifdef CONFIG_VIRTUAL_MEM_MAP
@ arch/m32r/kernel/process.c:93 @ void cpu_idle (void)
 
 			idle();
 		}
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/m32r/mm/fault.c:118 @ asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code,
 	 * If we're in an interrupt or have no user context or are running in an
 	 * atomic region then we must not take the fault..
 	 */
-	if (in_atomic() || !mm)
+	if (!mm || pagefault_disabled())
 		goto bad_area_nosemaphore;
 
 	/* When running in the kernel we expect faults to occur only to
@ arch/m68k/kernel/process_mm.c:97 @ void cpu_idle(void)
 	while (1) {
 		while (!need_resched())
 			idle();
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/m68k/kernel/process_no.c:76 @ void cpu_idle(void)
 	/* endless idle loop with no priority at all */
 	while (1) {
 		idle();
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/m68k/mm/fault.c:88 @ int do_page_fault(struct pt_regs *regs, unsigned long address,
 	 * If we're in an interrupt or have no user
 	 * context, we must not take the fault..
 	 */
-	if (in_atomic() || !mm)
+	if (!mm || pagefault_disabled())
 		goto no_context;
 
 	down_read(&mm->mmap_sem);
@ arch/microblaze/kernel/early_printk.c:24 @
 #include <asm/setup.h>
 #include <asm/prom.h>
 
-static u32 early_console_initialized;
 static u32 base_addr;
 
 #ifdef CONFIG_SERIAL_UARTLITE_CONSOLE
@ arch/microblaze/kernel/early_printk.c:111 @ static struct console early_serial_uart16550_console = {
 };
 #endif /* CONFIG_SERIAL_8250_CONSOLE */
 
-static struct console *early_console;
-
-void early_printk(const char *fmt, ...)
-{
-	char buf[512];
-	int n;
-	va_list ap;
-
-	if (early_console_initialized) {
-		va_start(ap, fmt);
-		n = vscnprintf(buf, 512, fmt, ap);
-		early_console->write(early_console, buf, n);
-		va_end(ap);
-	}
-}
-
 int __init setup_early_printk(char *opt)
 {
 	int version = 0;
 
-	if (early_console_initialized)
+	if (early_console)
 		return 1;
 
 	base_addr = of_early_console(&version);
@ arch/microblaze/kernel/early_printk.c:145 @ int __init setup_early_printk(char *opt)
 		}
 
 		register_console(early_console);
-		early_console_initialized = 1;
 		return 0;
 	}
 	return 1;
@ arch/microblaze/kernel/early_printk.c:154 @ int __init setup_early_printk(char *opt)
  * only for early console because of performance degression */
 void __init remap_early_printk(void)
 {
-	if (!early_console_initialized || !early_console)
+	if (!early_console)
 		return;
 	printk(KERN_INFO "early_printk_console remaping from 0x%x to ",
 								base_addr);
@ arch/microblaze/kernel/early_printk.c:164 @ void __init remap_early_printk(void)
 
 void __init disable_early_printk(void)
 {
-	if (!early_console_initialized || !early_console)
+	if (!early_console)
 		return;
 	printk(KERN_WARNING "disabling early console\n");
 	unregister_console(early_console);
-	early_console_initialized = 0;
+	early_console = NULL;
 }
@ arch/microblaze/kernel/process.c:111 @ void cpu_idle(void)
 			idle();
 		tick_nohz_restart_sched_tick();
 
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 		check_pgt_cache();
 	}
 }
@ arch/microblaze/mm/fault.c:110 @ void do_page_fault(struct pt_regs *regs, unsigned long address,
 	if ((error_code & 0x13) == 0x13 || (error_code & 0x11) == 0x11)
 		is_write = 0;
 
-	if (unlikely(in_atomic() || !mm)) {
+	if (unlikely(!mm || pagefault_disabled())) {
 		if (kernel_mode(regs))
 			goto bad_area_nosemaphore;
 
@ arch/mips/Kconfig:2043 @ config CPU_R4400_WORKAROUNDS
 #
 config HIGHMEM
 	bool "High Memory Support"
-	depends on 32BIT && CPU_SUPPORTS_HIGHMEM && SYS_SUPPORTS_HIGHMEM
+	depends on 32BIT && CPU_SUPPORTS_HIGHMEM && SYS_SUPPORTS_HIGHMEM && !PREEMPT_RT_FULL
 
 config CPU_SUPPORTS_HIGHMEM
 	bool
@ arch/mips/cavium-octeon/smp.c:260 @ DEFINE_PER_CPU(int, cpu_state);
 
 extern void fixup_irqs(void);
 
-static DEFINE_SPINLOCK(smp_reserve_lock);
-
 static int octeon_cpu_disable(void)
 {
 	unsigned int cpu = smp_processor_id();
@ arch/mips/cavium-octeon/smp.c:267 @ static int octeon_cpu_disable(void)
 	if (cpu == 0)
 		return -EBUSY;
 
-	spin_lock(&smp_reserve_lock);
-
 	cpu_clear(cpu, cpu_online_map);
 	cpu_clear(cpu, cpu_callin_map);
 	local_irq_disable();
@ arch/mips/cavium-octeon/smp.c:276 @ static int octeon_cpu_disable(void)
 	flush_cache_all();
 	local_flush_tlb_all();
 
-	spin_unlock(&smp_reserve_lock);
-
 	return 0;
 }
 
@ arch/mips/kernel/early_printk.c:28 @ early_console_write(struct console *con, const char *s, unsigned n)
 	}
 }
 
-static struct console early_console __initdata = {
+static struct console early_console_prom = {
 	.name	= "early",
 	.write	= early_console_write,
 	.flags	= CON_PRINTBUFFER | CON_BOOT,
 	.index	= -1
 };
 
-static int early_console_initialized __initdata;
-
 void __init setup_early_printk(void)
 {
-	if (early_console_initialized)
+	if (early_console)
 		return;
-	early_console_initialized = 1;
+	early_console = &early_console_prom;
 
-	register_console(&early_console);
+	register_console(&early_console_prom);
 }
@ arch/mips/kernel/process.c:79 @ void __noreturn cpu_idle(void)
 			play_dead();
 #endif
 		tick_nohz_restart_sched_tick();
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/mips/kernel/signal.c:607 @ static void do_signal(struct pt_regs *regs)
 	if (!user_mode(regs))
 		return;
 
+	local_irq_enable();
+	preempt_check_resched();
+
 	if (test_thread_flag(TIF_RESTORE_SIGMASK))
 		oldset = &current->saved_sigmask;
 	else
@ arch/mips/mm/fault.c:91 @ asmlinkage void __kprobes do_page_fault(struct pt_regs *regs, unsigned long writ
 	 * If we're in an interrupt or have no user
 	 * context, we must not take the fault..
 	 */
-	if (in_atomic() || !mm)
+	if (!mm || pagefault_disabled())
 		goto bad_area_nosemaphore;
 
 	down_read(&mm->mmap_sem);
@ arch/mn10300/kernel/process.c:126 @ void cpu_idle(void)
 			idle();
 		}
 
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/mn10300/mm/fault.c:171 @ asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long fault_code,
 	 * If we're in an interrupt or have no user
 	 * context, we must not take the fault..
 	 */
-	if (in_atomic() || !mm)
+	if (!mm || pagefault_disabled())
 		goto no_context;
 
 	down_read(&mm->mmap_sem);
@ arch/parisc/kernel/process.c:74 @ void cpu_idle(void)
 	while (1) {
 		while (!need_resched())
 			barrier();
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 		check_pgt_cache();
 	}
 }
@ arch/parisc/mm/fault.c:179 @ void do_page_fault(struct pt_regs *regs, unsigned long code,
 	unsigned long acc_type;
 	int fault;
 
-	if (in_atomic() || !mm)
+	if (!mm || pagefault_disabled())
 		goto no_context;
 
 	down_read(&mm->mmap_sem);
@ arch/powerpc/Kconfig:72 @ config LOCKDEP_SUPPORT
 
 config RWSEM_GENERIC_SPINLOCK
 	bool
+	default y if PREEMPT_RT_FULL
 
 config RWSEM_XCHGADD_ALGORITHM
 	bool
-	default y
+	default y if !PREEMPT_RT_FULL
 
 config GENERIC_LOCKBREAK
 	bool
@ arch/powerpc/Kconfig:136 @ config PPC
 	select IRQ_PER_CPU
 	select GENERIC_IRQ_SHOW
 	select GENERIC_IRQ_SHOW_LEVEL
+	select IRQ_FORCED_THREADING
 	select HAVE_RCU_TABLE_FREE if SMP
 	select HAVE_SYSCALL_TRACEPOINTS
 	select HAVE_BPF_JIT if (PPC64 && NET)
@ arch/powerpc/Kconfig:279 @ menu "Kernel options"
 
 config HIGHMEM
 	bool "High memory support"
-	depends on PPC32
+	depends on PPC32 && !PREEMPT_RT_FULL
 
 source kernel/time/Kconfig
 source kernel/Kconfig.hz
@ arch/powerpc/kernel/idle.c:97 @ void cpu_idle(void)
 		HMT_medium();
 		ppc64_runlatch_on();
 		tick_nohz_restart_sched_tick();
-		preempt_enable_no_resched();
-		if (cpu_should_die())
+		if (cpu_should_die()) {
+			__preempt_enable_no_resched();
 			cpu_die();
-		schedule();
-		preempt_disable();
+		}
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/powerpc/kernel/irq.c:443 @ void irq_ctx_init(void)
 	}
 }
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 static inline void do_softirq_onstack(void)
 {
 	struct thread_info *curtp, *irqtp;
@ arch/powerpc/kernel/irq.c:480 @ void do_softirq(void)
 
 	local_irq_restore(flags);
 }
-
+#endif
 
 /*
  * IRQ controller and virtual interrupts
@ arch/powerpc/kernel/misc_32.S:39 @
 
 	.text
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 _GLOBAL(call_do_softirq)
 	mflr	r0
 	stw	r0,4(r1)
@ arch/powerpc/kernel/misc_32.S:50 @ _GLOBAL(call_do_softirq)
 	lwz	r0,4(r1)
 	mtlr	r0
 	blr
+#endif
 
 _GLOBAL(call_handle_irq)
 	mflr	r0
@ arch/powerpc/kernel/misc_64.S:32 @
 
 	.text
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 _GLOBAL(call_do_softirq)
 	mflr	r0
 	std	r0,16(r1)
@ arch/powerpc/kernel/misc_64.S:43 @ _GLOBAL(call_do_softirq)
 	ld	r0,16(r1)
 	mtlr	r0
 	blr
+#endif
 
 _GLOBAL(call_handle_irq)
 	ld	r8,0(r6)
@ arch/powerpc/kernel/smp.c:190 @ int smp_request_message_ipi(int virq, int msg)
 		return 1;
 	}
 #endif
-	err = request_irq(virq, smp_ipi_action[msg], IRQF_PERCPU,
-			  smp_ipi_name[msg], 0);
+	err = request_irq(virq, smp_ipi_action[msg],
+			  IRQF_PERCPU | IRQF_NO_THREAD, smp_ipi_name[msg], 0);
 	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
 		virq, smp_ipi_name[msg], err);
 
@ arch/powerpc/kernel/udbg.c:185 @ static struct console udbg_console = {
 	.index	= 0,
 };
 
-static int early_console_initialized;
-
 /*
  * Called by setup_system after ppc_md->probe and ppc_md->early_init.
  * Call it again after setting udbg_putc in ppc_md->setup_arch.
  */
 void __init register_early_udbg_console(void)
 {
-	if (early_console_initialized)
+	if (early_console)
 		return;
 
 	if (!udbg_putc)
@ arch/powerpc/kernel/udbg.c:201 @ void __init register_early_udbg_console(void)
 		printk(KERN_INFO "early console immortal !\n");
 		udbg_console.flags &= ~CON_BOOT;
 	}
-	early_console_initialized = 1;
+	early_console = &udbg_console;
 	register_console(&udbg_console);
 }
 
@ arch/powerpc/mm/fault.c:165 @ int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
 	}
 #endif
 
-	if (in_atomic() || mm == NULL) {
+	if (!mm || pagefault_disabled()) {
 		if (!user_mode(regs))
 			return SIGSEGV;
 		/* in_atomic() in user mode is really bad,
@ arch/powerpc/platforms/85xx/mpc85xx_cds.c:180 @ static irqreturn_t mpc85xx_8259_cascade_action(int irq, void *dev_id)
 
 static struct irqaction mpc85xxcds_8259_irqaction = {
 	.handler = mpc85xx_8259_cascade_action,
-	.flags = IRQF_SHARED,
+	.flags = IRQF_SHARED | IRQF_NO_THREAD,
 	.name = "8259 cascade",
 };
 #endif /* PPC_I8259 */
@ arch/powerpc/platforms/iseries/setup.c:585 @ static void iseries_shared_idle(void)
 		if (hvlpevent_is_pending())
 			process_iSeries_events();
 
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/powerpc/platforms/iseries/setup.c:612 @ static void iseries_dedicated_idle(void)
 
 		ppc64_runlatch_on();
 		tick_nohz_restart_sched_tick();
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/powerpc/platforms/powermac/smp.c:203 @ static int psurge_secondary_ipi_init(void)
 
 	if (psurge_secondary_virq)
 		rc = request_irq(psurge_secondary_virq, psurge_ipi_intr,
-			IRQF_PERCPU, "IPI", NULL);
+				 IRQF_NO_THREAD | IRQF_PERCPU, "IPI", NULL);
 
 	if (rc)
 		pr_err("Failed to setup secondary cpu IPI\n");
@ arch/powerpc/platforms/powermac/smp.c:411 @ static int __init smp_psurge_kick_cpu(int nr)
 
 static struct irqaction psurge_irqaction = {
 	.handler = psurge_ipi_intr,
-	.flags = IRQF_PERCPU,
+	.flags = IRQF_PERCPU | IRQF_NO_THREAD,
 	.name = "primary IPI",
 };
 
@ arch/powerpc/platforms/wsp/opb_pic.c:323 @ void __init opb_pic_init(void)
 		}
 
 		/* Attach opb interrupt handler to new virtual IRQ */
-		rc = request_irq(virq, opb_irq_handler, 0, "OPB LS Cascade", opb);
+		rc = request_irq(virq, opb_irq_handler, IRQF_NO_THREAD,
+				 "OPB LS Cascade", opb);
 		if (rc) {
 			printk("opb: request_irq failed: %d\n", rc);
 			continue;
@ arch/powerpc/sysdev/xics/xics-common.c:137 @ static void xics_request_ipi(void)
 	BUG_ON(ipi == NO_IRQ);
 
 	/*
-	 * IPIs are marked IRQF_PERCPU. The handler was set in map.
+	 * IPIs are marked PERCPU and also IRQF_NO_THREAD as they must
+	 * run in hard interrupt context. The handler was set in map.
 	 */
 	BUG_ON(request_irq(ipi, icp_ops->ipi_action,
-			   IRQF_PERCPU, "IPI", NULL));
+			   IRQF_NO_THREAD|IRQF_PERCPU, "IPI", NULL));
 }
 
 int __init xics_smp_probe(void)
@ arch/s390/kernel/process.c:97 @ void cpu_idle(void)
 		while (!need_resched())
 			default_idle();
 		tick_nohz_restart_sched_tick();
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/s390/mm/fault.c:297 @ static inline int do_exception(struct pt_regs *regs, int access,
 	 * user context.
 	 */
 	fault = VM_FAULT_BADCONTEXT;
-	if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
+	if (unlikely(!user_space_fault(trans_exc_code) ||
+		     !mm || pagefault_disabled()))
 		goto out;
 
 	address = trans_exc_code & __FAIL_ADDR_MASK;
@ arch/s390/mm/fault.c:429 @ void __kprobes do_asce_exception(struct pt_regs *regs, long pgm_int_code,
 	struct mm_struct *mm = current->mm;
 	struct vm_area_struct *vma;
 
-	if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
+	if (unlikely(!user_space_fault(trans_exc_code) ||
+		     !mm || pagefault_disabled()))
 		goto no_context;
 
 	down_read(&mm->mmap_sem);
@ arch/score/kernel/process.c:56 @ void __noreturn cpu_idle(void)
 		while (!need_resched())
 			barrier();
 
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/score/mm/fault.c:75 @ asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long write,
 	* If we're in an interrupt or have no user
 	* context, we must not take the fault..
 	*/
-	if (in_atomic() || !mm)
+	if (!mm || pagefault_disabled())
 		goto bad_area_nosemaphore;
 
 	down_read(&mm->mmap_sem);
@ arch/sh/kernel/idle.c:115 @ void cpu_idle(void)
 		}
 
 		tick_nohz_restart_sched_tick();
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/sh/kernel/irq.c:152 @ void irq_ctx_exit(int cpu)
 	hardirq_ctx[cpu] = NULL;
 }
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 asmlinkage void do_softirq(void)
 {
 	unsigned long flags;
@ arch/sh/kernel/irq.c:195 @ asmlinkage void do_softirq(void)
 
 	local_irq_restore(flags);
 }
+#endif
 #else
 static inline void handle_one_irq(unsigned int irq)
 {
@ arch/sh/kernel/sh_bios.c:147 @ static struct console bios_console = {
 	.index		= -1,
 };
 
-static struct console *early_console;
-
 static int __init setup_early_printk(char *buf)
 {
 	int keep_early = 0;
@ arch/sh/mm/fault_32.c:169 @ asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
 	 * If we're in an interrupt, have no user context or are running
 	 * in an atomic region then we must not take the fault:
 	 */
-	if (in_atomic() || !mm)
+	if (!mm || pagefault_disabled())
 		goto no_context;
 
 	down_read(&mm->mmap_sem);
@ arch/sparc/kernel/irq_64.c:702 @ void __irq_entry handler_irq(int pil, struct pt_regs *regs)
 	set_irq_regs(old_regs);
 }
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 void do_softirq(void)
 {
 	unsigned long flags;
@ arch/sparc/kernel/irq_64.c:728 @ void do_softirq(void)
 
 	local_irq_restore(flags);
 }
+#endif
 
 #ifdef CONFIG_HOTPLUG_CPU
 void fixup_irqs(void)
@ arch/sparc/kernel/process_32.c:116 @ void cpu_idle(void)
 			while (!need_resched())
 				cpu_relax();
 		}
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 		check_pgt_cache();
 	}
 }
@ arch/sparc/kernel/process_32.c:139 @ void cpu_idle(void)
 			while (!need_resched())
 				cpu_relax();
 		}
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 		check_pgt_cache();
 	}
 }
@ arch/sparc/kernel/process_64.c:105 @ void cpu_idle(void)
 
 		tick_nohz_restart_sched_tick();
 
-		preempt_enable_no_resched();
-
 #ifdef CONFIG_HOTPLUG_CPU
-		if (cpu_is_offline(cpu))
+		if (cpu_is_offline(cpu)) {
+			__preempt_enable_no_resched();
 			cpu_play_dead();
+		}
 #endif
-
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/sparc/kernel/prom_common.c:68 @ int of_set_property(struct device_node *dp, const char *name, void *val, int len
 	err = -ENODEV;
 
 	mutex_lock(&of_set_property_mutex);
-	write_lock(&devtree_lock);
+	raw_spin_lock(&devtree_lock);
 	prevp = &dp->properties;
 	while (*prevp) {
 		struct property *prop = *prevp;
@ arch/sparc/kernel/prom_common.c:95 @ int of_set_property(struct device_node *dp, const char *name, void *val, int len
 		}
 		prevp = &(*prevp)->next;
 	}
-	write_unlock(&devtree_lock);
+	raw_spin_unlock(&devtree_lock);
 	mutex_unlock(&of_set_property_mutex);
 
 	/* XXX Upate procfs if necessary... */
@ arch/sparc/kernel/setup_32.c:224 @ void __init setup_arch(char **cmdline_p)
 
 	boot_flags_init(*cmdline_p);
 
+	early_console = &prom_early_console;
 	register_console(&prom_early_console);
 
 	/* Set sparc_cpu_model */
@ arch/sparc/kernel/setup_64.c:490 @ static void __init init_sparc64_elf_hwcap(void)
 		popc_patch();
 }
 
+static inline void register_prom_console(void)
+{
+	early_console = &prom_early_console;
+	register_console(&prom_early_console);
+}
+
 void __init setup_arch(char **cmdline_p)
 {
 	/* Initialize PROM console and command line. */
@ arch/sparc/kernel/setup_64.c:507 @ void __init setup_arch(char **cmdline_p)
 #ifdef CONFIG_EARLYFB
 	if (btext_find_display())
 #endif
-		register_console(&prom_early_console);
+		register_prom_console();
 
 	if (tlb_type == hypervisor)
 		printk("ARCH: SUN4V\n");
@ arch/sparc/mm/fault_32.c:250 @ asmlinkage void do_sparc_fault(struct pt_regs *regs, int text_fault, int write,
 	 * If we're in an interrupt or have no user
 	 * context, we must not take the fault..
 	 */
-        if (in_atomic() || !mm)
-                goto no_context;
+	if (!mm || pagefault_disabled())
+		goto no_context;
 
 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
 
@ arch/sparc/mm/fault_64.c:325 @ asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs)
 	 * If we're in an interrupt or have no user
 	 * context, we must not take the fault..
 	 */
-	if (in_atomic() || !mm)
+	if (!mm || pagefault_disabled())
 		goto intr_or_no_mm;
 
 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
@ arch/tile/kernel/early_printk.c:35 @ static struct console early_hv_console = {
 };
 
 /* Direct interface for emergencies */
-static struct console *early_console = &early_hv_console;
-static int early_console_initialized;
 static int early_console_complete;
 
-static void early_vprintk(const char *fmt, va_list ap)
-{
-	char buf[512];
-	int n = vscnprintf(buf, sizeof(buf), fmt, ap);
-	early_console->write(early_console, buf, n);
-}
-
-void early_printk(const char *fmt, ...)
-{
-	va_list ap;
-	va_start(ap, fmt);
-	early_vprintk(fmt, ap);
-	va_end(ap);
-}
-
 void early_panic(const char *fmt, ...)
 {
 	va_list ap;
@ arch/tile/kernel/early_printk.c:54 @ static int __initdata keep_early;
 
 static int __init setup_early_printk(char *str)
 {
-	if (early_console_initialized)
+	if (early_console)
 		return 1;
 
 	if (str != NULL && strncmp(str, "keep", 4) == 0)
 		keep_early = 1;
 
 	early_console = &early_hv_console;
-	early_console_initialized = 1;
 	register_console(early_console);
 
 	return 0;
@ arch/tile/kernel/early_printk.c:69 @ static int __init setup_early_printk(char *str)
 void __init disable_early_printk(void)
 {
 	early_console_complete = 1;
-	if (!early_console_initialized || !early_console)
+	if (!early_console)
 		return;
 	if (!keep_early) {
 		early_printk("disabling early console\n");
 		unregister_console(early_console);
-		early_console_initialized = 0;
+		early_console = NULL;
 	} else {
 		early_printk("keeping early console\n");
 	}
@ arch/tile/kernel/early_printk.c:82 @ void __init disable_early_printk(void)
 
 void warn_early_printk(void)
 {
-	if (early_console_complete || early_console_initialized)
+	if (early_console_complete || early_console)
 		return;
 	early_printk("\
 Machine shutting down before console output is fully initialized.\n\
@ arch/tile/kernel/process.c:109 @ void cpu_idle(void)
 			current_thread_info()->status |= TS_POLLING;
 		}
 		tick_nohz_restart_sched_tick();
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/tile/mm/fault.c:349 @ static int handle_page_fault(struct pt_regs *regs,
 	 * If we're in an interrupt, have no user context or are running in an
 	 * atomic region then we must not take the fault.
 	 */
-	if (in_atomic() || !mm) {
+	if (!mm || pagefault_disabled()) {
 		vma = NULL;  /* happy compiler */
 		goto bad_area_nosemaphore;
 	}
@ arch/um/kernel/early_printk.c:19 @ static void early_console_write(struct console *con, const char *s, unsigned int
 	um_early_printk(s, n);
 }
 
-static struct console early_console = {
+static struct console early_console_dev = {
 	.name = "earlycon",
 	.write = early_console_write,
 	.flags = CON_BOOT,
@ arch/um/kernel/early_printk.c:28 @ static struct console early_console = {
 
 static int __init setup_early_printk(char *buf)
 {
-	register_console(&early_console);
-
+	if (!early_console) {
+		early_console = &early_console_dev;
+		register_console(&early_console_dev);
+	}
 	return 0;
 }
 
@ arch/um/kernel/trap.c:40 @ int handle_page_fault(unsigned long address, unsigned long ip,
 	 * If the fault was during atomic operation, don't take the fault, just
 	 * fail.
 	 */
-	if (in_atomic())
+	if (!mm || pagefault_disabled())
 		goto out_nosemaphore;
 
 	down_read(&mm->mmap_sem);
@ arch/unicore32/kernel/early_printk.c:36 @ static struct console early_ocd_console = {
 	.index =	-1,
 };
 
-/* Direct interface for emergencies */
-static struct console *early_console = &early_ocd_console;
-
-static int __initdata keep_early;
-
 static int __init setup_early_printk(char *buf)
 {
-	if (!buf)
+	int keep_early;
+
+	if (!buf || early_console)
 		return 0;
 
 	if (strstr(buf, "keep"))
 		keep_early = 1;
 
-	if (!strncmp(buf, "ocd", 3))
-		early_console = &early_ocd_console;
+	early_console = &early_ocd_console;
 
 	if (keep_early)
 		early_console->flags &= ~CON_BOOT;
@ arch/x86/Kconfig:164 @ config ARCH_MAY_HAVE_PC_FDC
 	def_bool ISA_DMA_API
 
 config RWSEM_GENERIC_SPINLOCK
-	def_bool !X86_XADD
+	def_bool !X86_XADD || PREEMPT_RT_FULL
 
 config RWSEM_XCHGADD_ALGORITHM
-	def_bool X86_XADD
+	def_bool X86_XADD && !RWSEM_GENERIC_SPINLOCK && !PREEMPT_RT_FULL
 
 config ARCH_HAS_CPU_IDLE_WAIT
 	def_bool y
@ arch/x86/Kconfig:733 @ config IOMMU_HELPER
 config MAXSMP
 	bool "Enable Maximum number of SMP Processors and NUMA Nodes"
 	depends on X86_64 && SMP && DEBUG_KERNEL && EXPERIMENTAL
-	select CPUMASK_OFFSTACK
+	select CPUMASK_OFFSTACK if !PREEMPT_RT_FULL
 	---help---
 	  Enable maximum number of CPUS and NUMA Nodes for this architecture.
 	  If unsure, say N.
@ arch/x86/crypto/aesni-intel_glue.c:292 @ static int ecb_encrypt(struct blkcipher_desc *desc,
 	err = blkcipher_walk_virt(desc, &walk);
 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
 
-	kernel_fpu_begin();
 	while ((nbytes = walk.nbytes)) {
+		kernel_fpu_begin();
 		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
-			      nbytes & AES_BLOCK_MASK);
+				nbytes & AES_BLOCK_MASK);
+		kernel_fpu_end();
 		nbytes &= AES_BLOCK_SIZE - 1;
 		err = blkcipher_walk_done(desc, &walk, nbytes);
 	}
-	kernel_fpu_end();
 
 	return err;
 }
@ arch/x86/crypto/aesni-intel_glue.c:316 @ static int ecb_decrypt(struct blkcipher_desc *desc,
 	err = blkcipher_walk_virt(desc, &walk);
 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
 
-	kernel_fpu_begin();
 	while ((nbytes = walk.nbytes)) {
+		kernel_fpu_begin();
 		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
 			      nbytes & AES_BLOCK_MASK);
+		kernel_fpu_end();
 		nbytes &= AES_BLOCK_SIZE - 1;
 		err = blkcipher_walk_done(desc, &walk, nbytes);
 	}
-	kernel_fpu_end();
 
 	return err;
 }
@ arch/x86/crypto/aesni-intel_glue.c:362 @ static int cbc_encrypt(struct blkcipher_desc *desc,
 	err = blkcipher_walk_virt(desc, &walk);
 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
 
-	kernel_fpu_begin();
 	while ((nbytes = walk.nbytes)) {
+		kernel_fpu_begin();
 		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
 			      nbytes & AES_BLOCK_MASK, walk.iv);
+		kernel_fpu_end();
 		nbytes &= AES_BLOCK_SIZE - 1;
 		err = blkcipher_walk_done(desc, &walk, nbytes);
 	}
-	kernel_fpu_end();
 
 	return err;
 }
@ arch/x86/crypto/aesni-intel_glue.c:386 @ static int cbc_decrypt(struct blkcipher_desc *desc,
 	err = blkcipher_walk_virt(desc, &walk);
 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
 
-	kernel_fpu_begin();
 	while ((nbytes = walk.nbytes)) {
+		kernel_fpu_begin();
 		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
 			      nbytes & AES_BLOCK_MASK, walk.iv);
+		kernel_fpu_end();
 		nbytes &= AES_BLOCK_SIZE - 1;
 		err = blkcipher_walk_done(desc, &walk, nbytes);
 	}
-	kernel_fpu_end();
 
 	return err;
 }
@ arch/x86/crypto/aesni-intel_glue.c:448 @ static int ctr_crypt(struct blkcipher_desc *desc,
 	err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
 
-	kernel_fpu_begin();
 	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
+		kernel_fpu_begin();
 		aesni_ctr_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
 			      nbytes & AES_BLOCK_MASK, walk.iv);
+		kernel_fpu_end();
 		nbytes &= AES_BLOCK_SIZE - 1;
 		err = blkcipher_walk_done(desc, &walk, nbytes);
 	}
 	if (walk.nbytes) {
+		kernel_fpu_begin();
 		ctr_crypt_final(ctx, &walk);
+		kernel_fpu_end();
 		err = blkcipher_walk_done(desc, &walk, 0);
 	}
-	kernel_fpu_end();
 
 	return err;
 }
@ arch/x86/include/asm/acpi.h:54 @
 
 #define ACPI_ASM_MACROS
 #define BREAKPOINT3
-#define ACPI_DISABLE_IRQS() local_irq_disable()
-#define ACPI_ENABLE_IRQS()  local_irq_enable()
+#define ACPI_DISABLE_IRQS() local_irq_disable_nort()
+#define ACPI_ENABLE_IRQS()  local_irq_enable_nort()
 #define ACPI_FLUSH_CPU_CACHE()	wbinvd()
 
 int __acpi_acquire_global_lock(unsigned int *lock);
@ arch/x86/include/asm/page_64_types.h:17 @
 #define IRQ_STACK_ORDER 2
 #define IRQ_STACK_SIZE (PAGE_SIZE << IRQ_STACK_ORDER)
 
-#define STACKFAULT_STACK 1
-#define DOUBLEFAULT_STACK 2
-#define NMI_STACK 3
-#define DEBUG_STACK 4
-#define MCE_STACK 5
-#define N_EXCEPTION_STACKS 5  /* hw limit: 7 */
+#ifdef CONFIG_PREEMPT_RT_FULL
+# define STACKFAULT_STACK 0
+# define DOUBLEFAULT_STACK 1
+# define NMI_STACK 2
+# define DEBUG_STACK 0
+# define MCE_STACK 3
+# define N_EXCEPTION_STACKS 3  /* hw limit: 7 */
+#else
+# define STACKFAULT_STACK 1
+# define DOUBLEFAULT_STACK 2
+# define NMI_STACK 3
+# define DEBUG_STACK 4
+# define MCE_STACK 5
+# define N_EXCEPTION_STACKS 5  /* hw limit: 7 */
+#endif
 
 #define PUD_PAGE_SIZE		(_AC(1, UL) << PUD_SHIFT)
 #define PUD_PAGE_MASK		(~(PUD_PAGE_SIZE-1))
@ arch/x86/include/asm/signal.h:34 @ typedef struct {
 	unsigned long sig[_NSIG_WORDS];
 } sigset_t;
 
+/*
+ * Because some traps use the IST stack, we must keep
+ * preemption disabled while calling do_trap(), but do_trap()
+ * may call force_sig_info() which will grab the signal spin_locks
+ * for the task, which in PREEMPT_RT_FULL are mutexes.
+ * By defining ARCH_RT_DELAYS_SIGNAL_SEND the force_sig_info() will
+ * set TIF_NOTIFY_RESUME and set up the signal to be sent on exit
+ * of the trap.
+ */
+#if defined(CONFIG_PREEMPT_RT_FULL) && defined(CONFIG_X86_64)
+#define ARCH_RT_DELAYS_SIGNAL_SEND
+#endif
+
 #else
 /* Here we must cater to libcs that poke about in kernel headers.  */
 
@ arch/x86/include/asm/stackprotector.h:61 @
  */
 static __always_inline void boot_init_stack_canary(void)
 {
-	u64 canary;
+	u64 uninitialized_var(canary);
 	u64 tsc;
 
 #ifdef CONFIG_X86_64
@ arch/x86/include/asm/stackprotector.h:72 @ static __always_inline void boot_init_stack_canary(void)
 	 * of randomness. The TSC only matters for very early init,
 	 * there it already has some randomness on most systems. Later
 	 * on during the bootup the random pool has true entropy too.
+	 *
+	 * For preempt-rt we need to weaken the randomness a bit, as
+	 * we can't call into the random generator from atomic context
+	 * due to locking constraints. We just leave canary
+	 * uninitialized and use the TSC based randomness on top of
+	 * it.
 	 */
+#ifndef CONFIG_PREEMPT_RT_FULL
 	get_random_bytes(&canary, sizeof(canary));
+#endif
 	tsc = __native_read_tsc();
 	canary += tsc + (tsc << 32UL);
 
@ arch/x86/include/asm/vgtod.h:8 @
 #include <linux/clocksource.h>
 
 struct vsyscall_gtod_data {
-	seqlock_t	lock;
+	seqcount_t	seq;
 
 	/* open coded 'struct timespec' */
 	time_t		wall_time_sec;
@ arch/x86/kernel/apic/apic.c:879 @ void __irq_entry smp_apic_timer_interrupt(struct pt_regs *regs)
 	 * Besides, if we don't timer interrupts ignore the global
 	 * interrupt lock, which is the WrongThing (tm) to do.
 	 */
-	exit_idle();
 	irq_enter();
+	exit_idle();
 	local_apic_timer_interrupt();
 	irq_exit();
 
@ arch/x86/kernel/apic/apic.c:1816 @ void smp_spurious_interrupt(struct pt_regs *regs)
 {
 	u32 v;
 
-	exit_idle();
 	irq_enter();
+	exit_idle();
 	/*
 	 * Check if this really is a spurious interrupt and ACK it
 	 * if it is a vectored one.  Just in case...
@ arch/x86/kernel/apic/apic.c:1853 @ void smp_error_interrupt(struct pt_regs *regs)
 		"Illegal register address",	/* APIC Error Bit 7 */
 	};
 
-	exit_idle();
 	irq_enter();
+	exit_idle();
 	/* First tickle the hardware, only then report what went on. -- REW */
 	v0 = apic_read(APIC_ESR);
 	apic_write(APIC_ESR, 0);
@ arch/x86/kernel/apic/io_apic.c:2424 @ asmlinkage void smp_irq_move_cleanup_interrupt(void)
 	unsigned vector, me;
 
 	ack_APIC_irq();
-	exit_idle();
 	irq_enter();
+	exit_idle();
 
 	me = smp_processor_id();
 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
@ arch/x86/kernel/apic/io_apic.c:2524 @ static void ack_apic_level(struct irq_data *data)
 	irq_complete_move(cfg);
 #ifdef CONFIG_GENERIC_PENDING_IRQ
 	/* If we are moving the irq we need to mask it */
-	if (unlikely(irqd_is_setaffinity_pending(data))) {
+	if (unlikely(irqd_is_setaffinity_pending(data) &&
+		     !irqd_irq_inprogress(data))) {
 		do_unmask_irq = 1;
 		mask_ioapic(cfg);
 	}
@ arch/x86/kernel/cpu/common.c:1053 @ DEFINE_PER_CPU(unsigned int, irq_count) = -1;
  */
 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
+#if DEBUG_STACK > 0
 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
+#endif
 };
 
 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
@ arch/x86/kernel/cpu/mcheck/mce.c:41 @
 #include <linux/debugfs.h>
 #include <linux/irq_work.h>
 #include <linux/export.h>
+#include <linux/jiffies.h>
 
 #include <asm/processor.h>
 #include <asm/mce.h>
@ arch/x86/kernel/cpu/mcheck/mce.c:1116 @ void mce_log_therm_throt_event(__u64 status)
  * poller finds an MCE, poll 2x faster.  When the poller finds no more
  * errors, poll 2x slower (up to check_interval seconds).
  */
-static int check_interval = 5 * 60; /* 5 minutes */
+static unsigned long check_interval = 5 * 60; /* 5 minutes */
 
-static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
-static DEFINE_PER_CPU(struct timer_list, mce_timer);
+static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
+static DEFINE_PER_CPU(struct hrtimer, mce_timer);
 
-static void mce_start_timer(unsigned long data)
+static enum hrtimer_restart mce_start_timer(struct hrtimer *timer)
 {
-	struct timer_list *t = &per_cpu(mce_timer, data);
-	int *n;
-
-	WARN_ON(smp_processor_id() != data);
+	unsigned long *n;
 
 	if (mce_available(__this_cpu_ptr(&cpu_info))) {
 		machine_check_poll(MCP_TIMESTAMP,
@ arch/x86/kernel/cpu/mcheck/mce.c:1136 @ static void mce_start_timer(unsigned long data)
 	 */
 	n = &__get_cpu_var(mce_next_interval);
 	if (mce_notify_irq())
-		*n = max(*n/2, HZ/100);
+		*n = max(*n/2, HZ/100UL);
 	else
-		*n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
+		*n = min(*n*2, round_jiffies_relative(check_interval*HZ));
 
-	t->expires = jiffies + *n;
-	add_timer_on(t, smp_processor_id());
+	hrtimer_forward(timer, timer->base->get_time(),
+			ns_to_ktime(jiffies_to_usecs(*n) * 1000));
+	return HRTIMER_RESTART;
 }
 
-/* Must not be called in IRQ context where del_timer_sync() can deadlock */
+/* Must not be called in IRQ context where hrtimer_cancel() can deadlock */
 static void mce_timer_delete_all(void)
 {
 	int cpu;
 
 	for_each_online_cpu(cpu)
-		del_timer_sync(&per_cpu(mce_timer, cpu));
+		hrtimer_cancel(&per_cpu(mce_timer, cpu));
 }
 
 static void mce_do_trigger(struct work_struct *work)
@ arch/x86/kernel/cpu/mcheck/mce.c:1383 @ static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
 
 static void __mcheck_cpu_init_timer(void)
 {
-	struct timer_list *t = &__get_cpu_var(mce_timer);
-	int *n = &__get_cpu_var(mce_next_interval);
+	struct hrtimer *t = &__get_cpu_var(mce_timer);
+	unsigned long *n = &__get_cpu_var(mce_next_interval);
 
-	setup_timer(t, mce_start_timer, smp_processor_id());
+	hrtimer_init(t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+	t->function = mce_start_timer;
 
 	if (mce_ignore_ce)
 		return;
@ arch/x86/kernel/cpu/mcheck/mce.c:1395 @ static void __mcheck_cpu_init_timer(void)
 	*n = check_interval * HZ;
 	if (!*n)
 		return;
-	t->expires = round_jiffies(jiffies + *n);
-	add_timer_on(t, smp_processor_id());
+
+	hrtimer_start_range_ns(t, ns_to_ktime(jiffies_to_usecs(*n) * 1000),
+			       0 , HRTIMER_MODE_REL_PINNED);
 }
 
 /* Handle unconfigured int18 (should never happen) */
@ arch/x86/kernel/cpu/mcheck/mce.c:2033 @ static void __cpuinit mce_disable_cpu(void *h)
 	if (!mce_available(__this_cpu_ptr(&cpu_info)))
 		return;
 
+	hrtimer_cancel(&__get_cpu_var(mce_timer));
+
 	if (!(action & CPU_TASKS_FROZEN))
 		cmci_clear();
 	for (i = 0; i < banks; i++) {
@ arch/x86/kernel/cpu/mcheck/mce.c:2061 @ static void __cpuinit mce_reenable_cpu(void *h)
 		if (b->init)
 			wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
 	}
+	__mcheck_cpu_init_timer();
 }
 
 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
@ arch/x86/kernel/cpu/mcheck/mce.c:2069 @ static int __cpuinit
 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
 {
 	unsigned int cpu = (unsigned long)hcpu;
-	struct timer_list *t = &per_cpu(mce_timer, cpu);
 
 	switch (action) {
 	case CPU_ONLINE:
@ arch/x86/kernel/cpu/mcheck/mce.c:2085 @ mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
 		break;
 	case CPU_DOWN_PREPARE:
 	case CPU_DOWN_PREPARE_FROZEN:
-		del_timer_sync(t);
 		smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
 		break;
 	case CPU_DOWN_FAILED:
 	case CPU_DOWN_FAILED_FROZEN:
-		if (!mce_ignore_ce && check_interval) {
-			t->expires = round_jiffies(jiffies +
-					   __get_cpu_var(mce_next_interval));
-			add_timer_on(t, cpu);
-		}
 		smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
 		break;
 	case CPU_POST_DEAD:
@ arch/x86/kernel/cpu/mcheck/therm_throt.c:385 @ static void (*smp_thermal_vector)(void) = unexpected_thermal_interrupt;
 
 asmlinkage void smp_thermal_interrupt(struct pt_regs *regs)
 {
-	exit_idle();
 	irq_enter();
+	exit_idle();
 	inc_irq_stat(irq_thermal_count);
 	smp_thermal_vector();
 	irq_exit();
@ arch/x86/kernel/cpu/mcheck/threshold.c:22 @ void (*mce_threshold_vector)(void) = default_threshold_interrupt;
 
 asmlinkage void smp_threshold_interrupt(void)
 {
-	exit_idle();
 	irq_enter();
+	exit_idle();
 	inc_irq_stat(irq_threshold_count);
 	mce_threshold_vector();
 	irq_exit();
@ arch/x86/kernel/dumpstack_64.c:24 @
 		(N_EXCEPTION_STACKS + DEBUG_STKSZ/EXCEPTION_STKSZ - 2)
 
 static char x86_stack_ids[][8] = {
+#if DEBUG_STACK > 0
 		[ DEBUG_STACK-1			]	= "#DB",
+#endif
 		[ NMI_STACK-1			]	= "NMI",
 		[ DOUBLEFAULT_STACK-1		]	= "#DF",
+#if STACKFAULT_STACK > 0
 		[ STACKFAULT_STACK-1		]	= "#SS",
+#endif
 		[ MCE_STACK-1			]	= "#MC",
 #if DEBUG_STKSZ > EXCEPTION_STKSZ
 		[ N_EXCEPTION_STACKS ...
@ arch/x86/kernel/early_printk.c:172 @ static struct console early_serial_console = {
 	.index =	-1,
 };
 
-/* Direct interface for emergencies */
-static struct console *early_console = &early_vga_console;
-static int __initdata early_console_initialized;
-
-asmlinkage void early_printk(const char *fmt, ...)
-{
-	char buf[512];
-	int n;
-	va_list ap;
-
-	va_start(ap, fmt);
-	n = vscnprintf(buf, sizeof(buf), fmt, ap);
-	early_console->write(early_console, buf, n);
-	va_end(ap);
-}
-
 static inline void early_console_register(struct console *con, int keep_early)
 {
-	if (early_console->index != -1) {
+	if (con->index != -1) {
 		printk(KERN_CRIT "ERROR: earlyprintk= %s already used\n",
 		       con->name);
 		return;
@ arch/x86/kernel/early_printk.c:194 @ static int __init setup_early_printk(char *buf)
 	if (!buf)
 		return 0;
 
-	if (early_console_initialized)
+	if (early_console)
 		return 0;
-	early_console_initialized = 1;
 
 	keep = (strstr(buf, "keep") != NULL);
 
@ arch/x86/kernel/entry_32.S:632 @ work_notifysig:				# deal with pending signals and
 	jne work_notifysig_v86		# returning to kernel-space or
 					# vm86-space
 	xorl %edx, %edx
+	TRACE_IRQS_ON
+	ENABLE_INTERRUPTS(CLBR_NONE)
 	call do_notify_resume
+	DISABLE_INTERRUPTS(CLBR_ANY)
+	TRACE_IRQS_OFF
 	jmp resume_userspace_sig
 
 	ALIGN
@ arch/x86/kernel/entry_32.S:649 @ work_notifysig_v86:
 	movl %esp, %eax
 #endif
 	xorl %edx, %edx
+	TRACE_IRQS_ON
+	ENABLE_INTERRUPTS(CLBR_NONE)
 	call do_notify_resume
+	DISABLE_INTERRUPTS(CLBR_ANY)
+	TRACE_IRQS_OFF
 	jmp resume_userspace_sig
 END(work_pending)
 
@ arch/x86/kernel/entry_64.S:1195 @ ENTRY(kernel_execve)
 	CFI_ENDPROC
 END(kernel_execve)
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 /* Call softirq on interrupt stack. Interrupts are off. */
 ENTRY(call_softirq)
 	CFI_STARTPROC
@ arch/x86/kernel/entry_64.S:1215 @ ENTRY(call_softirq)
 	ret
 	CFI_ENDPROC
 END(call_softirq)
+#endif
 
 #ifdef CONFIG_XEN
 zeroentry xen_hypervisor_callback xen_do_hypervisor_callback
@ arch/x86/kernel/hpet.c:12 @
 #include <linux/slab.h>
 #include <linux/hpet.h>
 #include <linux/init.h>
+#include <linux/dmi.h>
 #include <linux/cpu.h>
 #include <linux/pm.h>
 #include <linux/io.h>
@ arch/x86/kernel/hpet.c:572 @ static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
 #define RESERVE_TIMERS 0
 #endif
 
+static int __init dmi_disable_hpet_msi(const struct dmi_system_id *d)
+{
+	hpet_msi_disable = 1;
+	return 0;
+}
+
+static struct dmi_system_id __initdata dmi_hpet_table[] = {
+	/*
+	 * MSI based per cpu timers lose interrupts when intel_idle()
+	 * is enabled - independent of the c-state. With idle=poll the
+	 * problem cannot be observed. We have no idea yet, whether
+	 * this is a W510 specific issue or a general chipset oddity.
+	 */
+	{
+	 .callback = dmi_disable_hpet_msi,
+	 .ident = "Lenovo W510",
+	 .matches = {
+		     DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
+		     DMI_MATCH(DMI_PRODUCT_VERSION, "ThinkPad W510"),
+		     },
+	 },
+	{}
+};
+
 static void hpet_msi_capability_lookup(unsigned int start_timer)
 {
 	unsigned int id;
@ arch/x86/kernel/hpet.c:603 @ static void hpet_msi_capability_lookup(unsigned int start_timer)
 	unsigned int num_timers_used = 0;
 	int i;
 
+	dmi_check_system(dmi_hpet_table);
+
 	if (hpet_msi_disable)
 		return;
 
@ arch/x86/kernel/irq.c:184 @ unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
 	unsigned vector = ~regs->orig_ax;
 	unsigned irq;
 
-	exit_idle();
 	irq_enter();
+	exit_idle();
 
 	irq = __this_cpu_read(vector_irq[vector]);
 
@ arch/x86/kernel/irq.c:212 @ void smp_x86_platform_ipi(struct pt_regs *regs)
 
 	ack_APIC_irq();
 
-	exit_idle();
-
 	irq_enter();
 
+	exit_idle();
+
 	inc_irq_stat(x86_platform_ipis);
 
 	if (x86_platform_ipi_callback)
@ arch/x86/kernel/irq_32.c:152 @ void __cpuinit irq_ctx_init(int cpu)
 	       cpu, per_cpu(hardirq_ctx, cpu),  per_cpu(softirq_ctx, cpu));
 }
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 asmlinkage void do_softirq(void)
 {
 	unsigned long flags;
@ arch/x86/kernel/irq_32.c:183 @ asmlinkage void do_softirq(void)
 
 	local_irq_restore(flags);
 }
+#endif
 
 bool handle_irq(unsigned irq, struct pt_regs *regs)
 {
@ arch/x86/kernel/irq_64.c:68 @ bool handle_irq(unsigned irq, struct pt_regs *regs)
 	return true;
 }
 
-
+#ifndef CONFIG_PREEMPT_RT_FULL
 extern void call_softirq(void);
 
 asmlinkage void do_softirq(void)
@ arch/x86/kernel/irq_64.c:88 @ asmlinkage void do_softirq(void)
 	}
 	local_irq_restore(flags);
 }
+#endif
@ arch/x86/kernel/irq_work.c:21 @ void smp_irq_work_interrupt(struct pt_regs *regs)
 	irq_exit();
 }
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 void arch_irq_work_raise(void)
 {
 #ifdef CONFIG_X86_LOCAL_APIC
@ arch/x86/kernel/irq_work.c:32 @ void arch_irq_work_raise(void)
 	apic_wait_icr_idle();
 #endif
 }
+#endif
@ arch/x86/kernel/kprobes.c:481 @ static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs,
 		 * stepping.
 		 */
 		regs->ip = (unsigned long)p->ainsn.insn;
-		preempt_enable_no_resched();
 		return;
 	}
 #endif
@ arch/x86/kernel/process_32.c:42 @
 #include <linux/io.h>
 #include <linux/kdebug.h>
 #include <linux/cpuidle.h>
+#include <linux/highmem.h>
 
 #include <asm/pgtable.h>
 #include <asm/system.h>
@ arch/x86/kernel/process_32.c:121 @ void cpu_idle(void)
 			start_critical_timings();
 		}
 		tick_nohz_restart_sched_tick();
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/x86/kernel/process_32.c:343 @ __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
 		__switch_to_xtra(prev_p, next_p, tss);
 
+#ifdef CONFIG_PREEMPT_RT_FULL
+	/*
+	 * Save @prev's kmap_atomic stack
+	 */
+	prev_p->kmap_idx = __this_cpu_read(__kmap_atomic_idx);
+	if (unlikely(prev_p->kmap_idx)) {
+		int i;
+
+		for (i = 0; i < prev_p->kmap_idx; i++) {
+			int idx = i + KM_TYPE_NR * smp_processor_id();
+
+			pte_t *ptep = kmap_pte - idx;
+			prev_p->kmap_pte[i] = *ptep;
+			kpte_clear_flush(ptep, __fix_to_virt(FIX_KMAP_BEGIN + idx));
+		}
+
+		__this_cpu_write(__kmap_atomic_idx, 0);
+	}
+
+	/*
+	 * Restore @next_p's kmap_atomic stack
+	 */
+	if (unlikely(next_p->kmap_idx)) {
+		int i;
+
+		__this_cpu_write(__kmap_atomic_idx, next_p->kmap_idx);
+
+		for (i = 0; i < next_p->kmap_idx; i++) {
+			int idx = i + KM_TYPE_NR * smp_processor_id();
+
+			set_pte(kmap_pte - idx, next_p->kmap_pte[i]);
+		}
+	}
+#endif
+
 	/*
 	 * Leave lazy mode, flushing any hypercalls made here.
 	 * This must be done before restoring TLS segments so
@ arch/x86/kernel/process_64.c:153 @ void cpu_idle(void)
 		}
 
 		tick_nohz_restart_sched_tick();
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/x86/kernel/signal.c:823 @ do_notify_resume(struct pt_regs *regs, void *unused, __u32 thread_info_flags)
 		mce_notify_process();
 #endif /* CONFIG_X86_64 && CONFIG_X86_MCE */
 
+#ifdef ARCH_RT_DELAYS_SIGNAL_SEND
+	if (unlikely(current->forced_info.si_signo)) {
+		struct task_struct *t = current;
+		force_sig_info(t->forced_info.si_signo,
+					&t->forced_info, t);
+		t->forced_info.si_signo = 0;
+	}
+#endif
+
 	/* deal with pending signal delivery */
 	if (thread_info_flags & _TIF_SIGPENDING)
 		do_signal(regs);
@ arch/x86/kernel/traps.c:90 @ static inline void conditional_sti(struct pt_regs *regs)
 		local_irq_enable();
 }
 
-static inline void preempt_conditional_sti(struct pt_regs *regs)
+static inline void conditional_sti_ist(struct pt_regs *regs)
 {
+#ifdef CONFIG_X86_64
+	/*
+	 * X86_64 uses a per CPU stack on the IST for certain traps
+	 * like int3. The task can not be preempted when using one
+	 * of these stacks, thus preemption must be disabled, otherwise
+	 * the stack can be corrupted if the task is scheduled out,
+	 * and another task comes in and uses this stack.
+	 *
+	 * On x86_32 the task keeps its own stack and it is OK if the
+	 * task schedules out.
+	 */
 	inc_preempt_count();
+#endif
 	if (regs->flags & X86_EFLAGS_IF)
 		local_irq_enable();
 }
@ arch/x86/kernel/traps.c:115 @ static inline void conditional_cli(struct pt_regs *regs)
 		local_irq_disable();
 }
 
-static inline void preempt_conditional_cli(struct pt_regs *regs)
+static inline void conditional_cli_ist(struct pt_regs *regs)
 {
 	if (regs->flags & X86_EFLAGS_IF)
 		local_irq_disable();
+#ifdef CONFIG_X86_64
 	dec_preempt_count();
+#endif
 }
 
 static void __kprobes
@ arch/x86/kernel/traps.c:243 @ dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code)
 	if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
 			X86_TRAP_SS, SIGBUS) == NOTIFY_STOP)
 		return;
-	preempt_conditional_sti(regs);
+	conditional_sti_ist(regs);
 	do_trap(X86_TRAP_SS, SIGBUS, "stack segment", regs, error_code, NULL);
-	preempt_conditional_cli(regs);
+	conditional_cli_ist(regs);
 }
 
 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
@ arch/x86/kernel/traps.c:338 @ dotraplinkage void __kprobes do_int3(struct pt_regs *regs, long error_code)
 		return;
 #endif
 
-	preempt_conditional_sti(regs);
+	conditional_sti_ist(regs);
 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
-	preempt_conditional_cli(regs);
+	conditional_cli_ist(regs);
 }
 
 #ifdef CONFIG_X86_64
@ arch/x86/kernel/traps.c:434 @ dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
 		return;
 
 	/* It's safe to allow irq's after DR6 has been saved */
-	preempt_conditional_sti(regs);
+	conditional_sti_ist(regs);
 
 	if (regs->flags & X86_VM_MASK) {
 		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
 					X86_TRAP_DB);
-		preempt_conditional_cli(regs);
+		conditional_cli_ist(regs);
 		return;
 	}
 
@ arch/x86/kernel/traps.c:458 @ dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
 	si_code = get_si_code(tsk->thread.debugreg6);
 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
 		send_sigtrap(tsk, regs, error_code, si_code);
-	preempt_conditional_cli(regs);
+	conditional_cli_ist(regs);
 
 	return;
 }
@ arch/x86/kernel/vsyscall_64.c:55 @
 #include "vsyscall_trace.h"
 
 DEFINE_VVAR(int, vgetcpu_mode);
-DEFINE_VVAR(struct vsyscall_gtod_data, vsyscall_gtod_data) =
-{
-	.lock = __SEQLOCK_UNLOCKED(__vsyscall_gtod_data.lock),
-};
+DEFINE_VVAR(struct vsyscall_gtod_data, vsyscall_gtod_data);
 
 static enum { EMULATE, NATIVE, NONE } vsyscall_mode = NATIVE;
 
@ arch/x86/kernel/vsyscall_64.c:80 @ early_param("vsyscall", vsyscall_setup);
 
 void update_vsyscall_tz(void)
 {
-	unsigned long flags;
-
-	write_seqlock_irqsave(&vsyscall_gtod_data.lock, flags);
-	/* sys_tz has changed */
 	vsyscall_gtod_data.sys_tz = sys_tz;
-	write_sequnlock_irqrestore(&vsyscall_gtod_data.lock, flags);
 }
 
 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
 			struct clocksource *clock, u32 mult)
 {
-	unsigned long flags;
-
-	write_seqlock_irqsave(&vsyscall_gtod_data.lock, flags);
+	write_seqcount_begin(&vsyscall_gtod_data.seq);
 
 	/* copy vsyscall data */
 	vsyscall_gtod_data.clock.vclock_mode	= clock->archdata.vclock_mode;
@ arch/x86/kernel/vsyscall_64.c:99 @ void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
 	vsyscall_gtod_data.wall_to_monotonic	= *wtm;
 	vsyscall_gtod_data.wall_time_coarse	= __current_kernel_time();
 
-	write_sequnlock_irqrestore(&vsyscall_gtod_data.lock, flags);
+	write_seqcount_end(&vsyscall_gtod_data.seq);
 }
 
 static void warn_bad_vsyscall(const char *level, struct pt_regs *regs,
@ arch/x86/kvm/x86.c:5216 @ int kvm_arch_init(void *opaque)
 		goto out;
 	}
 
+#ifdef CONFIG_PREEMPT_RT_FULL
+	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
+		printk(KERN_ERR "RT requires X86_FEATURE_CONSTANT_TSC\n");
+		return -EOPNOTSUPP;
+	}
+#endif
+
 	r = kvm_mmu_module_init();
 	if (r)
 		goto out;
@ arch/x86/mm/fault.c:1087 @ do_page_fault(struct pt_regs *regs, unsigned long error_code)
 	 * If we're in an interrupt, have no user context or are running
 	 * in an atomic region then we must not take the fault:
 	 */
-	if (unlikely(in_atomic() || !mm)) {
+	if (unlikely(!mm || pagefault_disabled())) {
 		bad_area_nosemaphore(regs, error_code, address);
 		return;
 	}
@ arch/x86/mm/highmem_32.c:46 @ void *kmap_atomic_prot(struct page *page, pgprot_t prot)
 	type = kmap_atomic_idx_push();
 	idx = type + KM_TYPE_NR*smp_processor_id();
 	vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
-	BUG_ON(!pte_none(*(kmap_pte-idx)));
+	WARN_ON(!pte_none(*(kmap_pte-idx)));
 	set_pte(kmap_pte-idx, mk_pte(page, prot));
 	arch_flush_lazy_mmu_mode();
 
@ arch/x86/vdso/vclock_gettime.c:89 @ notrace static noinline int do_realtime(struct timespec *ts)
 {
 	unsigned long seq, ns;
 	do {
-		seq = read_seqbegin(&gtod->lock);
+		seq = read_seqcount_begin(&gtod->seq);
 		ts->tv_sec = gtod->wall_time_sec;
 		ts->tv_nsec = gtod->wall_time_nsec;
 		ns = vgetns();
-	} while (unlikely(read_seqretry(&gtod->lock, seq)));
+	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
 	timespec_add_ns(ts, ns);
 	return 0;
 }
@ arch/x86/vdso/vclock_gettime.c:102 @ notrace static noinline int do_monotonic(struct timespec *ts)
 {
 	unsigned long seq, ns, secs;
 	do {
-		seq = read_seqbegin(&gtod->lock);
+		seq = read_seqcount_begin(&gtod->seq);
 		secs = gtod->wall_time_sec;
 		ns = gtod->wall_time_nsec + vgetns();
 		secs += gtod->wall_to_monotonic.tv_sec;
 		ns += gtod->wall_to_monotonic.tv_nsec;
-	} while (unlikely(read_seqretry(&gtod->lock, seq)));
+	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
 
 	/* wall_time_nsec, vgetns(), and wall_to_monotonic.tv_nsec
 	 * are all guaranteed to be nonnegative.
@ arch/x86/vdso/vclock_gettime.c:126 @ notrace static noinline int do_realtime_coarse(struct timespec *ts)
 {
 	unsigned long seq;
 	do {
-		seq = read_seqbegin(&gtod->lock);
+		seq = read_seqcount_begin(&gtod->seq);
 		ts->tv_sec = gtod->wall_time_coarse.tv_sec;
 		ts->tv_nsec = gtod->wall_time_coarse.tv_nsec;
-	} while (unlikely(read_seqretry(&gtod->lock, seq)));
+	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
 	return 0;
 }
 
@ arch/x86/vdso/vclock_gettime.c:137 @ notrace static noinline int do_monotonic_coarse(struct timespec *ts)
 {
 	unsigned long seq, ns, secs;
 	do {
-		seq = read_seqbegin(&gtod->lock);
+		seq = read_seqcount_begin(&gtod->seq);
 		secs = gtod->wall_time_coarse.tv_sec;
 		ns = gtod->wall_time_coarse.tv_nsec;
 		secs += gtod->wall_to_monotonic.tv_sec;
 		ns += gtod->wall_to_monotonic.tv_nsec;
-	} while (unlikely(read_seqretry(&gtod->lock, seq)));
+	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
 
 	/* wall_time_nsec and wall_to_monotonic.tv_nsec are
 	 * guaranteed to be between 0 and NSEC_PER_SEC.
@ arch/xtensa/kernel/process.c:116 @ void cpu_idle(void)
 	while (1) {
 		while (!need_resched())
 			platform_idle();
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 	}
 }
 
@ arch/xtensa/mm/fault.c:60 @ void do_page_fault(struct pt_regs *regs)
 	/* If we're in an interrupt or have no user
 	 * context, we must not take the fault..
 	 */
-	if (in_atomic() || !mm) {
+	if (!mm || pagefault_disabled()) {
 		bad_page_fault(regs, address, SIGSEGV);
 		return;
 	}
@ block/blk-core.c:238 @ EXPORT_SYMBOL(blk_delay_queue);
  **/
 void blk_start_queue(struct request_queue *q)
 {
-	WARN_ON(!irqs_disabled());
+	WARN_ON_NONRT(!irqs_disabled());
 
 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 	__blk_run_queue(q);
@ block/blk-core.c:303 @ void __blk_run_queue(struct request_queue *q)
 {
 	if (unlikely(blk_queue_stopped(q)))
 		return;
-
+	/*
+	 * q->request_fn() can drop q->queue_lock and reenable
+	 * interrupts, but must return with q->queue_lock held and
+	 * interrupts disabled.
+	 */
 	q->request_fn(q);
 }
 EXPORT_SYMBOL(__blk_run_queue);
@ block/blk-core.c:2752 @ static void queue_unplugged(struct request_queue *q, unsigned int depth,
 	 * this lock).
 	 */
 	if (from_schedule) {
-		spin_unlock(q->queue_lock);
+		spin_unlock_irq(q->queue_lock);
 		blk_run_queue_async(q);
 	} else {
 		__blk_run_queue(q);
-		spin_unlock(q->queue_lock);
+		spin_unlock_irq(q->queue_lock);
 	}
 
 }
@ block/blk-core.c:2782 @ static void flush_plug_callbacks(struct blk_plug *plug)
 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
 {
 	struct request_queue *q;
-	unsigned long flags;
 	struct request *rq;
 	LIST_HEAD(list);
 	unsigned int depth;
@ block/blk-core.c:2802 @ void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
 	q = NULL;
 	depth = 0;
 
-	/*
-	 * Save and disable interrupts here, to avoid doing it for every
-	 * queue lock we have to take.
-	 */
-	local_irq_save(flags);
 	while (!list_empty(&list)) {
 		rq = list_entry_rq(list.next);
 		list_del_init(&rq->queuelist);
@ block/blk-core.c:2814 @ void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
 				queue_unplugged(q, depth, from_schedule);
 			q = rq->q;
 			depth = 0;
-			spin_lock(q->queue_lock);
+			spin_lock_irq(q->queue_lock);
 		}
 		/*
 		 * rq is already accounted, so use raw insert
@ block/blk-core.c:2832 @ void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
 	 */
 	if (q)
 		queue_unplugged(q, depth, from_schedule);
-
-	local_irq_restore(flags);
 }
 
 void blk_finish_plug(struct blk_plug *plug)
@ block/blk-iopoll.c:41 @ void blk_iopoll_sched(struct blk_iopoll *iop)
 	list_add_tail(&iop->list, &__get_cpu_var(blk_cpu_iopoll));
 	__raise_softirq_irqoff(BLOCK_IOPOLL_SOFTIRQ);
 	local_irq_restore(flags);
+	preempt_check_resched_rt();
 }
 EXPORT_SYMBOL(blk_iopoll_sched);
 
@ block/blk-iopoll.c:139 @ static void blk_iopoll_softirq(struct softirq_action *h)
 		__raise_softirq_irqoff(BLOCK_IOPOLL_SOFTIRQ);
 
 	local_irq_enable();
+	preempt_check_resched_rt();
 }
 
 /**
@ block/blk-iopoll.c:209 @ static int __cpuinit blk_iopoll_cpu_notify(struct notifier_block *self,
 				 &__get_cpu_var(blk_cpu_iopoll));
 		__raise_softirq_irqoff(BLOCK_IOPOLL_SOFTIRQ);
 		local_irq_enable();
+		preempt_check_resched_rt();
 	}
 
 	return NOTIFY_OK;
@ block/blk-softirq.c:53 @ static void trigger_softirq(void *data)
 		raise_softirq_irqoff(BLOCK_SOFTIRQ);
 
 	local_irq_restore(flags);
+	preempt_check_resched_rt();
 }
 
 /*
@ block/blk-softirq.c:96 @ static int __cpuinit blk_cpu_notify(struct notifier_block *self,
 				 &__get_cpu_var(blk_cpu_done));
 		raise_softirq_irqoff(BLOCK_SOFTIRQ);
 		local_irq_enable();
+		preempt_check_resched_rt();
 	}
 
 	return NOTIFY_OK;
@ block/blk-softirq.c:155 @ do_local:
 		goto do_local;
 
 	local_irq_restore(flags);
+	preempt_check_resched_rt();
 }
 
 /**
@ drivers/acpi/acpica/acglobal.h:239 @ ACPI_EXTERN u8 acpi_gbl_global_lock_pending;
  * interrupt level
  */
 ACPI_EXTERN acpi_spinlock acpi_gbl_gpe_lock;	/* For GPE data structs and registers */
-ACPI_EXTERN acpi_spinlock acpi_gbl_hardware_lock;	/* For ACPI H/W except GPE registers */
+ACPI_EXTERN acpi_raw_spinlock acpi_gbl_hardware_lock;	/* For ACPI H/W except GPE registers */
 
 /*****************************************************************************
  *
@ drivers/acpi/acpica/hwregs.c:266 @ acpi_status acpi_hw_clear_acpi_status(void)
 			  ACPI_BITMASK_ALL_FIXED_STATUS,
 			  ACPI_FORMAT_UINT64(acpi_gbl_xpm1a_status.address)));
 
-	lock_flags = acpi_os_acquire_lock(acpi_gbl_hardware_lock);
+	raw_spin_lock_irqsave(acpi_gbl_hardware_lock, lock_flags);
 
 	/* Clear the fixed events in PM1 A/B */
 
 	status = acpi_hw_register_write(ACPI_REGISTER_PM1_STATUS,
 					ACPI_BITMASK_ALL_FIXED_STATUS);
 
-	acpi_os_release_lock(acpi_gbl_hardware_lock, lock_flags);
+	raw_spin_unlock_irqrestore(acpi_gbl_hardware_lock, lock_flags);
 
 	if (ACPI_FAILURE(status))
 		goto exit;
@ drivers/acpi/acpica/hwxface.c:390 @ acpi_status acpi_write_bit_register(u32 register_id, u32 value)
 		return_ACPI_STATUS(AE_BAD_PARAMETER);
 	}
 
-	lock_flags = acpi_os_acquire_lock(acpi_gbl_hardware_lock);
+	raw_spin_lock_irqsave(acpi_gbl_hardware_lock, lock_flags);
 
 	/*
 	 * At this point, we know that the parent register is one of the
@ drivers/acpi/acpica/hwxface.c:451 @ acpi_status acpi_write_bit_register(u32 register_id, u32 value)
 
 unlock_and_exit:
 
-	acpi_os_release_lock(acpi_gbl_hardware_lock, lock_flags);
+	raw_spin_unlock_irqrestore(acpi_gbl_hardware_lock, lock_flags);
 	return_ACPI_STATUS(status);
 }
 
@ drivers/acpi/acpica/utmutex.c:91 @ acpi_status acpi_ut_mutex_initialize(void)
 		return_ACPI_STATUS (status);
 	}
 
-	status = acpi_os_create_lock (&acpi_gbl_hardware_lock);
+	status = acpi_os_create_raw_lock (&acpi_gbl_hardware_lock);
 	if (ACPI_FAILURE (status)) {
 		return_ACPI_STATUS (status);
 	}
@ drivers/acpi/acpica/utmutex.c:138 @ void acpi_ut_mutex_terminate(void)
 	/* Delete the spinlocks */
 
 	acpi_os_delete_lock(acpi_gbl_gpe_lock);
-	acpi_os_delete_lock(acpi_gbl_hardware_lock);
+	acpi_os_delete_raw_lock(acpi_gbl_hardware_lock);
 
 	/* Delete the reader/writer lock */
 
@ drivers/ata/libata-sff.c:681 @ unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
 	unsigned long flags;
 	unsigned int consumed;
 
-	local_irq_save(flags);
+	local_irq_save_nort(flags);
 	consumed = ata_sff_data_xfer32(dev, buf, buflen, rw);
-	local_irq_restore(flags);
+	local_irq_restore_nort(flags);
 
 	return consumed;
 }
@ drivers/ata/libata-sff.c:722 @ static void ata_pio_sector(struct ata_queued_cmd *qc)
 		unsigned long flags;
 
 		/* FIXME: use a bounce buffer */
-		local_irq_save(flags);
+		local_irq_save_nort(flags);
 		buf = kmap_atomic(page, KM_IRQ0);
 
 		/* do the actual data transfer */
@ drivers/ata/libata-sff.c:730 @ static void ata_pio_sector(struct ata_queued_cmd *qc)
 				       do_write);
 
 		kunmap_atomic(buf, KM_IRQ0);
-		local_irq_restore(flags);
+		local_irq_restore_nort(flags);
 	} else {
 		buf = page_address(page);
 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
@ drivers/ata/libata-sff.c:867 @ next_sg:
 		unsigned long flags;
 
 		/* FIXME: use bounce buffer */
-		local_irq_save(flags);
+		local_irq_save_nort(flags);
 		buf = kmap_atomic(page, KM_IRQ0);
 
 		/* do the actual data transfer */
@ drivers/ata/libata-sff.c:875 @ next_sg:
 								count, rw);
 
 		kunmap_atomic(buf, KM_IRQ0);
-		local_irq_restore(flags);
+		local_irq_restore_nort(flags);
 	} else {
 		buf = page_address(page);
 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
@ drivers/char/random.c:448 @ static struct entropy_store input_pool = {
 	.poolinfo = &poolinfo_table[0],
 	.name = "input",
 	.limit = 1,
-	.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
+	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 	.pool = input_pool_data
 };
 
@ drivers/char/random.c:457 @ static struct entropy_store blocking_pool = {
 	.name = "blocking",
 	.limit = 1,
 	.pull = &input_pool,
-	.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
+	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
 	.pool = blocking_pool_data
 };
 
@ drivers/char/random.c:465 @ static struct entropy_store nonblocking_pool = {
 	.poolinfo = &poolinfo_table[1],
 	.name = "nonblocking",
 	.pull = &input_pool,
-	.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
+	.lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
 	.pool = nonblocking_pool_data
 };
 
@ drivers/char/random.c:704 @ static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
 	preempt_disable();
 	/* if over the trickle threshold, use only 1 in 4096 samples */
 	if (input_pool.entropy_count > trickle_thresh &&
-	    ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
-		goto out;
+	    ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff)) {
+		preempt_enable();
+		return;
+	}
+	preempt_enable();
 
 	sample.jiffies = jiffies;
 	sample.cycles = get_cycles();
@ drivers/char/random.c:750 @ static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
 		credit_entropy_bits(&input_pool,
 				    min_t(int, fls(delta>>1), 11));
 	}
-out:
-	preempt_enable();
 }
 
 void add_input_randomness(unsigned int type, unsigned int code,
@ drivers/char/random.c:770 @ EXPORT_SYMBOL_GPL(add_input_randomness);
 
 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
 
-void add_interrupt_randomness(int irq, int irq_flags)
+void add_interrupt_randomness(int irq, int irq_flags, __u64 ip)
 {
 	struct entropy_store	*r;
 	struct fast_pool	*fast_pool = &__get_cpu_var(irq_randomness);
-	struct pt_regs		*regs = get_irq_regs();
 	unsigned long		now = jiffies;
 	__u32			input[4], cycles = get_cycles();
 
 	input[0] = cycles ^ jiffies;
 	input[1] = irq;
-	if (regs) {
-		__u64 ip = instruction_pointer(regs);
+	if (ip) {
 		input[2] = ip;
 		input[3] = ip >> 32;
 	}
@ drivers/char/random.c:793 @ void add_interrupt_randomness(int irq, int irq_flags)
 	fast_pool->last = now;
 
 	r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
+#ifndef CONFIG_PREEMPT_RT_FULL
 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
+#else
+	mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
+#endif
 	/*
 	 * If we don't have a valid cycle counter, and we see
 	 * back-to-back timer interrupts, then skip giving credit for
@ drivers/clocksource/tcb_clksrc.c:24 @
  *     resolution better than 200 nsec).
  *
  *   - The third channel may be used to provide a 16-bit clockevent
- *     source, used in either periodic or oneshot mode.  This runs
- *     at 32 KiHZ, and can handle delays of up to two seconds.
+ *     source, used in either periodic or oneshot mode.
  *
  * A boot clocksource and clockevent source are also currently needed,
  * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
@ drivers/clocksource/tcb_clksrc.c:70 @ static struct clocksource clksrc = {
 struct tc_clkevt_device {
 	struct clock_event_device	clkevt;
 	struct clk			*clk;
+	u32				freq;
 	void __iomem			*regs;
 };
 
@ drivers/clocksource/tcb_clksrc.c:79 @ static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
 	return container_of(clkevt, struct tc_clkevt_device, clkevt);
 }
 
-/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
- * because using one of the divided clocks would usually mean the
- * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
- *
- * A divided clock could be good for high resolution timers, since
- * 30.5 usec resolution can seem "low".
- */
 static u32 timer_clock;
 
 static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
@ drivers/clocksource/tcb_clksrc.c:101 @ static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
 	case CLOCK_EVT_MODE_PERIODIC:
 		clk_enable(tcd->clk);
 
-		/* slow clock, count up to RC, then irq and restart */
+		/* count up to RC, then irq and restart */
 		__raw_writel(timer_clock
 				| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
 				regs + ATMEL_TC_REG(2, CMR));
-		__raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
+		__raw_writel((tcd->freq + HZ/2)/HZ,
+			     tcaddr + ATMEL_TC_REG(2, RC));
 
 		/* Enable clock and interrupts on RC compare */
 		__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
@ drivers/clocksource/tcb_clksrc.c:119 @ static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
 	case CLOCK_EVT_MODE_ONESHOT:
 		clk_enable(tcd->clk);
 
-		/* slow clock, count up to RC, then irq and stop */
+		/* count up to RC, then irq and stop */
 		__raw_writel(timer_clock | ATMEL_TC_CPCSTOP
 				| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
 				regs + ATMEL_TC_REG(2, CMR));
@ drivers/clocksource/tcb_clksrc.c:149 @ static struct tc_clkevt_device clkevt = {
 		.features	= CLOCK_EVT_FEAT_PERIODIC
 					| CLOCK_EVT_FEAT_ONESHOT,
 		.shift		= 32,
+#ifdef CONFIG_ATMEL_TCB_CLKSRC_USE_SLOW_CLOCK
 		/* Should be lower than at91rm9200's system timer */
 		.rating		= 125,
+#else
+		.rating		= 200,
+#endif
 		.set_next_event	= tc_next_event,
 		.set_mode	= tc_mode,
 	},
@ drivers/clocksource/tcb_clksrc.c:180 @ static struct irqaction tc_irqaction = {
 	.handler	= ch2_irq,
 };
 
-static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
+static void __init setup_clkevents(struct atmel_tc *tc, int divisor_idx)
 {
+	unsigned divisor = atmel_tc_divisors[divisor_idx];
 	struct clk *t2_clk = tc->clk[2];
 	int irq = tc->irq[2];
 
@ drivers/clocksource/tcb_clksrc.c:190 @ static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
 	clkevt.clk = t2_clk;
 	tc_irqaction.dev_id = &clkevt;
 
-	timer_clock = clk32k_divisor_idx;
+	timer_clock = divisor_idx;
 
-	clkevt.clkevt.mult = div_sc(32768, NSEC_PER_SEC, clkevt.clkevt.shift);
-	clkevt.clkevt.max_delta_ns
-		= clockevent_delta2ns(0xffff, &clkevt.clkevt);
+	if (!divisor)
+		clkevt.freq = 32768;
+	else
+		clkevt.freq = clk_get_rate(t2_clk)/divisor;
+
+	clkevt.clkevt.mult = div_sc(clkevt.freq, NSEC_PER_SEC,
+				    clkevt.clkevt.shift);
+	clkevt.clkevt.max_delta_ns =
+		clockevent_delta2ns(0xffff, &clkevt.clkevt);
 	clkevt.clkevt.min_delta_ns = clockevent_delta2ns(1, &clkevt.clkevt) + 1;
 	clkevt.clkevt.cpumask = cpumask_of(0);
 
@ drivers/clocksource/tcb_clksrc.c:303 @ static int __init tcb_clksrc_init(void)
 	clocksource_register(&clksrc);
 
 	/* channel 2:  periodic and oneshot timer support */
+#ifdef CONFIG_ATMEL_TCB_CLKSRC_USE_SLOW_CLOCK
 	setup_clkevents(tc, clk32k_divisor_idx);
-
+#else
+	setup_clkevents(tc, best_divisor_idx);
+#endif
 	return 0;
 }
 arch_initcall(tcb_clksrc_init);
@ drivers/ide/alim15x3.c:237 @ static int init_chipset_ali15x3(struct pci_dev *dev)
 
 	isa_dev = pci_get_device(PCI_VENDOR_ID_AL, PCI_DEVICE_ID_AL_M1533, NULL);
 
-	local_irq_save(flags);
+	local_irq_save_nort(flags);
 
 	if (m5229_revision < 0xC2) {
 		/*
@ drivers/ide/alim15x3.c:328 @ out:
 	}
 	pci_dev_put(north);
 	pci_dev_put(isa_dev);
-	local_irq_restore(flags);
+	local_irq_restore_nort(flags);
 	return 0;
 }
 
@ drivers/ide/hpt366.c:1244 @ static int __devinit init_dma_hpt366(ide_hwif_t *hwif,
 
 	dma_old = inb(base + 2);
 
-	local_irq_save(flags);
+	local_irq_save_nort(flags);
 
 	dma_new = dma_old;
 	pci_read_config_byte(dev, hwif->channel ? 0x4b : 0x43, &masterdma);
@ drivers/ide/hpt366.c:1255 @ static int __devinit init_dma_hpt366(ide_hwif_t *hwif,
 	if (dma_new != dma_old)
 		outb(dma_new, base + 2);
 
-	local_irq_restore(flags);
+	local_irq_restore_nort(flags);
 
 	printk(KERN_INFO "    %s: BM-DMA at 0x%04lx-0x%04lx\n",
 			 hwif->name, base, base + 7);
@ drivers/ide/ide-io-std.c:178 @ void ide_input_data(ide_drive_t *drive, struct ide_cmd *cmd, void *buf,
 		unsigned long uninitialized_var(flags);
 
 		if ((io_32bit & 2) && !mmio) {
-			local_irq_save(flags);
+			local_irq_save_nort(flags);
 			ata_vlb_sync(io_ports->nsect_addr);
 		}
 
@ drivers/ide/ide-io-std.c:189 @ void ide_input_data(ide_drive_t *drive, struct ide_cmd *cmd, void *buf,
 			insl(data_addr, buf, words);
 
 		if ((io_32bit & 2) && !mmio)
-			local_irq_restore(flags);
+			local_irq_restore_nort(flags);
 
 		if (((len + 1) & 3) < 2)
 			return;
@ drivers/ide/ide-io-std.c:222 @ void ide_output_data(ide_drive_t *drive, struct ide_cmd *cmd, void *buf,
 		unsigned long uninitialized_var(flags);
 
 		if ((io_32bit & 2) && !mmio) {
-			local_irq_save(flags);
+			local_irq_save_nort(flags);
 			ata_vlb_sync(io_ports->nsect_addr);
 		}
 
@ drivers/ide/ide-io-std.c:233 @ void ide_output_data(ide_drive_t *drive, struct ide_cmd *cmd, void *buf,
 			outsl(data_addr, buf, words);
 
 		if ((io_32bit & 2) && !mmio)
-			local_irq_restore(flags);
+			local_irq_restore_nort(flags);
 
 		if (((len + 1) & 3) < 2)
 			return;
@ drivers/ide/ide-io.c:662 @ void ide_timer_expiry (unsigned long data)
 		/* disable_irq_nosync ?? */
 		disable_irq(hwif->irq);
 		/* local CPU only, as if we were handling an interrupt */
-		local_irq_disable();
+		local_irq_disable_nort();
 		if (hwif->polling) {
 			startstop = handler(drive);
 		} else if (drive_is_ready(drive)) {
@ drivers/ide/ide-iops.c:132 @ int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad,
 				if ((stat & ATA_BUSY) == 0)
 					break;
 
-				local_irq_restore(flags);
+				local_irq_restore_nort(flags);
 				*rstat = stat;
 				return -EBUSY;
 			}
 		}
-		local_irq_restore(flags);
+		local_irq_restore_nort(flags);
 	}
 	/*
 	 * Allow status to settle, then read it again.
@ drivers/ide/ide-probe.c:199 @ static void do_identify(ide_drive_t *drive, u8 cmd, u16 *id)
 	int bswap = 1;
 
 	/* local CPU only; some systems need this */
-	local_irq_save(flags);
+	local_irq_save_nort(flags);
 	/* read 512 bytes of id info */
 	hwif->tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
-	local_irq_restore(flags);
+	local_irq_restore_nort(flags);
 
 	drive->dev_flags |= IDE_DFLAG_ID_READ;
 #ifdef DEBUG
@ drivers/ide/ide-taskfile.c:254 @ void ide_pio_bytes(ide_drive_t *drive, struct ide_cmd *cmd,
 
 		page_is_high = PageHighMem(page);
 		if (page_is_high)
-			local_irq_save(flags);
+			local_irq_save_nort(flags);
 
 		buf = kmap_atomic(page, KM_BIO_SRC_IRQ) + offset;
 
@ drivers/ide/ide-taskfile.c:275 @ void ide_pio_bytes(ide_drive_t *drive, struct ide_cmd *cmd,
 		kunmap_atomic(buf, KM_BIO_SRC_IRQ);
 
 		if (page_is_high)
-			local_irq_restore(flags);
+			local_irq_restore_nort(flags);
 
 		len -= nr_bytes;
 	}
@ drivers/ide/ide-taskfile.c:418 @ static ide_startstop_t pre_task_out_intr(ide_drive_t *drive,
 	}
 
 	if ((drive->dev_flags & IDE_DFLAG_UNMASK) == 0)
-		local_irq_disable();
+		local_irq_disable_nort();
 
 	ide_set_handler(drive, &task_pio_intr, WAIT_WORSTCASE);
 
@ drivers/idle/i7300_idle.c:78 @ static unsigned long past_skip;
 
 static struct pci_dev *fbd_dev;
 
-static spinlock_t i7300_idle_lock;
+static raw_spinlock_t i7300_idle_lock;
 static int i7300_idle_active;
 
 static u8 i7300_idle_thrtctl_saved;
@ drivers/idle/i7300_idle.c:460 @ static int i7300_idle_notifier(struct notifier_block *nb, unsigned long val,
 		idle_begin_time = ktime_get();
 	}
 
-	spin_lock_irqsave(&i7300_idle_lock, flags);
+	raw_spin_lock_irqsave(&i7300_idle_lock, flags);
 	if (val == IDLE_START) {
 
 		cpumask_set_cpu(smp_processor_id(), idle_cpumask);
@ drivers/idle/i7300_idle.c:509 @ static int i7300_idle_notifier(struct notifier_block *nb, unsigned long val,
 		}
 	}
 end:
-	spin_unlock_irqrestore(&i7300_idle_lock, flags);
+	raw_spin_unlock_irqrestore(&i7300_idle_lock, flags);
 	return 0;
 }
 
@ drivers/idle/i7300_idle.c:557 @ struct debugfs_file_info {
 
 static int __init i7300_idle_init(void)
 {
-	spin_lock_init(&i7300_idle_lock);
+	raw_spin_lock_init(&i7300_idle_lock);
 	total_us = 0;
 
 	if (i7300_idle_platform_probe(&fbd_dev, &ioat_dev, forceload))
@ drivers/infiniband/ulp/ipoib/ipoib_multicast.c:803 @ void ipoib_mcast_restart_task(struct work_struct *work)
 
 	ipoib_mcast_stop_thread(dev, 0);
 
-	local_irq_save(flags);
+	local_irq_save_nort(flags);
 	netif_addr_lock(dev);
 	spin_lock(&priv->lock);
 
@ drivers/infiniband/ulp/ipoib/ipoib_multicast.c:885 @ void ipoib_mcast_restart_task(struct work_struct *work)
 
 	spin_unlock(&priv->lock);
 	netif_addr_unlock(dev);
-	local_irq_restore(flags);
+	local_irq_restore_nort(flags);
 
 	/* We have to cancel outside of the spinlock */
 	list_for_each_entry_safe(mcast, tmcast, &remove_list, list) {
@ drivers/input/gameport/gameport.c:90 @ static int gameport_measure_speed(struct gameport *gameport)
 	tx = 1 << 30;
 
 	for(i = 0; i < 50; i++) {
-		local_irq_save(flags);
+		local_irq_save_nort(flags);
 		GET_TIME(t1);
 		for (t = 0; t < 50; t++) gameport_read(gameport);
 		GET_TIME(t2);
 		GET_TIME(t3);
-		local_irq_restore(flags);
+		local_irq_restore_nort(flags);
 		udelay(i * 10);
 		if ((t = DELTA(t2,t1) - DELTA(t3,t2)) < tx) tx = t;
 	}
@ drivers/input/gameport/gameport.c:114 @ static int gameport_measure_speed(struct gameport *gameport)
 	tx = 1 << 30;
 
 	for(i = 0; i < 50; i++) {
-		local_irq_save(flags);
+		local_irq_save_nort(flags);
 		rdtscl(t1);
 		for (t = 0; t < 50; t++) gameport_read(gameport);
 		rdtscl(t2);
-		local_irq_restore(flags);
+		local_irq_restore_nort(flags);
 		udelay(i * 10);
 		if (t2 - t1 < tx) tx = t2 - t1;
 	}
@ drivers/md/dm.c:1679 @ static void dm_request_fn(struct request_queue *q)
 		if (map_request(ti, clone, md))
 			goto requeued;
 
-		BUG_ON(!irqs_disabled());
+		BUG_ON_NONRT(!irqs_disabled());
 		spin_lock(q->queue_lock);
 	}
 
 	goto out;
 
 requeued:
-	BUG_ON(!irqs_disabled());
+	BUG_ON_NONRT(!irqs_disabled());
 	spin_lock(q->queue_lock);
 
 delay_and_out:
@ drivers/md/raid5.c:1256 @ static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
 	struct raid5_percpu *percpu;
 	unsigned long cpu;
 
-	cpu = get_cpu();
+	cpu = get_cpu_light();
 	percpu = per_cpu_ptr(conf->percpu, cpu);
+	spin_lock(&percpu->lock);
 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
 		ops_run_biofill(sh);
 		overlap_clear++;
@ drivers/md/raid5.c:1310 @ static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
 				wake_up(&sh->raid_conf->wait_for_overlap);
 		}
-	put_cpu();
+	spin_unlock(&percpu->lock);
+	put_cpu_light();
 }
 
 #ifdef CONFIG_MULTICORE_RAID456
@ drivers/md/raid5.c:4554 @ static int raid5_alloc_percpu(struct r5conf *conf)
 			break;
 		}
 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
+		spin_lock_init(&per_cpu_ptr(conf->percpu, cpu)->lock);
 	}
 #ifdef CONFIG_HOTPLUG_CPU
 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
@ drivers/md/raid5.h:408 @ struct r5conf {
 	int			recovery_disabled;
 	/* per cpu variables */
 	struct raid5_percpu {
+		spinlock_t	lock;	     /* Protection for -RT */
 		struct page	*spare_page; /* Used when checking P/Q in raid6 */
 		void		*scribble;   /* space for constructing buffer
 					      * lists and performing address
@ drivers/misc/Kconfig:85 @ config AB8500_PWM
 config ATMEL_TCLIB
 	bool "Atmel AT32/AT91 Timer/Counter Library"
 	depends on (AVR32 || ARCH_AT91)
+	default y if PREEMPT_RT_FULL
 	help
 	  Select this if you want a library to allocate the Timer/Counter
 	  blocks found on many Atmel processors.  This facilitates using
@ drivers/misc/Kconfig:101 @ config ATMEL_TCB_CLKSRC
 	  are combined to make a single 32-bit timer.
 
 	  When GENERIC_CLOCKEVENTS is defined, the third timer channel
-	  may be used as a clock event device supporting oneshot mode
-	  (delays of up to two seconds) based on the 32 KiHz clock.
+	  may be used as a clock event device supporting oneshot mode.
 
 config ATMEL_TCB_CLKSRC_BLOCK
 	int
@ drivers/misc/Kconfig:115 @ config ATMEL_TCB_CLKSRC_BLOCK
 	  TC can be used for other purposes, such as PWM generation and
 	  interval timing.
 
+config ATMEL_TCB_CLKSRC_USE_SLOW_CLOCK
+	bool "TC Block use 32 KiHz clock"
+	depends on ATMEL_TCB_CLKSRC
+	default y if !PREEMPT_RT_FULL
+	help
+	  Select this to use 32 KiHz base clock rate as TC block clock
+	  source for clock events.
+
 config IBM_ASM
 	tristate "Device driver for IBM RSA service processor"
 	depends on X86 && PCI && INPUT && EXPERIMENTAL
@ drivers/misc/Kconfig:144 @ config IBM_ASM
 	  for information on the specific driver level and support statement
 	  for your IBM server.
 
+config HWLAT_DETECTOR
+	tristate "Testing module to detect hardware-induced latencies"
+	depends on DEBUG_FS
+	depends on RING_BUFFER
+	default m
+	---help---
+	  A simple hardware latency detector. Use this module to detect
+	  large latencies introduced by the behavior of the underlying
+	  system firmware external to Linux. We do this using periodic
+	  use of stop_machine to grab all available CPUs and measure
+	  for unexplainable gaps in the CPU timestamp counter(s). By
+	  default, the module is not enabled until the "enable" file
+	  within the "hwlat_detector" debugfs directory is toggled.
+
+	  This module is often used to detect SMI (System Management
+	  Interrupts) on x86 systems, though is not x86 specific. To
+	  this end, we default to using a sample window of 1 second,
+	  during which we will sample for 0.5 seconds. If an SMI or
+	  similar event occurs during that time, it is recorded
+	  into an 8K samples global ring buffer until retreived.
+
+	  WARNING: This software should never be enabled (it can be built
+	  but should not be turned on after it is loaded) in a production
+	  environment where high latencies are a concern since the
+	  sampling mechanism actually introduces latencies for
+	  regular tasks while the CPU(s) are being held.
+
+	  If unsure, say N
+
 config PHANTOM
 	tristate "Sensable PHANToM (PCI)"
 	depends on PCI
@ drivers/misc/Makefile:51 @ obj-y				+= lis3lv02d/
 obj-y				+= carma/
 obj-$(CONFIG_USB_SWITCH_FSA9480) += fsa9480.o
 obj-$(CONFIG_ALTERA_STAPL)	+=altera-stapl/
+obj-$(CONFIG_HWLAT_DETECTOR)	+= hwlat_detector.o
@ drivers/misc/hwlat_detector.c:4 @
+/*
+ * hwlat_detector.c - A simple Hardware Latency detector.
+ *
+ * Use this module to detect large system latencies induced by the behavior of
+ * certain underlying system hardware or firmware, independent of Linux itself.
+ * The code was developed originally to detect the presence of SMIs on Intel
+ * and AMD systems, although there is no dependency upon x86 herein.
+ *
+ * The classical example usage of this module is in detecting the presence of
+ * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a
+ * somewhat special form of hardware interrupt spawned from earlier CPU debug
+ * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge
+ * LPC (or other device) to generate a special interrupt under certain
+ * circumstances, for example, upon expiration of a special SMI timer device,
+ * due to certain external thermal readings, on certain I/O address accesses,
+ * and other situations. An SMI hits a special CPU pin, triggers a special
+ * SMI mode (complete with special memory map), and the OS is unaware.
+ *
+ * Although certain hardware-inducing latencies are necessary (for example,
+ * a modern system often requires an SMI handler for correct thermal control
+ * and remote management) they can wreak havoc upon any OS-level performance
+ * guarantees toward low-latency, especially when the OS is not even made
+ * aware of the presence of these interrupts. For this reason, we need a
+ * somewhat brute force mechanism to detect these interrupts. In this case,
+ * we do it by hogging all of the CPU(s) for configurable timer intervals,
+ * sampling the built-in CPU timer, looking for discontiguous readings.
+ *
+ * WARNING: This implementation necessarily introduces latencies. Therefore,
+ *          you should NEVER use this module in a production environment
+ *          requiring any kind of low-latency performance guarantee(s).
+ *
+ * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
+ *
+ * Includes useful feedback from Clark Williams <clark@redhat.com>
+ *
+ * This file is licensed under the terms of the GNU General Public
+ * License version 2. This program is licensed "as is" without any
+ * warranty of any kind, whether express or implied.
+ */
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/ring_buffer.h>
+#include <linux/stop_machine.h>
+#include <linux/time.h>
+#include <linux/hrtimer.h>
+#include <linux/kthread.h>
+#include <linux/debugfs.h>
+#include <linux/seq_file.h>
+#include <linux/uaccess.h>
+#include <linux/version.h>
+#include <linux/delay.h>
+#include <linux/slab.h>
+
+#define BUF_SIZE_DEFAULT	262144UL		/* 8K*(sizeof(entry)) */
+#define BUF_FLAGS		(RB_FL_OVERWRITE)	/* no block on full */
+#define U64STR_SIZE		22			/* 20 digits max */
+
+#define VERSION			"1.0.0"
+#define BANNER			"hwlat_detector: "
+#define DRVNAME			"hwlat_detector"
+#define DEFAULT_SAMPLE_WINDOW	1000000			/* 1s */
+#define DEFAULT_SAMPLE_WIDTH	500000			/* 0.5s */
+#define DEFAULT_LAT_THRESHOLD	10			/* 10us */
+
+/* Module metadata */
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Jon Masters <jcm@redhat.com>");
+MODULE_DESCRIPTION("A simple hardware latency detector");
+MODULE_VERSION(VERSION);
+
+/* Module parameters */
+
+static int debug;
+static int enabled;
+static int threshold;
+
+module_param(debug, int, 0);			/* enable debug */
+module_param(enabled, int, 0);			/* enable detector */
+module_param(threshold, int, 0);		/* latency threshold */
+
+/* Buffering and sampling */
+
+static struct ring_buffer *ring_buffer;		/* sample buffer */
+static DEFINE_MUTEX(ring_buffer_mutex);		/* lock changes */
+static unsigned long buf_size = BUF_SIZE_DEFAULT;
+static struct task_struct *kthread;		/* sampling thread */
+
+/* DebugFS filesystem entries */
+
+static struct dentry *debug_dir;		/* debugfs directory */
+static struct dentry *debug_max;		/* maximum TSC delta */
+static struct dentry *debug_count;		/* total detect count */
+static struct dentry *debug_sample_width;	/* sample width us */
+static struct dentry *debug_sample_window;	/* sample window us */
+static struct dentry *debug_sample;		/* raw samples us */
+static struct dentry *debug_threshold;		/* threshold us */
+static struct dentry *debug_enable;         	/* enable/disable */
+
+/* Individual samples and global state */
+
+struct sample;					/* latency sample */
+struct data;					/* Global state */
+
+/* Sampling functions */
+static int __buffer_add_sample(struct sample *sample);
+static struct sample *buffer_get_sample(struct sample *sample);
+static int get_sample(void *unused);
+
+/* Threading and state */
+static int kthread_fn(void *unused);
+static int start_kthread(void);
+static int stop_kthread(void);
+static void __reset_stats(void);
+static int init_stats(void);
+
+/* Debugfs interface */
+static ssize_t simple_data_read(struct file *filp, char __user *ubuf,
+				size_t cnt, loff_t *ppos, const u64 *entry);
+static ssize_t simple_data_write(struct file *filp, const char __user *ubuf,
+				 size_t cnt, loff_t *ppos, u64 *entry);
+static int debug_sample_fopen(struct inode *inode, struct file *filp);
+static ssize_t debug_sample_fread(struct file *filp, char __user *ubuf,
+				  size_t cnt, loff_t *ppos);
+static int debug_sample_release(struct inode *inode, struct file *filp);
+static int debug_enable_fopen(struct inode *inode, struct file *filp);
+static ssize_t debug_enable_fread(struct file *filp, char __user *ubuf,
+				  size_t cnt, loff_t *ppos);
+static ssize_t debug_enable_fwrite(struct file *file,
+				   const char __user *user_buffer,
+				   size_t user_size, loff_t *offset);
+
+/* Initialization functions */
+static int init_debugfs(void);
+static void free_debugfs(void);
+static int detector_init(void);
+static void detector_exit(void);
+
+/* Individual latency samples are stored here when detected and packed into
+ * the ring_buffer circular buffer, where they are overwritten when
+ * more than buf_size/sizeof(sample) samples are received. */
+struct sample {
+	u64		seqnum;		/* unique sequence */
+	u64		duration;	/* ktime delta */
+	struct timespec	timestamp;	/* wall time */
+	unsigned long   lost;
+};
+
+/* keep the global state somewhere. Mostly used under stop_machine. */
+static struct data {
+
+	struct mutex lock;		/* protect changes */
+
+	u64	count;			/* total since reset */
+	u64	max_sample;		/* max hardware latency */
+	u64	threshold;		/* sample threshold level */
+
+	u64	sample_window;		/* total sampling window (on+off) */
+	u64	sample_width;		/* active sampling portion of window */
+
+	atomic_t sample_open;		/* whether the sample file is open */
+
+	wait_queue_head_t wq;		/* waitqeue for new sample values */
+
+} data;
+
+/**
+ * __buffer_add_sample - add a new latency sample recording to the ring buffer
+ * @sample: The new latency sample value
+ *
+ * This receives a new latency sample and records it in a global ring buffer.
+ * No additional locking is used in this case - suited for stop_machine use.
+ */
+static int __buffer_add_sample(struct sample *sample)
+{
+	return ring_buffer_write(ring_buffer,
+				 sizeof(struct sample), sample);
+}
+
+/**
+ * buffer_get_sample - remove a hardware latency sample from the ring buffer
+ * @sample: Pre-allocated storage for the sample
+ *
+ * This retrieves a hardware latency sample from the global circular buffer
+ */
+static struct sample *buffer_get_sample(struct sample *sample)
+{
+	struct ring_buffer_event *e = NULL;
+	struct sample *s = NULL;
+	unsigned int cpu = 0;
+
+	if (!sample)
+		return NULL;
+
+	mutex_lock(&ring_buffer_mutex);
+	for_each_online_cpu(cpu) {
+		e = ring_buffer_consume(ring_buffer, cpu, NULL, &sample->lost);
+		if (e)
+			break;
+	}
+
+	if (e) {
+		s = ring_buffer_event_data(e);
+		memcpy(sample, s, sizeof(struct sample));
+	} else
+		sample = NULL;
+	mutex_unlock(&ring_buffer_mutex);
+
+	return sample;
+}
+
+/**
+ * get_sample - sample the CPU TSC and look for likely hardware latencies
+ * @unused: This is not used but is a part of the stop_machine API
+ *
+ * Used to repeatedly capture the CPU TSC (or similar), looking for potential
+ * hardware-induced latency. Called under stop_machine, with data.lock held.
+ */
+static int get_sample(void *unused)
+{
+	ktime_t start, t1, t2;
+	s64 diff, total = 0;
+	u64 sample = 0;
+	int ret = 1;
+
+	start = ktime_get(); /* start timestamp */
+
+	do {
+
+		t1 = ktime_get();	/* we'll look for a discontinuity */
+		t2 = ktime_get();
+
+		total = ktime_to_us(ktime_sub(t2, start)); /* sample width */
+		diff = ktime_to_us(ktime_sub(t2, t1));     /* current diff */
+
+		/* This shouldn't happen */
+		if (diff < 0) {
+			printk(KERN_ERR BANNER "time running backwards\n");
+			goto out;
+		}
+
+		if (diff > sample)
+			sample = diff; /* only want highest value */
+
+	} while (total <= data.sample_width);
+
+	/* If we exceed the threshold value, we have found a hardware latency */
+	if (sample > data.threshold) {
+		struct sample s;
+
+		data.count++;
+		s.seqnum = data.count;
+		s.duration = sample;
+		s.timestamp = CURRENT_TIME;
+		__buffer_add_sample(&s);
+
+		/* Keep a running maximum ever recorded hardware latency */
+		if (sample > data.max_sample)
+			data.max_sample = sample;
+	}
+
+	ret = 0;
+out:
+	return ret;
+}
+
+/*
+ * kthread_fn - The CPU time sampling/hardware latency detection kernel thread
+ * @unused: A required part of the kthread API.
+ *
+ * Used to periodically sample the CPU TSC via a call to get_sample. We
+ * use stop_machine, whith does (intentionally) introduce latency since we
+ * need to ensure nothing else might be running (and thus pre-empting).
+ * Obviously this should never be used in production environments.
+ *
+ * stop_machine will schedule us typically only on CPU0 which is fine for
+ * almost every real-world hardware latency situation - but we might later
+ * generalize this if we find there are any actualy systems with alternate
+ * SMI delivery or other non CPU0 hardware latencies.
+ */
+static int kthread_fn(void *unused)
+{
+	int err = 0;
+	u64 interval = 0;
+
+	while (!kthread_should_stop()) {
+
+		mutex_lock(&data.lock);
+
+		err = stop_machine(get_sample, unused, 0);
+		if (err) {
+			/* Houston, we have a problem */
+			mutex_unlock(&data.lock);
+			goto err_out;
+		}
+
+		wake_up(&data.wq); /* wake up reader(s) */
+
+		interval = data.sample_window - data.sample_width;
+		do_div(interval, USEC_PER_MSEC); /* modifies interval value */
+
+		mutex_unlock(&data.lock);
+
+		if (msleep_interruptible(interval))
+			goto out;
+	}
+		goto out;
+err_out:
+	printk(KERN_ERR BANNER "could not call stop_machine, disabling\n");
+	enabled = 0;
+out:
+	return err;
+
+}
+
+/**
+ * start_kthread - Kick off the hardware latency sampling/detector kthread
+ *
+ * This starts a kernel thread that will sit and sample the CPU timestamp
+ * counter (TSC or similar) and look for potential hardware latencies.
+ */
+static int start_kthread(void)
+{
+	kthread = kthread_run(kthread_fn, NULL,
+					DRVNAME);
+	if (IS_ERR(kthread)) {
+		printk(KERN_ERR BANNER "could not start sampling thread\n");
+		enabled = 0;
+		return -ENOMEM;
+	}
+
+	return 0;
+}
+
+/**
+ * stop_kthread - Inform the hardware latency samping/detector kthread to stop
+ *
+ * This kicks the running hardware latency sampling/detector kernel thread and
+ * tells it to stop sampling now. Use this on unload and at system shutdown.
+ */
+static int stop_kthread(void)
+{
+	int ret;
+
+	ret = kthread_stop(kthread);
+
+	return ret;
+}
+
+/**
+ * __reset_stats - Reset statistics for the hardware latency detector
+ *
+ * We use data to store various statistics and global state. We call this
+ * function in order to reset those when "enable" is toggled on or off, and
+ * also at initialization. Should be called with data.lock held.
+ */
+static void __reset_stats(void)
+{
+	data.count = 0;
+	data.max_sample = 0;
+	ring_buffer_reset(ring_buffer); /* flush out old sample entries */
+}
+
+/**
+ * init_stats - Setup global state statistics for the hardware latency detector
+ *
+ * We use data to store various statistics and global state. We also use
+ * a global ring buffer (ring_buffer) to keep raw samples of detected hardware
+ * induced system latencies. This function initializes these structures and
+ * allocates the global ring buffer also.
+ */
+static int init_stats(void)
+{
+	int ret = -ENOMEM;
+
+	mutex_init(&data.lock);
+	init_waitqueue_head(&data.wq);
+	atomic_set(&data.sample_open, 0);
+
+	ring_buffer = ring_buffer_alloc(buf_size, BUF_FLAGS);
+
+	if (WARN(!ring_buffer, KERN_ERR BANNER
+			       "failed to allocate ring buffer!\n"))
+		goto out;
+
+	__reset_stats();
+	data.threshold = DEFAULT_LAT_THRESHOLD;	    /* threshold us */
+	data.sample_window = DEFAULT_SAMPLE_WINDOW; /* window us */
+	data.sample_width = DEFAULT_SAMPLE_WIDTH;   /* width us */
+
+	ret = 0;
+
+out:
+	return ret;
+
+}
+
+/*
+ * simple_data_read - Wrapper read function for global state debugfs entries
+ * @filp: The active open file structure for the debugfs "file"
+ * @ubuf: The userspace provided buffer to read value into
+ * @cnt: The maximum number of bytes to read
+ * @ppos: The current "file" position
+ * @entry: The entry to read from
+ *
+ * This function provides a generic read implementation for the global state
+ * "data" structure debugfs filesystem entries. It would be nice to use
+ * simple_attr_read directly, but we need to make sure that the data.lock
+ * spinlock is held during the actual read (even though we likely won't ever
+ * actually race here as the updater runs under a stop_machine context).
+ */
+static ssize_t simple_data_read(struct file *filp, char __user *ubuf,
+				size_t cnt, loff_t *ppos, const u64 *entry)
+{
+	char buf[U64STR_SIZE];
+	u64 val = 0;
+	int len = 0;
+
+	memset(buf, 0, sizeof(buf));
+
+	if (!entry)
+		return -EFAULT;
+
+	mutex_lock(&data.lock);
+	val = *entry;
+	mutex_unlock(&data.lock);
+
+	len = snprintf(buf, sizeof(buf), "%llu\n", (unsigned long long)val);
+
+	return simple_read_from_buffer(ubuf, cnt, ppos, buf, len);
+
+}
+
+/*
+ * simple_data_write - Wrapper write function for global state debugfs entries
+ * @filp: The active open file structure for the debugfs "file"
+ * @ubuf: The userspace provided buffer to write value from
+ * @cnt: The maximum number of bytes to write
+ * @ppos: The current "file" position
+ * @entry: The entry to write to
+ *
+ * This function provides a generic write implementation for the global state
+ * "data" structure debugfs filesystem entries. It would be nice to use
+ * simple_attr_write directly, but we need to make sure that the data.lock
+ * spinlock is held during the actual write (even though we likely won't ever
+ * actually race here as the updater runs under a stop_machine context).
+ */
+static ssize_t simple_data_write(struct file *filp, const char __user *ubuf,
+				 size_t cnt, loff_t *ppos, u64 *entry)
+{
+	char buf[U64STR_SIZE];
+	int csize = min(cnt, sizeof(buf));
+	u64 val = 0;
+	int err = 0;
+
+	memset(buf, '\0', sizeof(buf));
+	if (copy_from_user(buf, ubuf, csize))
+		return -EFAULT;
+
+	buf[U64STR_SIZE-1] = '\0';			/* just in case */
+	err = strict_strtoull(buf, 10, &val);
+	if (err)
+		return -EINVAL;
+
+	mutex_lock(&data.lock);
+	*entry = val;
+	mutex_unlock(&data.lock);
+
+	return csize;
+}
+
+/**
+ * debug_count_fopen - Open function for "count" debugfs entry
+ * @inode: The in-kernel inode representation of the debugfs "file"
+ * @filp: The active open file structure for the debugfs "file"
+ *
+ * This function provides an open implementation for the "count" debugfs
+ * interface to the hardware latency detector.
+ */
+static int debug_count_fopen(struct inode *inode, struct file *filp)
+{
+	return 0;
+}
+
+/**
+ * debug_count_fread - Read function for "count" debugfs entry
+ * @filp: The active open file structure for the debugfs "file"
+ * @ubuf: The userspace provided buffer to read value into
+ * @cnt: The maximum number of bytes to read
+ * @ppos: The current "file" position
+ *
+ * This function provides a read implementation for the "count" debugfs
+ * interface to the hardware latency detector. Can be used to read the
+ * number of latency readings exceeding the configured threshold since
+ * the detector was last reset (e.g. by writing a zero into "count").
+ */
+static ssize_t debug_count_fread(struct file *filp, char __user *ubuf,
+				     size_t cnt, loff_t *ppos)
+{
+	return simple_data_read(filp, ubuf, cnt, ppos, &data.count);
+}
+
+/**
+ * debug_count_fwrite - Write function for "count" debugfs entry
+ * @filp: The active open file structure for the debugfs "file"
+ * @ubuf: The user buffer that contains the value to write
+ * @cnt: The maximum number of bytes to write to "file"
+ * @ppos: The current position in the debugfs "file"
+ *
+ * This function provides a write implementation for the "count" debugfs
+ * interface to the hardware latency detector. Can be used to write a
+ * desired value, especially to zero the total count.
+ */
+static ssize_t  debug_count_fwrite(struct file *filp,
+				       const char __user *ubuf,
+				       size_t cnt,
+				       loff_t *ppos)
+{
+	return simple_data_write(filp, ubuf, cnt, ppos, &data.count);
+}
+
+/**
+ * debug_enable_fopen - Dummy open function for "enable" debugfs interface
+ * @inode: The in-kernel inode representation of the debugfs "file"
+ * @filp: The active open file structure for the debugfs "file"
+ *
+ * This function provides an open implementation for the "enable" debugfs
+ * interface to the hardware latency detector.
+ */
+static int debug_enable_fopen(struct inode *inode, struct file *filp)
+{
+	return 0;
+}
+
+/**
+ * debug_enable_fread - Read function for "enable" debugfs interface
+ * @filp: The active open file structure for the debugfs "file"
+ * @ubuf: The userspace provided buffer to read value into
+ * @cnt: The maximum number of bytes to read
+ * @ppos: The current "file" position
+ *
+ * This function provides a read implementation for the "enable" debugfs
+ * interface to the hardware latency detector. Can be used to determine
+ * whether the detector is currently enabled ("0\n" or "1\n" returned).
+ */
+static ssize_t debug_enable_fread(struct file *filp, char __user *ubuf,
+				      size_t cnt, loff_t *ppos)
+{
+	char buf[4];
+
+	if ((cnt < sizeof(buf)) || (*ppos))
+		return 0;
+
+	buf[0] = enabled ? '1' : '0';
+	buf[1] = '\n';
+	buf[2] = '\0';
+	if (copy_to_user(ubuf, buf, strlen(buf)))
+		return -EFAULT;
+	return *ppos = strlen(buf);
+}
+
+/**
+ * debug_enable_fwrite - Write function for "enable" debugfs interface
+ * @filp: The active open file structure for the debugfs "file"
+ * @ubuf: The user buffer that contains the value to write
+ * @cnt: The maximum number of bytes to write to "file"
+ * @ppos: The current position in the debugfs "file"
+ *
+ * This function provides a write implementation for the "enable" debugfs
+ * interface to the hardware latency detector. Can be used to enable or
+ * disable the detector, which will have the side-effect of possibly
+ * also resetting the global stats and kicking off the measuring
+ * kthread (on an enable) or the converse (upon a disable).
+ */
+static ssize_t  debug_enable_fwrite(struct file *filp,
+					const char __user *ubuf,
+					size_t cnt,
+					loff_t *ppos)
+{
+	char buf[4];
+	int csize = min(cnt, sizeof(buf));
+	long val = 0;
+	int err = 0;
+
+	memset(buf, '\0', sizeof(buf));
+	if (copy_from_user(buf, ubuf, csize))
+		return -EFAULT;
+
+	buf[sizeof(buf)-1] = '\0';			/* just in case */
+	err = strict_strtoul(buf, 10, &val);
+	if (0 != err)
+		return -EINVAL;
+
+	if (val) {
+		if (enabled)
+			goto unlock;
+		enabled = 1;
+		__reset_stats();
+		if (start_kthread())
+			return -EFAULT;
+	} else {
+		if (!enabled)
+			goto unlock;
+		enabled = 0;
+		err = stop_kthread();
+		if (err) {
+			printk(KERN_ERR BANNER "cannot stop kthread\n");
+			return -EFAULT;
+		}
+		wake_up(&data.wq);		/* reader(s) should return */
+	}
+unlock:
+	return csize;
+}
+
+/**
+ * debug_max_fopen - Open function for "max" debugfs entry
+ * @inode: The in-kernel inode representation of the debugfs "file"
+ * @filp: The active open file structure for the debugfs "file"
+ *
+ * This function provides an open implementation for the "max" debugfs
+ * interface to the hardware latency detector.
+ */
+static int debug_max_fopen(struct inode *inode, struct file *filp)
+{
+	return 0;
+}
+
+/**
+ * debug_max_fread - Read function for "max" debugfs entry
+ * @filp: The active open file structure for the debugfs "file"
+ * @ubuf: The userspace provided buffer to read value into
+ * @cnt: The maximum number of bytes to read
+ * @ppos: The current "file" position
+ *
+ * This function provides a read implementation for the "max" debugfs
+ * interface to the hardware latency detector. Can be used to determine
+ * the maximum latency value observed since it was last reset.
+ */
+static ssize_t debug_max_fread(struct file *filp, char __user *ubuf,
+				   size_t cnt, loff_t *ppos)
+{
+	return simple_data_read(filp, ubuf, cnt, ppos, &data.max_sample);
+}
+
+/**
+ * debug_max_fwrite - Write function for "max" debugfs entry
+ * @filp: The active open file structure for the debugfs "file"
+ * @ubuf: The user buffer that contains the value to write
+ * @cnt: The maximum number of bytes to write to "file"
+ * @ppos: The current position in the debugfs "file"
+ *
+ * This function provides a write implementation for the "max" debugfs
+ * interface to the hardware latency detector. Can be used to reset the
+ * maximum or set it to some other desired value - if, then, subsequent
+ * measurements exceed this value, the maximum will be updated.
+ */
+static ssize_t  debug_max_fwrite(struct file *filp,
+				     const char __user *ubuf,
+				     size_t cnt,
+				     loff_t *ppos)
+{
+	return simple_data_write(filp, ubuf, cnt, ppos, &data.max_sample);
+}
+
+
+/**
+ * debug_sample_fopen - An open function for "sample" debugfs interface
+ * @inode: The in-kernel inode representation of this debugfs "file"
+ * @filp: The active open file structure for the debugfs "file"
+ *
+ * This function handles opening the "sample" file within the hardware
+ * latency detector debugfs directory interface. This file is used to read
+ * raw samples from the global ring_buffer and allows the user to see a
+ * running latency history. Can be opened blocking or non-blocking,
+ * affecting whether it behaves as a buffer read pipe, or does not.
+ * Implements simple locking to prevent multiple simultaneous use.
+ */
+static int debug_sample_fopen(struct inode *inode, struct file *filp)
+{
+	if (!atomic_add_unless(&data.sample_open, 1, 1))
+		return -EBUSY;
+	else
+		return 0;
+}
+
+/**
+ * debug_sample_fread - A read function for "sample" debugfs interface
+ * @filp: The active open file structure for the debugfs "file"
+ * @ubuf: The user buffer that will contain the samples read
+ * @cnt: The maximum bytes to read from the debugfs "file"
+ * @ppos: The current position in the debugfs "file"
+ *
+ * This function handles reading from the "sample" file within the hardware
+ * latency detector debugfs directory interface. This file is used to read
+ * raw samples from the global ring_buffer and allows the user to see a
+ * running latency history. By default this will block pending a new
+ * value written into the sample buffer, unless there are already a
+ * number of value(s) waiting in the buffer, or the sample file was
+ * previously opened in a non-blocking mode of operation.
+ */
+static ssize_t debug_sample_fread(struct file *filp, char __user *ubuf,
+					size_t cnt, loff_t *ppos)
+{
+	int len = 0;
+	char buf[64];
+	struct sample *sample = NULL;
+
+	if (!enabled)
+		return 0;
+
+	sample = kzalloc(sizeof(struct sample), GFP_KERNEL);
+	if (!sample)
+		return -ENOMEM;
+
+	while (!buffer_get_sample(sample)) {
+
+		DEFINE_WAIT(wait);
+
+		if (filp->f_flags & O_NONBLOCK) {
+			len = -EAGAIN;
+			goto out;
+		}
+
+		prepare_to_wait(&data.wq, &wait, TASK_INTERRUPTIBLE);
+		schedule();
+		finish_wait(&data.wq, &wait);
+
+		if (signal_pending(current)) {
+			len = -EINTR;
+			goto out;
+		}
+
+		if (!enabled) {			/* enable was toggled */
+			len = 0;
+			goto out;
+		}
+	}
+
+	len = snprintf(buf, sizeof(buf), "%010lu.%010lu\t%llu\n",
+		      sample->timestamp.tv_sec,
+		      sample->timestamp.tv_nsec,
+		      sample->duration);
+
+
+	/* handling partial reads is more trouble than it's worth */
+	if (len > cnt)
+		goto out;
+
+	if (copy_to_user(ubuf, buf, len))
+		len = -EFAULT;
+
+out:
+	kfree(sample);
+	return len;
+}
+
+/**
+ * debug_sample_release - Release function for "sample" debugfs interface
+ * @inode: The in-kernel inode represenation of the debugfs "file"
+ * @filp: The active open file structure for the debugfs "file"
+ *
+ * This function completes the close of the debugfs interface "sample" file.
+ * Frees the sample_open "lock" so that other users may open the interface.
+ */
+static int debug_sample_release(struct inode *inode, struct file *filp)
+{
+	atomic_dec(&data.sample_open);
+
+	return 0;
+}
+
+/**
+ * debug_threshold_fopen - Open function for "threshold" debugfs entry
+ * @inode: The in-kernel inode representation of the debugfs "file"
+ * @filp: The active open file structure for the debugfs "file"
+ *
+ * This function provides an open implementation for the "threshold" debugfs
+ * interface to the hardware latency detector.
+ */
+static int debug_threshold_fopen(struct inode *inode, struct file *filp)
+{
+	return 0;
+}
+
+/**
+ * debug_threshold_fread - Read function for "threshold" debugfs entry
+ * @filp: The active open file structure for the debugfs "file"
+ * @ubuf: The userspace provided buffer to read value into
+ * @cnt: The maximum number of bytes to read
+ * @ppos: The current "file" position
+ *
+ * This function provides a read implementation for the "threshold" debugfs
+ * interface to the hardware latency detector. It can be used to determine
+ * the current threshold level at which a latency will be recorded in the
+ * global ring buffer, typically on the order of 10us.
+ */
+static ssize_t debug_threshold_fread(struct file *filp, char __user *ubuf,
+					 size_t cnt, loff_t *ppos)
+{
+	return simple_data_read(filp, ubuf, cnt, ppos, &data.threshold);
+}
+
+/**
+ * debug_threshold_fwrite - Write function for "threshold" debugfs entry
+ * @filp: The active open file structure for the debugfs "file"
+ * @ubuf: The user buffer that contains the value to write
+ * @cnt: The maximum number of bytes to write to "file"
+ * @ppos: The current position in the debugfs "file"
+ *
+ * This function provides a write implementation for the "threshold" debugfs
+ * interface to the hardware latency detector. It can be used to configure
+ * the threshold level at which any subsequently detected latencies will
+ * be recorded into the global ring buffer.
+ */
+static ssize_t  debug_threshold_fwrite(struct file *filp,
+					const char __user *ubuf,
+					size_t cnt,
+					loff_t *ppos)
+{
+	int ret;
+
+	ret = simple_data_write(filp, ubuf, cnt, ppos, &data.threshold);
+
+	if (enabled)
+		wake_up_process(kthread);
+
+	return ret;
+}
+
+/**
+ * debug_width_fopen - Open function for "width" debugfs entry
+ * @inode: The in-kernel inode representation of the debugfs "file"
+ * @filp: The active open file structure for the debugfs "file"
+ *
+ * This function provides an open implementation for the "width" debugfs
+ * interface to the hardware latency detector.
+ */
+static int debug_width_fopen(struct inode *inode, struct file *filp)
+{
+	return 0;
+}
+
+/**
+ * debug_width_fread - Read function for "width" debugfs entry
+ * @filp: The active open file structure for the debugfs "file"
+ * @ubuf: The userspace provided buffer to read value into
+ * @cnt: The maximum number of bytes to read
+ * @ppos: The current "file" position
+ *
+ * This function provides a read implementation for the "width" debugfs
+ * interface to the hardware latency detector. It can be used to determine
+ * for how many us of the total window us we will actively sample for any
+ * hardware-induced latecy periods. Obviously, it is not possible to
+ * sample constantly and have the system respond to a sample reader, or,
+ * worse, without having the system appear to have gone out to lunch.
+ */
+static ssize_t debug_width_fread(struct file *filp, char __user *ubuf,
+				     size_t cnt, loff_t *ppos)
+{
+	return simple_data_read(filp, ubuf, cnt, ppos, &data.sample_width);
+}
+
+/**
+ * debug_width_fwrite - Write function for "width" debugfs entry
+ * @filp: The active open file structure for the debugfs "file"
+ * @ubuf: The user buffer that contains the value to write
+ * @cnt: The maximum number of bytes to write to "file"
+ * @ppos: The current position in the debugfs "file"
+ *
+ * This function provides a write implementation for the "width" debugfs
+ * interface to the hardware latency detector. It can be used to configure
+ * for how many us of the total window us we will actively sample for any
+ * hardware-induced latency periods. Obviously, it is not possible to
+ * sample constantly and have the system respond to a sample reader, or,
+ * worse, without having the system appear to have gone out to lunch. It
+ * is enforced that width is less that the total window size.
+ */
+static ssize_t  debug_width_fwrite(struct file *filp,
+				       const char __user *ubuf,
+				       size_t cnt,
+				       loff_t *ppos)
+{
+	char buf[U64STR_SIZE];
+	int csize = min(cnt, sizeof(buf));
+	u64 val = 0;
+	int err = 0;
+
+	memset(buf, '\0', sizeof(buf));
+	if (copy_from_user(buf, ubuf, csize))
+		return -EFAULT;
+
+	buf[U64STR_SIZE-1] = '\0';			/* just in case */
+	err = strict_strtoull(buf, 10, &val);
+	if (0 != err)
+		return -EINVAL;
+
+	mutex_lock(&data.lock);
+	if (val < data.sample_window)
+		data.sample_width = val;
+	else {
+		mutex_unlock(&data.lock);
+		return -EINVAL;
+	}
+	mutex_unlock(&data.lock);
+
+	if (enabled)
+		wake_up_process(kthread);
+
+	return csize;
+}
+
+/**
+ * debug_window_fopen - Open function for "window" debugfs entry
+ * @inode: The in-kernel inode representation of the debugfs "file"
+ * @filp: The active open file structure for the debugfs "file"
+ *
+ * This function provides an open implementation for the "window" debugfs
+ * interface to the hardware latency detector. The window is the total time
+ * in us that will be considered one sample period. Conceptually, windows
+ * occur back-to-back and contain a sample width period during which
+ * actual sampling occurs.
+ */
+static int debug_window_fopen(struct inode *inode, struct file *filp)
+{
+	return 0;
+}
+
+/**
+ * debug_window_fread - Read function for "window" debugfs entry
+ * @filp: The active open file structure for the debugfs "file"
+ * @ubuf: The userspace provided buffer to read value into
+ * @cnt: The maximum number of bytes to read
+ * @ppos: The current "file" position
+ *
+ * This function provides a read implementation for the "window" debugfs
+ * interface to the hardware latency detector. The window is the total time
+ * in us that will be considered one sample period. Conceptually, windows
+ * occur back-to-back and contain a sample width period during which
+ * actual sampling occurs. Can be used to read the total window size.
+ */
+static ssize_t debug_window_fread(struct file *filp, char __user *ubuf,
+				      size_t cnt, loff_t *ppos)
+{
+	return simple_data_read(filp, ubuf, cnt, ppos, &data.sample_window);
+}
+
+/**
+ * debug_window_fwrite - Write function for "window" debugfs entry
+ * @filp: The active open file structure for the debugfs "file"
+ * @ubuf: The user buffer that contains the value to write
+ * @cnt: The maximum number of bytes to write to "file"
+ * @ppos: The current position in the debugfs "file"
+ *
+ * This function provides a write implementation for the "window" debufds
+ * interface to the hardware latency detetector. The window is the total time
+ * in us that will be considered one sample period. Conceptually, windows
+ * occur back-to-back and contain a sample width period during which
+ * actual sampling occurs. Can be used to write a new total window size. It
+ * is enfoced that any value written must be greater than the sample width
+ * size, or an error results.
+ */
+static ssize_t  debug_window_fwrite(struct file *filp,
+					const char __user *ubuf,
+					size_t cnt,
+					loff_t *ppos)
+{
+	char buf[U64STR_SIZE];
+	int csize = min(cnt, sizeof(buf));
+	u64 val = 0;
+	int err = 0;
+
+	memset(buf, '\0', sizeof(buf));
+	if (copy_from_user(buf, ubuf, csize))
+		return -EFAULT;
+
+	buf[U64STR_SIZE-1] = '\0';			/* just in case */
+	err = strict_strtoull(buf, 10, &val);
+	if (0 != err)
+		return -EINVAL;
+
+	mutex_lock(&data.lock);
+	if (data.sample_width < val)
+		data.sample_window = val;
+	else {
+		mutex_unlock(&data.lock);
+		return -EINVAL;
+	}
+	mutex_unlock(&data.lock);
+
+	return csize;
+}
+
+/*
+ * Function pointers for the "count" debugfs file operations
+ */
+static const struct file_operations count_fops = {
+	.open		= debug_count_fopen,
+	.read		= debug_count_fread,
+	.write		= debug_count_fwrite,
+	.owner		= THIS_MODULE,
+};
+
+/*
+ * Function pointers for the "enable" debugfs file operations
+ */
+static const struct file_operations enable_fops = {
+	.open		= debug_enable_fopen,
+	.read		= debug_enable_fread,
+	.write		= debug_enable_fwrite,
+	.owner		= THIS_MODULE,
+};
+
+/*
+ * Function pointers for the "max" debugfs file operations
+ */
+static const struct file_operations max_fops = {
+	.open		= debug_max_fopen,
+	.read		= debug_max_fread,
+	.write		= debug_max_fwrite,
+	.owner		= THIS_MODULE,
+};
+
+/*
+ * Function pointers for the "sample" debugfs file operations
+ */
+static const struct file_operations sample_fops = {
+	.open 		= debug_sample_fopen,
+	.read		= debug_sample_fread,
+	.release	= debug_sample_release,
+	.owner		= THIS_MODULE,
+};
+
+/*
+ * Function pointers for the "threshold" debugfs file operations
+ */
+static const struct file_operations threshold_fops = {
+	.open		= debug_threshold_fopen,
+	.read		= debug_threshold_fread,
+	.write		= debug_threshold_fwrite,
+	.owner		= THIS_MODULE,
+};
+
+/*
+ * Function pointers for the "width" debugfs file operations
+ */
+static const struct file_operations width_fops = {
+	.open		= debug_width_fopen,
+	.read		= debug_width_fread,
+	.write		= debug_width_fwrite,
+	.owner		= THIS_MODULE,
+};
+
+/*
+ * Function pointers for the "window" debugfs file operations
+ */
+static const struct file_operations window_fops = {
+	.open		= debug_window_fopen,
+	.read		= debug_window_fread,
+	.write		= debug_window_fwrite,
+	.owner		= THIS_MODULE,
+};
+
+/**
+ * init_debugfs - A function to initialize the debugfs interface files
+ *
+ * This function creates entries in debugfs for "hwlat_detector", including
+ * files to read values from the detector, current samples, and the
+ * maximum sample that has been captured since the hardware latency
+ * dectector was started.
+ */
+static int init_debugfs(void)
+{
+	int ret = -ENOMEM;
+
+	debug_dir = debugfs_create_dir(DRVNAME, NULL);
+	if (!debug_dir)
+		goto err_debug_dir;
+
+	debug_sample = debugfs_create_file("sample", 0444,
+					       debug_dir, NULL,
+					       &sample_fops);
+	if (!debug_sample)
+		goto err_sample;
+
+	debug_count = debugfs_create_file("count", 0444,
+					      debug_dir, NULL,
+					      &count_fops);
+	if (!debug_count)
+		goto err_count;
+
+	debug_max = debugfs_create_file("max", 0444,
+					    debug_dir, NULL,
+					    &max_fops);
+	if (!debug_max)
+		goto err_max;
+
+	debug_sample_window = debugfs_create_file("window", 0644,
+						      debug_dir, NULL,
+						      &window_fops);
+	if (!debug_sample_window)
+		goto err_window;
+
+	debug_sample_width = debugfs_create_file("width", 0644,
+						     debug_dir, NULL,
+						     &width_fops);
+	if (!debug_sample_width)
+		goto err_width;
+
+	debug_threshold = debugfs_create_file("threshold", 0644,
+						  debug_dir, NULL,
+						  &threshold_fops);
+	if (!debug_threshold)
+		goto err_threshold;
+
+	debug_enable = debugfs_create_file("enable", 0644,
+					       debug_dir, &enabled,
+					       &enable_fops);
+	if (!debug_enable)
+		goto err_enable;
+
+	else {
+		ret = 0;
+		goto out;
+	}
+
+err_enable:
+	debugfs_remove(debug_threshold);
+err_threshold:
+	debugfs_remove(debug_sample_width);
+err_width:
+	debugfs_remove(debug_sample_window);
+err_window:
+	debugfs_remove(debug_max);
+err_max:
+	debugfs_remove(debug_count);
+err_count:
+	debugfs_remove(debug_sample);
+err_sample:
+	debugfs_remove(debug_dir);
+err_debug_dir:
+out:
+	return ret;
+}
+
+/**
+ * free_debugfs - A function to cleanup the debugfs file interface
+ */
+static void free_debugfs(void)
+{
+	/* could also use a debugfs_remove_recursive */
+	debugfs_remove(debug_enable);
+	debugfs_remove(debug_threshold);
+	debugfs_remove(debug_sample_width);
+	debugfs_remove(debug_sample_window);
+	debugfs_remove(debug_max);
+	debugfs_remove(debug_count);
+	debugfs_remove(debug_sample);
+	debugfs_remove(debug_dir);
+}
+
+/**
+ * detector_init - Standard module initialization code
+ */
+static int detector_init(void)
+{
+	int ret = -ENOMEM;
+
+	printk(KERN_INFO BANNER "version %s\n", VERSION);
+
+	ret = init_stats();
+	if (0 != ret)
+		goto out;
+
+	ret = init_debugfs();
+	if (0 != ret)
+		goto err_stats;
+
+	if (enabled)
+		ret = start_kthread();
+
+	goto out;
+
+err_stats:
+	ring_buffer_free(ring_buffer);
+out:
+	return ret;
+
+}
+
+/**
+ * detector_exit - Standard module cleanup code
+ */
+static void detector_exit(void)
+{
+	int err;
+
+	if (enabled) {
+		enabled = 0;
+		err = stop_kthread();
+		if (err)
+			printk(KERN_ERR BANNER "cannot stop kthread\n");
+	}
+
+	free_debugfs();
+	ring_buffer_free(ring_buffer);	/* free up the ring buffer */
+
+}
+
+module_init(detector_init);
+module_exit(detector_exit);
@ drivers/mmc/host/mmci.c:862 @ static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
 	struct variant_data *variant = host->variant;
 	void __iomem *base = host->base;
-	unsigned long flags;
 	u32 status;
 
 	status = readl(base + MMCISTATUS);
 
 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
 
-	local_irq_save(flags);
-
 	do {
 		unsigned int remain, len;
 		char *buffer;
@ drivers/mmc/host/mmci.c:907 @ static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
 
 	sg_miter_stop(sg_miter);
 
-	local_irq_restore(flags);
-
 	/*
 	 * If we have less than the fifo 'half-full' threshold to transfer,
 	 * trigger a PIO interrupt as soon as any data is available.
@ drivers/net/Kconfig:157 @ config MACVTAP
 
 config NETCONSOLE
 	tristate "Network console logging support"
+	depends on !PREEMPT_RT_FULL
 	---help---
 	If you want to log kernel messages over the network, enable this.
 	See <file:Documentation/networking/netconsole.txt> for details.
@ drivers/net/ethernet/3com/3c59x.c:846 @ static void poll_vortex(struct net_device *dev)
 {
 	struct vortex_private *vp = netdev_priv(dev);
 	unsigned long flags;
-	local_irq_save(flags);
+	local_irq_save_nort(flags);
 	(vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
-	local_irq_restore(flags);
+	local_irq_restore_nort(flags);
 }
 #endif
 
@ drivers/net/ethernet/3com/3c59x.c:1924 @ static void vortex_tx_timeout(struct net_device *dev)
 			 * Block interrupts because vortex_interrupt does a bare spin_lock()
 			 */
 			unsigned long flags;
-			local_irq_save(flags);
+			local_irq_save_nort(flags);
 			if (vp->full_bus_master_tx)
 				boomerang_interrupt(dev->irq, dev);
 			else
 				vortex_interrupt(dev->irq, dev);
-			local_irq_restore(flags);
+			local_irq_restore_nort(flags);
 		}
 	}
 
@ drivers/net/ethernet/atheros/atl1c/atl1c_main.c:2238 @ static netdev_tx_t atl1c_xmit_frame(struct sk_buff *skb,
 	}
 
 	tpd_req = atl1c_cal_tpd_req(skb);
-	if (!spin_trylock_irqsave(&adapter->tx_lock, flags)) {
-		if (netif_msg_pktdata(adapter))
-			dev_info(&adapter->pdev->dev, "tx locked\n");
-		return NETDEV_TX_LOCKED;
-	}
+	spin_lock_irqsave(&adapter->tx_lock, flags);
 
 	if (atl1c_tpd_avail(adapter, type) < tpd_req) {
 		/* no enough descriptor, just stop queue */
@ drivers/net/ethernet/atheros/atl1e/atl1e_main.c:1822 @ static netdev_tx_t atl1e_xmit_frame(struct sk_buff *skb,
 		return NETDEV_TX_OK;
 	}
 	tpd_req = atl1e_cal_tdp_req(skb);
-	if (!spin_trylock_irqsave(&adapter->tx_lock, flags))
-		return NETDEV_TX_LOCKED;
+	spin_lock_irqsave(&adapter->tx_lock, flags);
 
 	if (atl1e_tpd_avail(adapter) < tpd_req) {
 		/* no enough descriptor, just stop queue */
@ drivers/net/ethernet/cadence/at91_ether.c:203 @ static irqreturn_t at91ether_phy_interrupt(int irq, void *dev_id)
 	struct net_device *dev = (struct net_device *) dev_id;
 	struct at91_private *lp = netdev_priv(dev);
 	unsigned int phy;
+	unsigned long flags;
 
+	spin_lock_irqsave(&lp->lock, flags);
 	/*
 	 * This hander is triggered on both edges, but the PHY chips expect
 	 * level-triggering.  We therefore have to check if the PHY actually has
@ drivers/net/ethernet/cadence/at91_ether.c:247 @ static irqreturn_t at91ether_phy_interrupt(int irq, void *dev_id)
 
 done:
 	disable_mdi();
+	spin_unlock_irqrestore(&lp->lock, flags);
 
 	return IRQ_HANDLED;
 }
@ drivers/net/ethernet/cadence/at91_ether.c:404 @ static void at91ether_check_link(unsigned long dev_id)
 	struct net_device *dev = (struct net_device *) dev_id;
 	struct at91_private *lp = netdev_priv(dev);
 
+	spin_lock_irq(&lp->lock);
 	enable_mdi();
 	update_linkspeed(dev, 1);
 	disable_mdi();
+	spin_unlock_irq(&lp->lock);
 
 	mod_timer(&lp->check_timer, jiffies + LINK_POLL_INTERVAL);
 }
@ drivers/net/ethernet/chelsio/cxgb/sge.c:1681 @ static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
 	struct cmdQ *q = &sge->cmdQ[qid];
 	unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
 
-	if (!spin_trylock(&q->lock))
-		return NETDEV_TX_LOCKED;
+	spin_lock(&q->lock);
 
 	reclaim_completed_tx(sge, q);
 
@ drivers/net/ethernet/dec/tulip/tulip_core.c:1952 @ static void __devexit tulip_remove_one (struct pci_dev *pdev)
 	pci_iounmap(pdev, tp->base_addr);
 	free_netdev (dev);
 	pci_release_regions (pdev);
+	pci_disable_device (pdev);
 	pci_set_drvdata (pdev, NULL);
 
 	/* pci_power_off (pdev, -1); */
@ drivers/net/ethernet/freescale/gianfar.c:1674 @ void stop_gfar(struct net_device *dev)
 
 
 	/* Lock it down */
-	local_irq_save(flags);
+	local_irq_save_nort(flags);
 	lock_tx_qs(priv);
 	lock_rx_qs(priv);
 
@ drivers/net/ethernet/freescale/gianfar.c:1682 @ void stop_gfar(struct net_device *dev)
 
 	unlock_rx_qs(priv);
 	unlock_tx_qs(priv);
-	local_irq_restore(flags);
+	local_irq_restore_nort(flags);
 
 	/* Free the IRQs */
 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
@ drivers/net/ethernet/freescale/gianfar.c:2952 @ static void adjust_link(struct net_device *dev)
 	struct phy_device *phydev = priv->phydev;
 	int new_state = 0;
 
-	local_irq_save(flags);
+	local_irq_save_nort(flags);
 	lock_tx_qs(priv);
 
 	if (phydev->link) {
@ drivers/net/ethernet/freescale/gianfar.c:3019 @ static void adjust_link(struct net_device *dev)
 	if (new_state && netif_msg_link(priv))
 		phy_print_status(phydev);
 	unlock_tx_qs(priv);
-	local_irq_restore(flags);
+	local_irq_restore_nort(flags);
 }
 
 /* Update the hash table based on the current list of multicast
@ drivers/net/ethernet/ibm/ehea/ehea_main.c:1307 @ static int ehea_reg_interrupts(struct net_device *dev)
 			 "%s-queue%d", dev->name, i);
 		ret = ibmebus_request_irq(pr->eq->attr.ist1,
 					  ehea_recv_irq_handler,
-					  IRQF_DISABLED, pr->int_send_name,
+					  IRQF_NO_THREAD, pr->int_send_name,
 					  pr);
 		if (ret) {
 			netdev_err(dev, "failed registering irq for ehea_queue port_res_nr:%d, ist=%X\n",
@ drivers/net/ethernet/neterion/s2io.c:4093 @ static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
 			[skb->priority & (MAX_TX_FIFOS - 1)];
 	fifo = &mac_control->fifos[queue];
 
-	if (do_spin_lock)
-		spin_lock_irqsave(&fifo->tx_lock, flags);
-	else {
-		if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
-			return NETDEV_TX_LOCKED;
-	}
+	spin_lock_irqsave(&fifo->tx_lock, flags);
 
 	if (sp->config.multiq) {
 		if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
@ drivers/net/ethernet/oki-semi/pch_gbe/pch_gbe_main.c:1940 @ static int pch_gbe_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
 		adapter->stats.tx_length_errors++;
 		return NETDEV_TX_OK;
 	}
-	if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags)) {
-		/* Collision - tell upper layer to requeue */
-		return NETDEV_TX_LOCKED;
-	}
+
+	spin_lock_irqsave(&tx_ring->tx_lock, flags);
+
 	if (unlikely(!PCH_GBE_DESC_UNUSED(tx_ring))) {
 		netif_stop_queue(netdev);
 		spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
@ drivers/net/ethernet/realtek/8139too.c:2177 @ static irqreturn_t rtl8139_interrupt (int irq, void *dev_instance)
  */
 static void rtl8139_poll_controller(struct net_device *dev)
 {
-	disable_irq(dev->irq);
+	disable_irq_nosync(dev->irq);
 	rtl8139_interrupt(dev->irq, dev);
 	enable_irq(dev->irq);
 }
@ drivers/net/ethernet/tehuti/tehuti.c:1608 @ static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
 	unsigned long flags;
 
 	ENTER;
-	local_irq_save(flags);
-	if (!spin_trylock(&priv->tx_lock)) {
-		local_irq_restore(flags);
-		DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
-		    BDX_DRV_NAME, ndev->name);
-		return NETDEV_TX_LOCKED;
-	}
+
+	spin_lock_irqsave(&priv->tx_lock, flags);
 
 	/* build tx descriptor */
 	BDX_ASSERT(f->m.wptr >= f->m.memsz);	/* started with valid wptr */
@ drivers/net/rionet.c:181 @ static int rionet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 	unsigned long flags;
 	int add_num = 1;
 
-	local_irq_save(flags);
-	if (!spin_trylock(&rnet->tx_lock)) {
-		local_irq_restore(flags);
-		return NETDEV_TX_LOCKED;
-	}
+	spin_lock_irqsave(&rnet->tx_lock, flags);
 
 	if (is_multicast_ether_addr(eth->h_dest))
 		add_num = nact;
@ drivers/of/base.c:57 @ static DEFINE_MUTEX(of_aliases_mutex);
 /* use when traversing tree through the allnext, child, sibling,
  * or parent members of struct device_node.
  */
-DEFINE_RWLOCK(devtree_lock);
+DEFINE_RAW_SPINLOCK(devtree_lock);
 
 int of_n_addr_cells(struct device_node *np)
 {
@ drivers/of/base.c:166 @ void of_node_put(struct device_node *node)
 EXPORT_SYMBOL(of_node_put);
 #endif /* !CONFIG_SPARC */
 
-struct property *of_find_property(const struct device_node *np,
-				  const char *name,
-				  int *lenp)
+static struct property *__of_find_property(const struct device_node *np,
+					   const char *name, int *lenp)
 {
 	struct property *pp;
 
 	if (!np)
 		return NULL;
 
-	read_lock(&devtree_lock);
 	for (pp = np->properties; pp != 0; pp = pp->next) {
 		if (of_prop_cmp(pp->name, name) == 0) {
 			if (lenp != 0)
@ drivers/of/base.c:181 @ struct property *of_find_property(const struct device_node *np,
 			break;
 		}
 	}
-	read_unlock(&devtree_lock);
+
+	return pp;
+}
+
+struct property *of_find_property(const struct device_node *np,
+				  const char *name,
+				  int *lenp)
+{
+	struct property *pp;
+	unsigned long flags;
+
+	raw_spin_lock_irqsave(&devtree_lock, flags);
+	pp = __of_find_property(np, name, lenp);
+	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 
 	return pp;
 }
@ drivers/of/base.c:212 @ struct device_node *of_find_all_nodes(struct device_node *prev)
 {
 	struct device_node *np;
 
-	read_lock(&devtree_lock);
+	raw_spin_lock(&devtree_lock);
 	np = prev ? prev->allnext : allnodes;
 	for (; np != NULL; np = np->allnext)
 		if (of_node_get(np))
 			break;
 	of_node_put(prev);
-	read_unlock(&devtree_lock);
+	raw_spin_unlock(&devtree_lock);
 	return np;
 }
 EXPORT_SYMBOL(of_find_all_nodes);
@ drivers/of/base.c:227 @ EXPORT_SYMBOL(of_find_all_nodes);
  * Find a property with a given name for a given node
  * and return the value.
  */
+static const void *__of_get_property(const struct device_node *np,
+				     const char *name, int *lenp)
+{
+	struct property *pp = __of_find_property(np, name, lenp);
+
+	return pp ? pp->value : NULL;
+}
+
+/*
+ * Find a property with a given name for a given node
+ * and return the value.
+ */
 const void *of_get_property(const struct device_node *np, const char *name,
-			 int *lenp)
+			    int *lenp)
 {
 	struct property *pp = of_find_property(np, name, lenp);
 
@ drivers/of/base.c:251 @ EXPORT_SYMBOL(of_get_property);
 /** Checks if the given "compat" string matches one of the strings in
  * the device's "compatible" property
  */
-int of_device_is_compatible(const struct device_node *device,
-		const char *compat)
+static int __of_device_is_compatible(const struct device_node *device,
+				     const char *compat)
 {
 	const char* cp;
-	int cplen, l;
+	int uninitialized_var(cplen), l;
 
-	cp = of_get_property(device, "compatible", &cplen);
+	cp = __of_get_property(device, "compatible", &cplen);
 	if (cp == NULL)
 		return 0;
 	while (cplen > 0) {
@ drivers/of/base.c:270 @ int of_device_is_compatible(const struct device_node *device,
 
 	return 0;
 }
+
+/** Checks if the given "compat" string matches one of the strings in
+ * the device's "compatible" property
+ */
+int of_device_is_compatible(const struct device_node *device,
+		const char *compat)
+{
+	unsigned long flags;
+	int res;
+
+	raw_spin_lock_irqsave(&devtree_lock, flags);
+	res = __of_device_is_compatible(device, compat);
+	raw_spin_unlock_irqrestore(&devtree_lock, flags);
+	return res;
+}
 EXPORT_SYMBOL(of_device_is_compatible);
 
 /**
@ drivers/of/base.c:344 @ EXPORT_SYMBOL(of_device_is_available);
 struct device_node *of_get_parent(const struct device_node *node)
 {
 	struct device_node *np;
+	unsigned long flags;
 
 	if (!node)
 		return NULL;
 
-	read_lock(&devtree_lock);
+	raw_spin_lock_irqsave(&devtree_lock, flags);
 	np = of_node_get(node->parent);
-	read_unlock(&devtree_lock);
+	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 	return np;
 }
 EXPORT_SYMBOL(of_get_parent);
@ drivers/of/base.c:370 @ EXPORT_SYMBOL(of_get_parent);
 struct device_node *of_get_next_parent(struct device_node *node)
 {
 	struct device_node *parent;
+	unsigned long flags;
 
 	if (!node)
 		return NULL;
 
-	read_lock(&devtree_lock);
+	raw_spin_lock_irqsave(&devtree_lock, flags);
 	parent = of_node_get(node->parent);
 	of_node_put(node);
-	read_unlock(&devtree_lock);
+	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 	return parent;
 }
 
@ drivers/of/base.c:394 @ struct device_node *of_get_next_child(const struct device_node *node,
 	struct device_node *prev)
 {
 	struct device_node *next;
+	unsigned long flags;
 
-	read_lock(&devtree_lock);
+	raw_spin_lock_irqsave(&devtree_lock, flags);
 	next = prev ? prev->sibling : node->child;
 	for (; next; next = next->sibling)
 		if (of_node_get(next))
 			break;
 	of_node_put(prev);
-	read_unlock(&devtree_lock);
+	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 	return next;
 }
 EXPORT_SYMBOL(of_get_next_child);
@ drivers/of/base.c:417 @ EXPORT_SYMBOL(of_get_next_child);
 struct device_node *of_find_node_by_path(const char *path)
 {
 	struct device_node *np = allnodes;
+	unsigned long flags;
 
-	read_lock(&devtree_lock);
+	raw_spin_lock_irqsave(&devtree_lock, flags);
 	for (; np; np = np->allnext) {
 		if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
 		    && of_node_get(np))
 			break;
 	}
-	read_unlock(&devtree_lock);
+	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 	return np;
 }
 EXPORT_SYMBOL(of_find_node_by_path);
@ drivers/of/base.c:445 @ struct device_node *of_find_node_by_name(struct device_node *from,
 	const char *name)
 {
 	struct device_node *np;
+	unsigned long flags;
 
-	read_lock(&devtree_lock);
+	raw_spin_lock_irqsave(&devtree_lock, flags);
 	np = from ? from->allnext : allnodes;
 	for (; np; np = np->allnext)
 		if (np->name && (of_node_cmp(np->name, name) == 0)
 		    && of_node_get(np))
 			break;
 	of_node_put(from);
-	read_unlock(&devtree_lock);
+	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 	return np;
 }
 EXPORT_SYMBOL(of_find_node_by_name);
@ drivers/of/base.c:475 @ struct device_node *of_find_node_by_type(struct device_node *from,
 	const char *type)
 {
 	struct device_node *np;
+	unsigned long flags;
 
-	read_lock(&devtree_lock);
+	raw_spin_lock_irqsave(&devtree_lock, flags);
 	np = from ? from->allnext : allnodes;
 	for (; np; np = np->allnext)
 		if (np->type && (of_node_cmp(np->type, type) == 0)
 		    && of_node_get(np))
 			break;
 	of_node_put(from);
-	read_unlock(&devtree_lock);
+	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 	return np;
 }
 EXPORT_SYMBOL(of_find_node_by_type);
@ drivers/of/base.c:507 @ struct device_node *of_find_compatible_node(struct device_node *from,
 	const char *type, const char *compatible)
 {
 	struct device_node *np;
+	unsigned long flags;
 
-	read_lock(&devtree_lock);
+	raw_spin_lock_irqsave(&devtree_lock, flags);
 	np = from ? from->allnext : allnodes;
 	for (; np; np = np->allnext) {
 		if (type
 		    && !(np->type && (of_node_cmp(np->type, type) == 0)))
 			continue;
-		if (of_device_is_compatible(np, compatible) && of_node_get(np))
+		if (__of_device_is_compatible(np, compatible) &&
+		    of_node_get(np))
 			break;
 	}
 	of_node_put(from);
-	read_unlock(&devtree_lock);
+	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 	return np;
 }
 EXPORT_SYMBOL(of_find_compatible_node);
@ drivers/of/base.c:542 @ struct device_node *of_find_node_with_property(struct device_node *from,
 {
 	struct device_node *np;
 	struct property *pp;
+	unsigned long flags;
 
-	read_lock(&devtree_lock);
+	raw_spin_lock_irqsave(&devtree_lock, flags);
 	np = from ? from->allnext : allnodes;
 	for (; np; np = np->allnext) {
 		for (pp = np->properties; pp != 0; pp = pp->next) {
@ drivers/of/base.c:556 @ struct device_node *of_find_node_with_property(struct device_node *from,
 	}
 out:
 	of_node_put(from);
-	read_unlock(&devtree_lock);
+	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 	return np;
 }
 EXPORT_SYMBOL(of_find_node_with_property);
 
-/**
- * of_match_node - Tell if an device_node has a matching of_match structure
- *	@matches:	array of of device match structures to search in
- *	@node:		the of device structure to match against
- *
- *	Low level utility function used by device matching.
- */
-const struct of_device_id *of_match_node(const struct of_device_id *matches,
-					 const struct device_node *node)
+static
+const struct of_device_id *__of_match_node(const struct of_device_id *matches,
+					   const struct device_node *node)
 {
 	if (!matches)
 		return NULL;
@ drivers/of/base.c:577 @ const struct of_device_id *of_match_node(const struct of_device_id *matches,
 			match &= node->type
 				&& !strcmp(matches->type, node->type);
 		if (matches->compatible[0])
-			match &= of_device_is_compatible(node,
-						matches->compatible);
+			match &= __of_device_is_compatible(node,
+							   matches->compatible);
 		if (match)
 			return matches;
 		matches++;
 	}
 	return NULL;
 }
+
+/**
+ * of_match_node - Tell if an device_node has a matching of_match structure
+ *	@matches:	array of of device match structures to search in
+ *	@node:		the of device structure to match against
+ *
+ *	Low level utility function used by device matching.
+ */
+const struct of_device_id *of_match_node(const struct of_device_id *matches,
+					 const struct device_node *node)
+{
+	const struct of_device_id *match;
+	unsigned long flags;
+
+	raw_spin_lock_irqsave(&devtree_lock, flags);
+	match = __of_match_node(matches, node);
+	raw_spin_unlock_irqrestore(&devtree_lock, flags);
+	return match;
+}
 EXPORT_SYMBOL(of_match_node);
 
 /**
@ drivers/of/base.c:622 @ struct device_node *of_find_matching_node(struct device_node *from,
 					  const struct of_device_id *matches)
 {
 	struct device_node *np;
+	unsigned long flags;
 
-	read_lock(&devtree_lock);
+	raw_spin_lock_irqsave(&devtree_lock, flags);
 	np = from ? from->allnext : allnodes;
 	for (; np; np = np->allnext) {
-		if (of_match_node(matches, np) && of_node_get(np))
+		if (__of_match_node(matches, np) && of_node_get(np))
 			break;
 	}
 	of_node_put(from);
-	read_unlock(&devtree_lock);
+	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 	return np;
 }
 EXPORT_SYMBOL(of_find_matching_node);
@ drivers/of/base.c:674 @ struct device_node *of_find_node_by_phandle(phandle handle)
 {
 	struct device_node *np;
 
-	read_lock(&devtree_lock);
+	raw_spin_lock(&devtree_lock);
 	for (np = allnodes; np; np = np->allnext)
 		if (np->phandle == handle)
 			break;
 	of_node_get(np);
-	read_unlock(&devtree_lock);
+	raw_spin_unlock(&devtree_lock);
 	return np;
 }
 EXPORT_SYMBOL(of_find_node_by_phandle);
@ drivers/of/base.c:1013 @ int prom_add_property(struct device_node *np, struct property *prop)
 	unsigned long flags;
 
 	prop->next = NULL;
-	write_lock_irqsave(&devtree_lock, flags);
+	raw_spin_lock_irqsave(&devtree_lock, flags);
 	next = &np->properties;
 	while (*next) {
 		if (strcmp(prop->name, (*next)->name) == 0) {
 			/* duplicate ! don't insert it */
-			write_unlock_irqrestore(&devtree_lock, flags);
+			raw_spin_unlock_irqrestore(&devtree_lock, flags);
 			return -1;
 		}
 		next = &(*next)->next;
 	}
 	*next = prop;
-	write_unlock_irqrestore(&devtree_lock, flags);
+	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 
 #ifdef CONFIG_PROC_DEVICETREE
 	/* try to add to proc as well if it was initialized */
@ drivers/of/base.c:1049 @ int prom_remove_property(struct device_node *np, struct property *prop)
 	unsigned long flags;
 	int found = 0;
 
-	write_lock_irqsave(&devtree_lock, flags);
+	raw_spin_lock_irqsave(&devtree_lock, flags);
 	next = &np->properties;
 	while (*next) {
 		if (*next == prop) {
@ drivers/of/base.c:1062 @ int prom_remove_property(struct device_node *np, struct property *prop)
 		}
 		next = &(*next)->next;
 	}
-	write_unlock_irqrestore(&devtree_lock, flags);
+	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 
 	if (!found)
 		return -ENODEV;
@ drivers/of/base.c:1092 @ int prom_update_property(struct device_node *np,
 	unsigned long flags;
 	int found = 0;
 
-	write_lock_irqsave(&devtree_lock, flags);
+	raw_spin_lock_irqsave(&devtree_lock, flags);
 	next = &np->properties;
 	while (*next) {
 		if (*next == oldprop) {
@ drivers/of/base.c:1106 @ int prom_update_property(struct device_node *np,
 		}
 		next = &(*next)->next;
 	}
-	write_unlock_irqrestore(&devtree_lock, flags);
+	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 
 	if (!found)
 		return -ENODEV;
@ drivers/of/base.c:1136 @ void of_attach_node(struct device_node *np)
 {
 	unsigned long flags;
 
-	write_lock_irqsave(&devtree_lock, flags);
+	raw_spin_lock_irqsave(&devtree_lock, flags);
 	np->sibling = np->parent->child;
 	np->allnext = allnodes;
 	np->parent->child = np;
 	allnodes = np;
-	write_unlock_irqrestore(&devtree_lock, flags);
+	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 }
 
 /**
@ drivers/of/base.c:1155 @ void of_detach_node(struct device_node *np)
 	struct device_node *parent;
 	unsigned long flags;
 
-	write_lock_irqsave(&devtree_lock, flags);
+	raw_spin_lock_irqsave(&devtree_lock, flags);
 
 	parent = np->parent;
 	if (!parent)
@ drivers/of/base.c:1186 @ void of_detach_node(struct device_node *np)
 	of_node_set_flag(np, OF_DETACHED);
 
 out_unlock:
-	write_unlock_irqrestore(&devtree_lock, flags);
+	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 }
 #endif /* defined(CONFIG_OF_DYNAMIC) */
 
@ drivers/pci/access.c:444 @ void pci_unblock_user_cfg_access(struct pci_dev *dev)
 	WARN_ON(!dev->block_ucfg_access);
 
 	dev->block_ucfg_access = 0;
-	wake_up_all(&pci_ucfg_wait);
+	wake_up_all_locked(&pci_ucfg_wait);
 	raw_spin_unlock_irqrestore(&pci_lock, flags);
 }
 EXPORT_SYMBOL_GPL(pci_unblock_user_cfg_access);
@ drivers/scsi/fcoe/fcoe.c:1159 @ static void fcoe_percpu_thread_destroy(unsigned int cpu)
 	struct sk_buff *skb;
 #ifdef CONFIG_SMP
 	struct fcoe_percpu_s *p0;
-	unsigned targ_cpu = get_cpu();
+	unsigned targ_cpu = get_cpu_light();
 #endif /* CONFIG_SMP */
 
 	FCOE_DBG("Destroying receive thread for CPU %d\n", cpu);
@ drivers/scsi/fcoe/fcoe.c:1215 @ static void fcoe_percpu_thread_destroy(unsigned int cpu)
 			kfree_skb(skb);
 		spin_unlock_bh(&p->fcoe_rx_list.lock);
 	}
-	put_cpu();
+	put_cpu_light();
 #else
 	/*
 	 * This a non-SMP scenario where the singular Rx thread is
@ drivers/scsi/fcoe/fcoe.c:1438 @ err2:
 static int fcoe_alloc_paged_crc_eof(struct sk_buff *skb, int tlen)
 {
 	struct fcoe_percpu_s *fps;
-	int rc;
+	int rc, cpu = get_cpu_light();
 
-	fps = &get_cpu_var(fcoe_percpu);
+	fps = &per_cpu(fcoe_percpu, cpu);
 	rc = fcoe_get_paged_crc_eof(skb, tlen, fps);
-	put_cpu_var(fcoe_percpu);
+	put_cpu_light();
 
 	return rc;
 }
@ drivers/scsi/fcoe/fcoe.c:1683 @ static void fcoe_recv_frame(struct sk_buff *skb)
 	 */
 	hp = (struct fcoe_hdr *) skb_network_header(skb);
 
-	stats = per_cpu_ptr(lport->dev_stats, get_cpu());
+	stats = per_cpu_ptr(lport->dev_stats, get_cpu_light());
 	if (unlikely(FC_FCOE_DECAPS_VER(hp) != FC_FCOE_VER)) {
 		if (stats->ErrorFrames < 5)
 			printk(KERN_WARNING "fcoe: FCoE version "
@ drivers/scsi/fcoe/fcoe.c:1715 @ static void fcoe_recv_frame(struct sk_buff *skb)
 		goto drop;
 
 	if (!fcoe_filter_frames(lport, fp)) {
-		put_cpu();
+		put_cpu_light();
 		fc_exch_recv(lport, fp);
 		return;
 	}
 drop:
 	stats->ErrorFrames++;
-	put_cpu();
+	put_cpu_light();
 	kfree_skb(skb);
 }
 
@ drivers/scsi/fcoe/fcoe_ctlr.c:722 @ static unsigned long fcoe_ctlr_age_fcfs(struct fcoe_ctlr *fip)
 	unsigned long sel_time = 0;
 	struct fcoe_dev_stats *stats;
 
-	stats = per_cpu_ptr(fip->lp->dev_stats, get_cpu());
+	stats = per_cpu_ptr(fip->lp->dev_stats, get_cpu_light());
 
 	list_for_each_entry_safe(fcf, next, &fip->fcfs, list) {
 		deadline = fcf->time + fcf->fka_period + fcf->fka_period / 2;
@ drivers/scsi/fcoe/fcoe_ctlr.c:755 @ static unsigned long fcoe_ctlr_age_fcfs(struct fcoe_ctlr *fip)
 				sel_time = fcf->time;
 		}
 	}
-	put_cpu();
+	put_cpu_light();
 	if (sel_time && !fip->sel_fcf && !fip->sel_time) {
 		sel_time += msecs_to_jiffies(FCOE_CTLR_START_DELAY);
 		fip->sel_time = sel_time;
@ drivers/scsi/libfc/fc_exch.c:727 @ static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
 	}
 	memset(ep, 0, sizeof(*ep));
 
-	cpu = get_cpu();
+	cpu = get_cpu_light();
 	pool = per_cpu_ptr(mp->pool, cpu);
 	spin_lock_bh(&pool->lock);
-	put_cpu();
+	put_cpu_light();
 
 	/* peek cache of free slot */
 	if (pool->left != FC_XID_UNKNOWN) {
@ drivers/scsi/qla2xxx/qla_inline.h:39 @ qla2x00_poll(struct rsp_que *rsp)
 {
 	unsigned long flags;
 	struct qla_hw_data *ha = rsp->hw;
-	local_irq_save(flags);
+	local_irq_save_nort(flags);
 	if (IS_QLA82XX(ha))
 		qla82xx_poll(0, rsp);
 	else
 		ha->isp_ops->intr_handler(0, rsp);
-	local_irq_restore(flags);
+	local_irq_restore_nort(flags);
 }
 
 static inline uint8_t *
@ drivers/tty/serial/8250.c:41 @
 #include <linux/nmi.h>
 #include <linux/mutex.h>
 #include <linux/slab.h>
+#include <linux/kdb.h>
 
 #include <asm/io.h>
 #include <asm/irq.h>
@ drivers/tty/serial/8250.c:85 @ static unsigned int skip_txen_test; /* force skip of txen test at init time */
 #define DEBUG_INTR(fmt...)	do { } while (0)
 #endif
 
-#define PASS_LIMIT	512
+/*
+ * On -rt we can have a more delays, and legitimately
+ * so - so don't drop work spuriously and spam the
+ * syslog:
+ */
+#ifdef CONFIG_PREEMPT_RT_FULL
+# define PASS_LIMIT	1000000
+#else
+# define PASS_LIMIT	512
+#endif
 
 #define BOTH_EMPTY 	(UART_LSR_TEMT | UART_LSR_THRE)
 
@ drivers/tty/serial/8250.c:2871 @ serial8250_console_write(struct console *co, const char *s, unsigned int count)
 
 	touch_nmi_watchdog();
 
-	local_irq_save(flags);
-	if (up->port.sysrq) {
-		/* serial8250_handle_port() already took the lock */
+	if (unlikely(in_kdb_printk())) {
 		locked = 0;
-	} else if (oops_in_progress) {
-		locked = spin_trylock(&up->port.lock);
-	} else
-		spin_lock(&up->port.lock);
+	} else {
+		if (up->port.sysrq || oops_in_progress)
+			locked = spin_trylock_irqsave(&up->port.lock, flags);
+		else
+			spin_lock_irqsave(&up->port.lock, flags);
+	}
 
 	/*
 	 *	First save the IER then disable the interrupts
@ drivers/tty/serial/8250.c:2910 @ serial8250_console_write(struct console *co, const char *s, unsigned int count)
 		check_modem_status(up);
 
 	if (locked)
-		spin_unlock(&up->port.lock);
-	local_irq_restore(flags);
+		spin_unlock_irqrestore(&up->port.lock, flags);
 }
 
 static int __init serial8250_console_setup(struct console *co, char *options)
@ drivers/tty/serial/amba-pl011.c:1764 @ pl011_console_write(struct console *co, const char *s, unsigned int count)
 
 	clk_enable(uap->clk);
 
-	local_irq_save(flags);
+	/*
+	 * local_irq_save(flags);
+	 *
+	 * This local_irq_save() is nonsense. If we come in via sysrq
+	 * handling then interrupts are already disabled. Aside of
+	 * that the port.sysrq check is racy on SMP regardless.
+	*/
 	if (uap->port.sysrq)
 		locked = 0;
 	else if (oops_in_progress)
-		locked = spin_trylock(&uap->port.lock);
+		locked = spin_trylock_irqsave(&uap->port.lock, flags);
 	else
-		spin_lock(&uap->port.lock);
+		spin_lock_irqsave(&uap->port.lock, flags);
 
 	/*
 	 *	First save the CR then disable the interrupts
@ drivers/tty/serial/amba-pl011.c:1798 @ pl011_console_write(struct console *co, const char *s, unsigned int count)
 	writew(old_cr, uap->port.membase + UART011_CR);
 
 	if (locked)
-		spin_unlock(&uap->port.lock);
-	local_irq_restore(flags);
+		spin_unlock_irqrestore(&uap->port.lock, flags);
 
 	clk_disable(uap->clk);
 }
@ drivers/tty/serial/imx.c:1118 @ imx_console_write(struct console *co, const char *s, unsigned int count)
 	struct imx_port *sport = imx_ports[co->index];
 	unsigned int old_ucr1, old_ucr2, ucr1;
 	unsigned long flags;
+	int locked = 1;
 
-	spin_lock_irqsave(&sport->port.lock, flags);
+	if (sport->port.sysrq)
+		locked = 0;
+	else if (oops_in_progress)
+		locked = spin_trylock_irqsave(&sport->port.lock, flags);
+	else
+		spin_lock_irqsave(&sport->port.lock, flags);
 
 	/*
 	 *	First, save UCR1/2 and then disable interrupts
@ drivers/tty/serial/imx.c:1153 @ imx_console_write(struct console *co, const char *s, unsigned int count)
 	writel(old_ucr1, sport->port.membase + UCR1);
 	writel(old_ucr2, sport->port.membase + UCR2);
 
-	spin_unlock_irqrestore(&sport->port.lock, flags);
+	if (locked)
+		spin_unlock_irqrestore(&sport->port.lock, flags);
 }
 
 /*
@ drivers/tty/serial/omap-serial.c:949 @ serial_omap_console_write(struct console *co, const char *s,
 	unsigned int ier;
 	int locked = 1;
 
-	local_irq_save(flags);
 	if (up->port.sysrq)
 		locked = 0;
 	else if (oops_in_progress)
-		locked = spin_trylock(&up->port.lock);
+		locked = spin_trylock_irqsave(&up->port.lock, flags);
 	else
-		spin_lock(&up->port.lock);
+		spin_lock_irqsave(&up->port.lock, flags);
 
 	/*
 	 * First save the IER then disable the interrupts
@ drivers/tty/serial/omap-serial.c:981 @ serial_omap_console_write(struct console *co, const char *s,
 		check_modem_status(up);
 
 	if (locked)
-		spin_unlock(&up->port.lock);
-	local_irq_restore(flags);
+		spin_unlock_irqrestore(&up->port.lock, flags);
 }
 
 static int __init
@ drivers/tty/tty_buffer.c:496 @ void tty_flip_buffer_push(struct tty_struct *tty)
 		tty->buf.tail->commit = tty->buf.tail->used;
 	spin_unlock_irqrestore(&tty->buf.lock, flags);
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 	if (tty->low_latency)
 		flush_to_ldisc(&tty->buf.work);
 	else
 		schedule_work(&tty->buf.work);
+#else
+	flush_to_ldisc(&tty->buf.work);
+#endif
 }
 EXPORT_SYMBOL(tty_flip_buffer_push);
 
@ drivers/tty/tty_ldisc.c:74 @ static void put_ldisc(struct tty_ldisc *ld)
 	 * We really want an "atomic_dec_and_lock_irqsave()",
 	 * but we don't have it, so this does it by hand.
 	 */
-	local_irq_save(flags);
+	local_irq_save_nort(flags);
 	if (atomic_dec_and_lock(&ld->users, &tty_ldisc_lock)) {
 		struct tty_ldisc_ops *ldo = ld->ops;
 
@ drivers/tty/tty_ldisc.c:85 @ static void put_ldisc(struct tty_ldisc *ld)
 		kfree(ld);
 		return;
 	}
-	local_irq_restore(flags);
+	local_irq_restore_nort(flags);
 	wake_up(&tty_ldisc_idle);
 }
 
@ drivers/usb/core/hcd.c:2146 @ irqreturn_t usb_hcd_irq (int irq, void *__hcd)
 	 * when the first handler doesn't use it.  So let's just
 	 * assume it's never used.
 	 */
-	local_irq_save(flags);
+	local_irq_save_nort(flags);
 
 	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) {
 		rc = IRQ_NONE;
@ drivers/usb/core/hcd.c:2159 @ irqreturn_t usb_hcd_irq (int irq, void *__hcd)
 		rc = IRQ_HANDLED;
 	}
 
-	local_irq_restore(flags);
+	local_irq_restore_nort(flags);
 	return rc;
 }
 EXPORT_SYMBOL_GPL(usb_hcd_irq);
@ drivers/usb/gadget/ci13xxx_udc.c:822 @ static struct {
 } dbg_data = {
 	.idx = 0,
 	.tty = 0,
-	.lck = __RW_LOCK_UNLOCKED(lck)
+	.lck = __RW_LOCK_UNLOCKED(dbg_data.lck)
 };
 
 /**
@ drivers/usb/host/ohci-hcd.c:833 @ static irqreturn_t ohci_irq (struct usb_hcd *hcd)
 	}
 
 	if (ints & OHCI_INTR_WDH) {
-		spin_lock (&ohci->lock);
-		dl_done_list (ohci);
-		spin_unlock (&ohci->lock);
+		if (ohci->hcca->done_head == 0) {
+			ints &= ~OHCI_INTR_WDH;
+		} else {
+			spin_lock (&ohci->lock);
+			dl_done_list (ohci);
+			spin_unlock (&ohci->lock);
+		}
 	}
 
 	if (quirk_zfmicro(ohci) && (ints & OHCI_INTR_SF)) {
@ fs/autofs4/autofs_i.h:37 @
 #include <linux/sched.h>
 #include <linux/mount.h>
 #include <linux/namei.h>
+#include <linux/delay.h>
 #include <asm/current.h>
 #include <asm/uaccess.h>
 
@ fs/autofs4/expire.c:173 @ again:
 			parent = p->d_parent;
 			if (!spin_trylock(&parent->d_lock)) {
 				spin_unlock(&p->d_lock);
-				cpu_relax();
+				cpu_chill();
 				goto relock;
 			}
 			spin_unlock(&p->d_lock);
@ fs/buffer.c:334 @ static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 	 * decide that the page is now completely done.
 	 */
 	first = page_buffers(page);
-	local_irq_save(flags);
-	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
+	flags = bh_uptodate_lock_irqsave(first);
 	clear_buffer_async_read(bh);
 	unlock_buffer(bh);
 	tmp = bh;
@ fs/buffer.c:347 @ static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 		}
 		tmp = tmp->b_this_page;
 	} while (tmp != bh);
-	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
-	local_irq_restore(flags);
+	bh_uptodate_unlock_irqrestore(first, flags);
 
 	/*
 	 * If none of the buffers had errors and they are all
@ fs/buffer.c:359 @ static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 	return;
 
 still_busy:
-	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
-	local_irq_restore(flags);
-	return;
+	bh_uptodate_unlock_irqrestore(first, flags);
 }
 
 /*
@ fs/buffer.c:393 @ void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 	}
 
 	first = page_buffers(page);
-	local_irq_save(flags);
-	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
+	flags = bh_uptodate_lock_irqsave(first);
 
 	clear_buffer_async_write(bh);
 	unlock_buffer(bh);
@ fs/buffer.c:405 @ void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 		}
 		tmp = tmp->b_this_page;
 	}
-	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
-	local_irq_restore(flags);
+	bh_uptodate_unlock_irqrestore(first, flags);
 	end_page_writeback(page);
 	return;
 
 still_busy:
-	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
-	local_irq_restore(flags);
-	return;
+	bh_uptodate_unlock_irqrestore(first, flags);
 }
 EXPORT_SYMBOL(end_buffer_async_write);
 
@ fs/buffer.c:3217 @ struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
 	if (ret) {
 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
+		buffer_head_init_locks(ret);
 		preempt_disable();
 		__this_cpu_inc(bh_accounting.nr);
 		recalc_bh_state();
@ fs/dcache.c:40 @
 #include <linux/rculist_bl.h>
 #include <linux/prefetch.h>
 #include <linux/ratelimit.h>
+#include <linux/delay.h>
 #include "internal.h"
 
 /*
@ fs/dcache.c:414 @ static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
 	if (inode && !spin_trylock(&inode->i_lock)) {
 relock:
 		spin_unlock(&dentry->d_lock);
-		cpu_relax();
+		cpu_chill();
 		return dentry; /* try again with same dentry */
 	}
 	if (IS_ROOT(dentry))
@ fs/dcache.c:800 @ relock:
 
 		if (!spin_trylock(&dentry->d_lock)) {
 			spin_unlock(&dcache_lru_lock);
-			cpu_relax();
+			cpu_chill();
 			goto relock;
 		}
 
@ fs/dcache.c:1983 @ again:
 	if (dentry->d_count == 1) {
 		if (inode && !spin_trylock(&inode->i_lock)) {
 			spin_unlock(&dentry->d_lock);
-			cpu_relax();
+			cpu_chill();
 			goto again;
 		}
 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
@ fs/eventpoll.c:467 @ static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
  */
 static void ep_poll_safewake(wait_queue_head_t *wq)
 {
-	int this_cpu = get_cpu();
+	int this_cpu = get_cpu_light();
 
 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
 
-	put_cpu();
+	put_cpu_light();
 }
 
 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
@ fs/exec.c:840 @ static int exec_mmap(struct mm_struct *mm)
 		}
 	}
 	task_lock(tsk);
+	local_irq_disable_rt();
 	active_mm = tsk->active_mm;
 	tsk->mm = mm;
 	tsk->active_mm = mm;
 	activate_mm(active_mm, mm);
+	local_irq_enable_rt();
 	task_unlock(tsk);
 	arch_pick_mmap_layout(mm);
 	if (old_mm) {
@ fs/file.c:108 @ void free_fdtable_rcu(struct rcu_head *rcu)
 		kfree(fdt->open_fds);
 		kfree(fdt);
 	} else {
-		fddef = &get_cpu_var(fdtable_defer_list);
+		fddef = &per_cpu(fdtable_defer_list, get_cpu_light());
 		spin_lock(&fddef->lock);
 		fdt->next = fddef->next;
 		fddef->next = fdt;
 		/* vmallocs are handled from the workqueue context */
 		schedule_work(&fddef->wq);
 		spin_unlock(&fddef->lock);
-		put_cpu_var(fdtable_defer_list);
+		put_cpu_light();
 	}
 }
 
@ fs/file.c:425 @ struct files_struct init_files = {
 		.close_on_exec	= (fd_set *)&init_files.close_on_exec_init,
 		.open_fds	= (fd_set *)&init_files.open_fds_init,
 	},
-	.file_lock	= __SPIN_LOCK_UNLOCKED(init_task.file_lock),
+	.file_lock	= __SPIN_LOCK_UNLOCKED(init_files.file_lock),
 };
 
 /*
@ fs/fs_struct.c:29 @ void set_fs_root(struct fs_struct *fs, struct path *path)
 {
 	struct path old_root;
 
+	path_get_longterm(path);
 	spin_lock(&fs->lock);
 	write_seqcount_begin(&fs->seq);
 	old_root = fs->root;
 	fs->root = *path;
-	path_get_longterm(path);
 	write_seqcount_end(&fs->seq);
 	spin_unlock(&fs->lock);
 	if (old_root.dentry)
@ fs/fs_struct.c:48 @ void set_fs_pwd(struct fs_struct *fs, struct path *path)
 {
 	struct path old_pwd;
 
+	path_get_longterm(path);
 	spin_lock(&fs->lock);
 	write_seqcount_begin(&fs->seq);
 	old_pwd = fs->pwd;
 	fs->pwd = *path;
-	path_get_longterm(path);
 	write_seqcount_end(&fs->seq);
 	spin_unlock(&fs->lock);
 
@ fs/fs_struct.c:60 @ void set_fs_pwd(struct fs_struct *fs, struct path *path)
 		path_put_longterm(&old_pwd);
 }
 
+static inline int replace_path(struct path *p, const struct path *old, const struct path *new)
+{
+	if (likely(p->dentry != old->dentry || p->mnt != old->mnt))
+		return 0;
+	*p = *new;
+	return 1;
+}
+
 void chroot_fs_refs(struct path *old_root, struct path *new_root)
 {
 	struct task_struct *g, *p;
@ fs/fs_struct.c:79 @ void chroot_fs_refs(struct path *old_root, struct path *new_root)
 		task_lock(p);
 		fs = p->fs;
 		if (fs) {
+			int hits = 0;
 			spin_lock(&fs->lock);
 			write_seqcount_begin(&fs->seq);
-			if (fs->root.dentry == old_root->dentry
-			    && fs->root.mnt == old_root->mnt) {
-				path_get_longterm(new_root);
-				fs->root = *new_root;
+			hits += replace_path(&fs->root, old_root, new_root);
+			hits += replace_path(&fs->pwd, old_root, new_root);
+			write_seqcount_end(&fs->seq);
+			while (hits--) {
 				count++;
-			}
-			if (fs->pwd.dentry == old_root->dentry
-			    && fs->pwd.mnt == old_root->mnt) {
 				path_get_longterm(new_root);
-				fs->pwd = *new_root;
-				count++;
 			}
-			write_seqcount_end(&fs->seq);
 			spin_unlock(&fs->lock);
 		}
 		task_unlock(p);
@ fs/jbd/checkpoint.c:132 @ void __log_wait_for_space(journal_t *journal)
 		if (journal->j_flags & JFS_ABORT)
 			return;
 		spin_unlock(&journal->j_state_lock);
+		if (current->plug)
+			io_schedule();
 		mutex_lock(&journal->j_checkpoint_mutex);
 
 		/*
@ fs/namespace.c:34 @
 #include <linux/idr.h>
 #include <linux/fs_struct.h>
 #include <linux/fsnotify.h>
+#include <linux/delay.h>
 #include <asm/uaccess.h>
 #include <asm/unistd.h>
 #include "pnode.h"
@ fs/namespace.c:345 @ int mnt_want_write(struct vfsmount *mnt)
 	 * incremented count after it has set MNT_WRITE_HOLD.
 	 */
 	smp_mb();
-	while (mnt->mnt_flags & MNT_WRITE_HOLD)
-		cpu_relax();
+	/*
+	 * No need to keep preemption disabled accross the spin loop.
+	 */
+	while (mnt->mnt_flags & MNT_WRITE_HOLD) {
+		preempt_enable();
+		cpu_chill();
+		preempt_disable();
+	}
 	/*
 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 	 * be set to match its requirements. So we must not load that until
@ fs/namespace.c:362 @ int mnt_want_write(struct vfsmount *mnt)
 	if (__mnt_is_readonly(mnt)) {
 		mnt_dec_writers(mnt);
 		ret = -EROFS;
-		goto out;
 	}
-out:
 	preempt_enable();
 	return ret;
 }
@ fs/ntfs/aops.c:111 @ static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
 				"0x%llx.", (unsigned long long)bh->b_blocknr);
 	}
 	first = page_buffers(page);
-	local_irq_save(flags);
-	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
+	flags = bh_uptodate_lock_irqsave(first);
 	clear_buffer_async_read(bh);
 	unlock_buffer(bh);
 	tmp = bh;
@ fs/ntfs/aops.c:126 @ static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
 		}
 		tmp = tmp->b_this_page;
 	} while (tmp != bh);
-	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
-	local_irq_restore(flags);
+	bh_uptodate_unlock_irqrestore(first, flags);
 	/*
 	 * If none of the buffers had errors then we can set the page uptodate,
 	 * but we first have to perform the post read mst fixups, if the
@ fs/ntfs/aops.c:147 @ static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
 		recs = PAGE_CACHE_SIZE / rec_size;
 		/* Should have been verified before we got here... */
 		BUG_ON(!recs);
-		local_irq_save(flags);
+		local_irq_save_nort(flags);
 		kaddr = kmap_atomic(page, KM_BIO_SRC_IRQ);
 		for (i = 0; i < recs; i++)
 			post_read_mst_fixup((NTFS_RECORD*)(kaddr +
 					i * rec_size), rec_size);
 		kunmap_atomic(kaddr, KM_BIO_SRC_IRQ);
-		local_irq_restore(flags);
+		local_irq_restore_nort(flags);
 		flush_dcache_page(page);
 		if (likely(page_uptodate && !PageError(page)))
 			SetPageUptodate(page);
@ fs/ntfs/aops.c:161 @ static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
 	unlock_page(page);
 	return;
 still_busy:
-	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
-	local_irq_restore(flags);
-	return;
+	bh_uptodate_unlock_irqrestore(first, flags);
 }
 
 /**
@ fs/timerfd.c:316 @ SYSCALL_DEFINE4(timerfd_settime, int, ufd, int, flags,
 		if (hrtimer_try_to_cancel(&ctx->tmr) >= 0)
 			break;
 		spin_unlock_irq(&ctx->wqh.lock);
-		cpu_relax();
+		hrtimer_wait_for_timer(&ctx->tmr);
 	}
 
 	/*
@ include/acpi/platform/aclinux.h:76 @
 
 #define acpi_cache_t                        struct kmem_cache
 #define acpi_spinlock                       spinlock_t *
+#define acpi_raw_spinlock                   raw_spinlock_t *
 #define acpi_cpu_flags                      unsigned long
 
 #else /* !__KERNEL__ */
@ include/acpi/platform/aclinux.h:180 @ static inline void *acpi_os_acquire_object(acpi_cache_t * cache)
 	lock ? AE_OK : AE_NO_MEMORY;				\
 })
 
+#define acpi_os_create_raw_lock(__handle)			\
+({								\
+	raw_spinlock_t *lock = ACPI_ALLOCATE(sizeof(*lock));	\
+								\
+	if (lock) {						\
+		*(__handle) = lock;				\
+		raw_spin_lock_init(*(__handle));		\
+	}							\
+	lock ? AE_OK : AE_NO_MEMORY;				\
+})
+
+#define acpi_os_delete_raw_lock(__handle)	kfree(__handle)
+
 #endif /* __KERNEL__ */
 
 #endif /* __ACLINUX_H__ */
@ include/asm-generic/bug.h:6 @
 
 #include <linux/compiler.h>
 
+#ifndef __ASSEMBLY__
+extern void __WARN_ON(const char *func, const char *file, const int line);
+#endif /* __ASSEMBLY__ */
+
 #ifdef CONFIG_BUG
 
 #ifdef CONFIG_GENERIC_BUG
@ include/asm-generic/bug.h:209 @ extern void warn_slowpath_null(const char *file, const int line);
 # define WARN_ON_SMP(x)			({0;})
 #endif
 
+#ifdef CONFIG_PREEMPT_RT_BASE
+# define BUG_ON_RT(c)			BUG_ON(c)
+# define BUG_ON_NONRT(c)		do { } while (0)
+# define WARN_ON_RT(condition)		WARN_ON(condition)
+# define WARN_ON_NONRT(condition)	do { } while (0)
+# define WARN_ON_ONCE_NONRT(condition)	do { } while (0)
+#else
+# define BUG_ON_RT(c)			do { } while (0)
+# define BUG_ON_NONRT(c)		BUG_ON(c)
+# define WARN_ON_RT(condition)		do { } while (0)
+# define WARN_ON_NONRT(condition)	WARN_ON(condition)
+# define WARN_ON_ONCE_NONRT(condition)	WARN_ON_ONCE(condition)
+#endif
+
 #endif
@ include/asm-generic/cmpxchg-local.h:24 @ static inline unsigned long __cmpxchg_local_generic(volatile void *ptr,
 	if (size == 8 && sizeof(unsigned long) != 8)
 		wrong_size_cmpxchg(ptr);
 
-	local_irq_save(flags);
+	raw_local_irq_save(flags);
 	switch (size) {
 	case 1: prev = *(u8 *)ptr;
 		if (prev == old)
@ include/asm-generic/cmpxchg-local.h:45 @ static inline unsigned long __cmpxchg_local_generic(volatile void *ptr,
 	default:
 		wrong_size_cmpxchg(ptr);
 	}
-	local_irq_restore(flags);
+	raw_local_irq_restore(flags);
 	return prev;
 }
 
@ include/asm-generic/cmpxchg-local.h:58 @ static inline u64 __cmpxchg64_local_generic(volatile void *ptr,
 	u64 prev;
 	unsigned long flags;
 
-	local_irq_save(flags);
+	raw_local_irq_save(flags);
 	prev = *(u64 *)ptr;
 	if (prev == old)
 		*(u64 *)ptr = new;
-	local_irq_restore(flags);
+	raw_local_irq_restore(flags);
 	return prev;
 }
 
@ include/linux/buffer_head.h:75 @ struct buffer_head {
 	struct address_space *b_assoc_map;	/* mapping this buffer is
 						   associated with */
 	atomic_t b_count;		/* users using this buffer_head */
+#ifdef CONFIG_PREEMPT_RT_BASE
+	spinlock_t b_uptodate_lock;
+#if defined(CONFIG_JBD) || defined(CONFIG_JBD_MODULE) || \
+    defined(CONFIG_JBD2) || defined(CONFIG_JBD2_MODULE)
+	spinlock_t b_state_lock;
+	spinlock_t b_journal_head_lock;
+#endif
+#endif
 };
 
+static inline unsigned long bh_uptodate_lock_irqsave(struct buffer_head *bh)
+{
+	unsigned long flags;
+
+#ifndef CONFIG_PREEMPT_RT_BASE
+	local_irq_save(flags);
+	bit_spin_lock(BH_Uptodate_Lock, &bh->b_state);
+#else
+	spin_lock_irqsave(&bh->b_uptodate_lock, flags);
+#endif
+	return flags;
+}
+
+static inline void
+bh_uptodate_unlock_irqrestore(struct buffer_head *bh, unsigned long flags)
+{
+#ifndef CONFIG_PREEMPT_RT_BASE
+	bit_spin_unlock(BH_Uptodate_Lock, &bh->b_state);
+	local_irq_restore(flags);
+#else
+	spin_unlock_irqrestore(&bh->b_uptodate_lock, flags);
+#endif
+}
+
+static inline void buffer_head_init_locks(struct buffer_head *bh)
+{
+#ifdef CONFIG_PREEMPT_RT_BASE
+	spin_lock_init(&bh->b_uptodate_lock);
+#if defined(CONFIG_JBD) || defined(CONFIG_JBD_MODULE) || \
+    defined(CONFIG_JBD2) || defined(CONFIG_JBD2_MODULE)
+	spin_lock_init(&bh->b_state_lock);
+	spin_lock_init(&bh->b_journal_head_lock);
+#endif
+#endif
+}
+
 /*
  * macro tricks to expand the set_buffer_foo(), clear_buffer_foo()
  * and buffer_foo() functions.
@ include/linux/console.h:136 @ struct console {
 	for (con = console_drivers; con != NULL; con = con->next)
 
 extern int console_set_on_cmdline;
+extern struct console *early_console;
 
 extern int add_preferred_console(char *name, int idx, char *options);
 extern int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options);
@ include/linux/cpu.h:171 @ extern struct sysdev_class cpu_sysdev_class;
 
 extern void get_online_cpus(void);
 extern void put_online_cpus(void);
+extern void pin_current_cpu(void);
+extern void unpin_current_cpu(void);
 #define hotcpu_notifier(fn, pri)	cpu_notifier(fn, pri)
 #define register_hotcpu_notifier(nb)	register_cpu_notifier(nb)
 #define unregister_hotcpu_notifier(nb)	unregister_cpu_notifier(nb)
@ include/linux/cpu.h:195 @ static inline void cpu_hotplug_driver_unlock(void)
 
 #define get_online_cpus()	do { } while (0)
 #define put_online_cpus()	do { } while (0)
+static inline void pin_current_cpu(void) { }
+static inline void unpin_current_cpu(void) { }
 #define hotcpu_notifier(fn, pri)	do { (void)(fn); } while (0)
 /* These aren't inline functions due to a GCC bug. */
 #define register_hotcpu_notifier(nb)	({ (void)(nb); 0; })
@ include/linux/delay.h:55 @ static inline void ssleep(unsigned int seconds)
 	msleep(seconds * 1000);
 }
 
+#ifdef CONFIG_PREEMPT_RT_FULL
+# define cpu_chill()	msleep(1)
+#else
+# define cpu_chill()	cpu_relax()
+#endif
+
 #endif /* defined(_LINUX_DELAY_H) */
@ include/linux/ftrace_event.h:52 @ struct trace_entry {
 	unsigned char		flags;
 	unsigned char		preempt_count;
 	int			pid;
-	int			padding;
+	unsigned short		migrate_disable;
+	unsigned short		padding;
 };
 
 #define FTRACE_MAX_EVENT						\
@ include/linux/hardirq.h:63 @
 #define HARDIRQ_OFFSET	(1UL << HARDIRQ_SHIFT)
 #define NMI_OFFSET	(1UL << NMI_SHIFT)
 
-#define SOFTIRQ_DISABLE_OFFSET	(2 * SOFTIRQ_OFFSET)
+#ifndef CONFIG_PREEMPT_RT_FULL
+# define SOFTIRQ_DISABLE_OFFSET	(2 * SOFTIRQ_OFFSET)
+#else
+# define SOFTIRQ_DISABLE_OFFSET (0)
+#endif
 
 #ifndef PREEMPT_ACTIVE
 #define PREEMPT_ACTIVE_BITS	1
@ include/linux/hardirq.h:80 @
 #endif
 
 #define hardirq_count()	(preempt_count() & HARDIRQ_MASK)
-#define softirq_count()	(preempt_count() & SOFTIRQ_MASK)
 #define irq_count()	(preempt_count() & (HARDIRQ_MASK | SOFTIRQ_MASK \
 				 | NMI_MASK))
 
+#ifndef CONFIG_PREEMPT_RT_FULL
+# define softirq_count()	(preempt_count() & SOFTIRQ_MASK)
+# define in_serving_softirq()	(softirq_count() & SOFTIRQ_OFFSET)
+#else
+# define softirq_count()	(0UL)
+extern int in_serving_softirq(void);
+#endif
+
 /*
  * Are we doing bottom half or hardware interrupt processing?
  * Are we in a softirq context? Interrupt context?
@ include/linux/hardirq.h:100 @
 #define in_irq()		(hardirq_count())
 #define in_softirq()		(softirq_count())
 #define in_interrupt()		(irq_count())
-#define in_serving_softirq()	(softirq_count() & SOFTIRQ_OFFSET)
 
 /*
  * Are we in NMI context?
@ include/linux/hrtimer.h:114 @ struct hrtimer {
 	enum hrtimer_restart		(*function)(struct hrtimer *);
 	struct hrtimer_clock_base	*base;
 	unsigned long			state;
+	struct list_head		cb_entry;
+	int				irqsafe;
+#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST
+	ktime_t 			praecox;
+#endif
 #ifdef CONFIG_TIMER_STATS
 	int				start_pid;
 	void				*start_site;
@ include/linux/hrtimer.h:155 @ struct hrtimer_clock_base {
 	int			index;
 	clockid_t		clockid;
 	struct timerqueue_head	active;
+	struct list_head	expired;
 	ktime_t			resolution;
 	ktime_t			(*get_time)(void);
 	ktime_t			softirq_time;
@ include/linux/hrtimer.h:198 @ struct hrtimer_cpu_base {
 	unsigned long			nr_hangs;
 	ktime_t				max_hang_time;
 #endif
+#ifdef CONFIG_PREEMPT_RT_BASE
+	wait_queue_head_t		wait;
+#endif
 	struct hrtimer_clock_base	clock_base[HRTIMER_MAX_CLOCK_BASES];
 };
 
@ include/linux/hrtimer.h:394 @ static inline int hrtimer_restart(struct hrtimer *timer)
 	return hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
 }
 
+/* Softirq preemption could deadlock timer removal */
+#ifdef CONFIG_PREEMPT_RT_BASE
+  extern void hrtimer_wait_for_timer(const struct hrtimer *timer);
+#else
+# define hrtimer_wait_for_timer(timer)	do { cpu_relax(); } while (0)
+#endif
+
 /* Query timers: */
 extern ktime_t hrtimer_get_remaining(const struct hrtimer *timer);
 extern int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp);
@ include/linux/idr.h:139 @ struct ida {
 	struct ida_bitmap	*free_bitmap;
 };
 
-#define IDA_INIT(name)		{ .idr = IDR_INIT(name), .free_bitmap = NULL, }
+#define IDA_INIT(name)		{ .idr = IDR_INIT((name).idr), .free_bitmap = NULL, }
 #define DEFINE_IDA(name)	struct ida name = IDA_INIT(name)
 
 int ida_pre_get(struct ida *ida, gfp_t gfp_mask);
@ include/linux/init_task.h:145 @ extern struct task_group root_task_group;
 # define INIT_PERF_EVENTS(tsk)
 #endif
 
+#ifdef CONFIG_PREEMPT_RT_BASE
+# define INIT_TIMER_LIST		.posix_timer_list = NULL,
+#else
+# define INIT_TIMER_LIST
+#endif
+
 #define INIT_TASK_COMM "swapper"
 
 /*
@ include/linux/init_task.h:206 @ extern struct task_group root_task_group;
 	.cpu_timers	= INIT_CPU_TIMERS(tsk.cpu_timers),		\
 	.pi_lock	= __RAW_SPIN_LOCK_UNLOCKED(tsk.pi_lock),	\
 	.timer_slack_ns = 50000, /* 50 usec default slack */		\
+	INIT_TIMER_LIST							\
 	.pids = {							\
 		[PIDTYPE_PID]  = INIT_PID_LINK(PIDTYPE_PID),		\
 		[PIDTYPE_PGID] = INIT_PID_LINK(PIDTYPE_PGID),		\
@ include/linux/interrupt.h:64 @
  * IRQF_NO_THREAD - Interrupt cannot be threaded
  * IRQF_EARLY_RESUME - Resume IRQ early during syscore instead of at device
  *                resume time.
+ * IRQF_NO_SOFTIRQ_CALL - Do not process softirqs in the irq thread context (RT)
  */
 #define IRQF_DISABLED		0x00000020
 #define IRQF_SAMPLE_RANDOM	0x00000040
@ include/linux/interrupt.h:79 @
 #define IRQF_FORCE_RESUME	0x00008000
 #define IRQF_NO_THREAD		0x00010000
 #define IRQF_EARLY_RESUME	0x00020000
+#define IRQF_NO_SOFTIRQ_CALL	0x00040000
 
 #define IRQF_TIMER		(__IRQF_TIMER | IRQF_NO_SUSPEND | IRQF_NO_THREAD)
 
@ include/linux/interrupt.h:224 @ extern void devm_free_irq(struct device *dev, unsigned int irq, void *dev_id);
 #ifdef CONFIG_LOCKDEP
 # define local_irq_enable_in_hardirq()	do { } while (0)
 #else
-# define local_irq_enable_in_hardirq()	local_irq_enable()
+# define local_irq_enable_in_hardirq()	local_irq_enable_nort()
 #endif
 
 extern void disable_irq_nosync(unsigned int irq);
@ include/linux/interrupt.h:401 @ static inline int disable_irq_wake(unsigned int irq)
 
 
 #ifdef CONFIG_IRQ_FORCED_THREADING
-extern bool force_irqthreads;
+# ifndef CONFIG_PREEMPT_RT_BASE
+   extern bool force_irqthreads;
+# else
+#  define force_irqthreads	(true)
+# endif
 #else
-#define force_irqthreads	(0)
+#define force_irqthreads	(false)
 #endif
 
 #ifndef __ARCH_SET_SOFTIRQ_PENDING
@ include/linux/interrupt.h:461 @ struct softirq_action
 	void	(*action)(struct softirq_action *);
 };
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 asmlinkage void do_softirq(void);
 asmlinkage void __do_softirq(void);
+static inline void thread_do_softirq(void) { do_softirq(); }
+#else
+extern void thread_do_softirq(void);
+#endif
+
 extern void open_softirq(int nr, void (*action)(struct softirq_action *));
 extern void softirq_init(void);
 static inline void __raise_softirq_irqoff(unsigned int nr)
@ include/linux/interrupt.h:480 @ static inline void __raise_softirq_irqoff(unsigned int nr)
 extern void raise_softirq_irqoff(unsigned int nr);
 extern void raise_softirq(unsigned int nr);
 
+extern void softirq_check_pending_idle(void);
+
 /* This is the worklist that queues up per-cpu softirq work.
  *
  * send_remote_sendirq() adds work to these lists, and
@ include/linux/interrupt.h:522 @ extern void __send_remote_softirq(struct call_single_data *cp, int cpu,
      to be executed on some cpu at least once after this.
    * If the tasklet is already scheduled, but its execution is still not
      started, it will be executed only once.
-   * If this tasklet is already running on another CPU (or schedule is called
-     from tasklet itself), it is rescheduled for later.
+   * If this tasklet is already running on another CPU, it is rescheduled
+     for later.
+   * Schedule must not be called from the tasklet itself (a lockup occurs)
    * Tasklet is strictly serialized wrt itself, but not
      wrt another tasklets. If client needs some intertask synchronization,
      he makes it with spinlocks.
@ include/linux/interrupt.h:549 @ struct tasklet_struct name = { NULL, 0, ATOMIC_INIT(1), func, data }
 enum
 {
 	TASKLET_STATE_SCHED,	/* Tasklet is scheduled for execution */
-	TASKLET_STATE_RUN	/* Tasklet is running (SMP only) */
+	TASKLET_STATE_RUN,	/* Tasklet is running (SMP only) */
+	TASKLET_STATE_PENDING	/* Tasklet is pending */
 };
 
-#ifdef CONFIG_SMP
+#define TASKLET_STATEF_SCHED	(1 << TASKLET_STATE_SCHED)
+#define TASKLET_STATEF_RUN	(1 << TASKLET_STATE_RUN)
+#define TASKLET_STATEF_PENDING	(1 << TASKLET_STATE_PENDING)
+
+#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT_FULL)
 static inline int tasklet_trylock(struct tasklet_struct *t)
 {
 	return !test_and_set_bit(TASKLET_STATE_RUN, &(t)->state);
 }
 
+static inline int tasklet_tryunlock(struct tasklet_struct *t)
+{
+	return cmpxchg(&t->state, TASKLET_STATEF_RUN, 0) == TASKLET_STATEF_RUN;
+}
+
 static inline void tasklet_unlock(struct tasklet_struct *t)
 {
 	smp_mb__before_clear_bit(); 
 	clear_bit(TASKLET_STATE_RUN, &(t)->state);
 }
 
-static inline void tasklet_unlock_wait(struct tasklet_struct *t)
-{
-	while (test_bit(TASKLET_STATE_RUN, &(t)->state)) { barrier(); }
-}
+extern void tasklet_unlock_wait(struct tasklet_struct *t);
+
 #else
 #define tasklet_trylock(t) 1
+#define tasklet_tryunlock(t)	1
 #define tasklet_unlock_wait(t) do { } while (0)
 #define tasklet_unlock(t) do { } while (0)
 #endif
@ include/linux/interrupt.h:627 @ static inline void tasklet_disable(struct tasklet_struct *t)
 	smp_mb();
 }
 
-static inline void tasklet_enable(struct tasklet_struct *t)
-{
-	smp_mb__before_atomic_dec();
-	atomic_dec(&t->count);
-}
-
-static inline void tasklet_hi_enable(struct tasklet_struct *t)
-{
-	smp_mb__before_atomic_dec();
-	atomic_dec(&t->count);
-}
+extern  void tasklet_enable(struct tasklet_struct *t);
+extern  void tasklet_hi_enable(struct tasklet_struct *t);
 
 extern void tasklet_kill(struct tasklet_struct *t);
 extern void tasklet_kill_immediate(struct tasklet_struct *t, unsigned int cpu);
@ include/linux/interrupt.h:660 @ void tasklet_hrtimer_cancel(struct tasklet_hrtimer *ttimer)
 	tasklet_kill(&ttimer->tasklet);
 }
 
+#ifdef CONFIG_PREEMPT_RT_FULL
+extern void softirq_early_init(void);
+#else
+static inline void softirq_early_init(void) { }
+#endif
+
 /*
  * Autoprobing for irqs:
  *
@ include/linux/irq.h:70 @ typedef	void (*irq_preflow_handler_t)(struct irq_data *data);
  * IRQ_MOVE_PCNTXT		- Interrupt can be migrated from process context
  * IRQ_NESTED_TRHEAD		- Interrupt nests into another thread
  * IRQ_PER_CPU_DEVID		- Dev_id is a per-cpu variable
+ * IRQ_NO_SOFTIRQ_CALL		- No softirq processing in the irq thread context (RT)
  */
 enum {
 	IRQ_TYPE_NONE		= 0x00000000,
@ include/linux/irq.h:94 @ enum {
 	IRQ_NESTED_THREAD	= (1 << 15),
 	IRQ_NOTHREAD		= (1 << 16),
 	IRQ_PER_CPU_DEVID	= (1 << 17),
+	IRQ_NO_SOFTIRQ_CALL	= (1 << 18),
 };
 
 #define IRQF_MODIFY_MASK	\
 	(IRQ_TYPE_SENSE_MASK | IRQ_NOPROBE | IRQ_NOREQUEST | \
 	 IRQ_NOAUTOEN | IRQ_MOVE_PCNTXT | IRQ_LEVEL | IRQ_NO_BALANCING | \
-	 IRQ_PER_CPU | IRQ_NESTED_THREAD | IRQ_NOTHREAD | IRQ_PER_CPU_DEVID)
+	 IRQ_PER_CPU | IRQ_NESTED_THREAD | IRQ_NOTHREAD | IRQ_PER_CPU_DEVID | \
+	 IRQ_NO_SOFTIRQ_CALL)
 
 #define IRQ_NO_BALANCING_MASK	(IRQ_PER_CPU | IRQ_NO_BALANCING)
 
@ include/linux/irqdesc.h:56 @ struct irq_desc {
 	unsigned int		irq_count;	/* For detecting broken IRQs */
 	unsigned long		last_unhandled;	/* Aging timer for unhandled count */
 	unsigned int		irqs_unhandled;
+	u64			random_ip;
 	raw_spinlock_t		lock;
 	struct cpumask		*percpu_enabled;
 #ifdef CONFIG_SMP
@ include/linux/irqflags.h:28 @
 # define trace_softirqs_enabled(p)	((p)->softirqs_enabled)
 # define trace_hardirq_enter()	do { current->hardirq_context++; } while (0)
 # define trace_hardirq_exit()	do { current->hardirq_context--; } while (0)
-# define lockdep_softirq_enter()	do { current->softirq_context++; } while (0)
-# define lockdep_softirq_exit()	do { current->softirq_context--; } while (0)
 # define INIT_TRACE_IRQFLAGS	.softirqs_enabled = 1,
 #else
 # define trace_hardirqs_on()		do { } while (0)
@ include/linux/irqflags.h:40 @
 # define trace_softirqs_enabled(p)	0
 # define trace_hardirq_enter()		do { } while (0)
 # define trace_hardirq_exit()		do { } while (0)
+# define INIT_TRACE_IRQFLAGS
+#endif
+
+#if defined(CONFIG_TRACE_IRQFLAGS) && !defined(CONFIG_PREEMPT_RT_FULL)
+# define lockdep_softirq_enter() do { current->softirq_context++; } while (0)
+# define lockdep_softirq_exit()	 do { current->softirq_context--; } while (0)
+#else
 # define lockdep_softirq_enter()	do { } while (0)
 # define lockdep_softirq_exit()		do { } while (0)
-# define INIT_TRACE_IRQFLAGS
 #endif
 
 #if defined(CONFIG_IRQSOFF_TRACER) || \
@ include/linux/irqflags.h:154 @
 
 #endif /* CONFIG_TRACE_IRQFLAGS_SUPPORT */
 
+/*
+ * local_irq* variants depending on RT/!RT
+ */
+#ifdef CONFIG_PREEMPT_RT_FULL
+# define local_irq_disable_nort()	do { } while (0)
+# define local_irq_enable_nort()	do { } while (0)
+# define local_irq_save_nort(flags)	do { local_save_flags(flags); } while (0)
+# define local_irq_restore_nort(flags)	do { (void)(flags); } while (0)
+# define local_irq_disable_rt()		local_irq_disable()
+# define local_irq_enable_rt()		local_irq_enable()
+#else
+# define local_irq_disable_nort()	local_irq_disable()
+# define local_irq_enable_nort()	local_irq_enable()
+# define local_irq_save_nort(flags)	local_irq_save(flags)
+# define local_irq_restore_nort(flags)	local_irq_restore(flags)
+# define local_irq_disable_rt()		do { } while (0)
+# define local_irq_enable_rt()		do { } while (0)
+#endif
+
 #endif
@ include/linux/jbd_common.h:40 @ static inline struct journal_head *bh2jh(struct buffer_head *bh)
 
 static inline void jbd_lock_bh_state(struct buffer_head *bh)
 {
+#ifndef CONFIG_PREEMPT_RT_BASE
 	bit_spin_lock(BH_State, &bh->b_state);
+#else
+	spin_lock(&bh->b_state_lock);
+#endif
 }
 
 static inline int jbd_trylock_bh_state(struct buffer_head *bh)
 {
+#ifndef CONFIG_PREEMPT_RT_BASE
 	return bit_spin_trylock(BH_State, &bh->b_state);
+#else
+	return spin_trylock(&bh->b_state_lock);
+#endif
 }
 
 static inline int jbd_is_locked_bh_state(struct buffer_head *bh)
 {
+#ifndef CONFIG_PREEMPT_RT_BASE
 	return bit_spin_is_locked(BH_State, &bh->b_state);
+#else
+	return spin_is_locked(&bh->b_state_lock);
+#endif
 }
 
 static inline void jbd_unlock_bh_state(struct buffer_head *bh)
 {
+#ifndef CONFIG_PREEMPT_RT_BASE
 	bit_spin_unlock(BH_State, &bh->b_state);
+#else
+	spin_unlock(&bh->b_state_lock);
+#endif
 }
 
 static inline void jbd_lock_bh_journal_head(struct buffer_head *bh)
 {
+#ifndef CONFIG_PREEMPT_RT_BASE
 	bit_spin_lock(BH_JournalHead, &bh->b_state);
+#else
+	spin_lock(&bh->b_journal_head_lock);
+#endif
 }
 
 static inline void jbd_unlock_bh_journal_head(struct buffer_head *bh)
 {
+#ifndef CONFIG_PREEMPT_RT_BASE
 	bit_spin_unlock(BH_JournalHead, &bh->b_state);
+#else
+	spin_unlock(&bh->b_journal_head_lock);
+#endif
 }
 
 #endif
@ include/linux/jump_label.h:7 @
 #include <linux/types.h>
 #include <linux/compiler.h>
 
-#if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL)
+#if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL) && !defined(CONFIG_PREEMPT_BASE)
 
 struct jump_label_key {
 	atomic_t enabled;
@ include/linux/kdb.h:153 @ extern int kdb_register(char *, kdb_func_t, char *, char *, short);
 extern int kdb_register_repeat(char *, kdb_func_t, char *, char *,
 			       short, kdb_repeat_t);
 extern int kdb_unregister(char *);
+#define in_kdb_printk() (kdb_trap_printk)
 #else /* ! CONFIG_KGDB_KDB */
 #define kdb_printf(...)
 #define kdb_init(x)
 #define kdb_register(...)
 #define kdb_register_repeat(...)
 #define kdb_uregister(x)
+#define in_kdb_printk() (0)
 #endif	/* CONFIG_KGDB_KDB */
 enum {
 	KDB_NOT_INITIALIZED,
@ include/linux/kernel.h:372 @ extern enum system_states {
 	SYSTEM_HALT,
 	SYSTEM_POWER_OFF,
 	SYSTEM_RESTART,
-	SYSTEM_SUSPEND_DISK,
+	SYSTEM_SUSPEND,
 } system_state;
 
 #define TAINT_PROPRIETARY_MODULE	0
@ include/linux/lglock.h:74 @
  extern void name##_global_lock_online(void);				\
  extern void name##_global_unlock_online(void);				\
 
+#ifndef CONFIG_PREEMPT_RT_FULL
+
 #define DEFINE_LGLOCK(name)						\
 									\
  DEFINE_SPINLOCK(name##_cpu_lock);					\
@ include/linux/lglock.h:202 @
 	preempt_enable();						\
  }									\
  EXPORT_SYMBOL(name##_global_unlock);
+
+#else /* !PREEMPT_RT_FULL */
+#define DEFINE_LGLOCK(name)						\
+									\
+ DEFINE_PER_CPU(struct rt_mutex, name##_lock);				\
+ DEFINE_SPINLOCK(name##_cpu_lock);					\
+ cpumask_t name##_cpus __read_mostly;					\
+ DEFINE_LGLOCK_LOCKDEP(name);						\
+									\
+ static int								\
+ name##_lg_cpu_callback(struct notifier_block *nb,			\
+				unsigned long action, void *hcpu)	\
+ {									\
+	switch (action & ~CPU_TASKS_FROZEN) {				\
+	case CPU_UP_PREPARE:						\
+		spin_lock(&name##_cpu_lock);				\
+		cpu_set((unsigned long)hcpu, name##_cpus);		\
+		spin_unlock(&name##_cpu_lock);				\
+		break;							\
+	case CPU_UP_CANCELED: case CPU_DEAD:				\
+		spin_lock(&name##_cpu_lock);				\
+		cpu_clear((unsigned long)hcpu, name##_cpus);		\
+		spin_unlock(&name##_cpu_lock);				\
+	}								\
+	return NOTIFY_OK;						\
+ }									\
+ static struct notifier_block name##_lg_cpu_notifier = {		\
+	.notifier_call = name##_lg_cpu_callback,			\
+ };									\
+ void name##_lock_init(void) {						\
+	int i;								\
+	LOCKDEP_INIT_MAP(&name##_lock_dep_map, #name, &name##_lock_key, 0); \
+	for_each_possible_cpu(i) {					\
+		struct rt_mutex *lock;					\
+		lock = &per_cpu(name##_lock, i);			\
+		rt_mutex_init(lock);					\
+	}								\
+	register_hotcpu_notifier(&name##_lg_cpu_notifier);		\
+	get_online_cpus();						\
+	for_each_online_cpu(i)						\
+		cpu_set(i, name##_cpus);				\
+	put_online_cpus();						\
+ }									\
+ EXPORT_SYMBOL(name##_lock_init);					\
+									\
+ void name##_local_lock(void) {						\
+	struct rt_mutex *lock;						\
+	migrate_disable();						\
+	rwlock_acquire_read(&name##_lock_dep_map, 0, 0, _THIS_IP_);	\
+	lock = &__get_cpu_var(name##_lock);				\
+	__rt_spin_lock(lock);						\
+ }									\
+ EXPORT_SYMBOL(name##_local_lock);					\
+									\
+ void name##_local_unlock(void) {					\
+	struct rt_mutex *lock;						\
+	rwlock_release(&name##_lock_dep_map, 1, _THIS_IP_);		\
+	lock = &__get_cpu_var(name##_lock);				\
+	__rt_spin_unlock(lock);						\
+	migrate_enable();						\
+ }									\
+ EXPORT_SYMBOL(name##_local_unlock);					\
+									\
+ void name##_local_lock_cpu(int cpu) {					\
+	struct rt_mutex *lock;						\
+	rwlock_acquire_read(&name##_lock_dep_map, 0, 0, _THIS_IP_);	\
+	lock = &per_cpu(name##_lock, cpu);				\
+	__rt_spin_lock(lock);						\
+ }									\
+ EXPORT_SYMBOL(name##_local_lock_cpu);					\
+									\
+ void name##_local_unlock_cpu(int cpu) {				\
+	struct rt_mutex *lock;						\
+	rwlock_release(&name##_lock_dep_map, 1, _THIS_IP_);		\
+	lock = &per_cpu(name##_lock, cpu);				\
+	__rt_spin_unlock(lock);						\
+ }									\
+ EXPORT_SYMBOL(name##_local_unlock_cpu);				\
+									\
+ void name##_global_lock_online(void) {					\
+	int i;								\
+	rwlock_acquire(&name##_lock_dep_map, 0, 0, _RET_IP_);		\
+	spin_lock(&name##_cpu_lock);					\
+	for_each_cpu(i, &name##_cpus) {					\
+		struct rt_mutex *lock;					\
+		lock = &per_cpu(name##_lock, i);			\
+		__rt_spin_lock(lock);					\
+	}								\
+ }									\
+ EXPORT_SYMBOL(name##_global_lock_online);				\
+									\
+ void name##_global_unlock_online(void) {				\
+	int i;								\
+	rwlock_release(&name##_lock_dep_map, 1, _RET_IP_);		\
+	for_each_cpu(i, &name##_cpus) {					\
+		struct rt_mutex *lock;					\
+		lock = &per_cpu(name##_lock, i);			\
+		__rt_spin_unlock(lock);					\
+	}								\
+	spin_unlock(&name##_cpu_lock);					\
+ }									\
+ EXPORT_SYMBOL(name##_global_unlock_online);				\
+									\
+ void name##_global_lock(void) {					\
+	int i;								\
+	rwlock_acquire(&name##_lock_dep_map, 0, 0, _RET_IP_);		\
+	for_each_possible_cpu(i) {					\
+		struct rt_mutex *lock;					\
+		lock = &per_cpu(name##_lock, i);			\
+		__rt_spin_lock(lock);					\
+	}								\
+ }									\
+ EXPORT_SYMBOL(name##_global_lock);					\
+									\
+ void name##_global_unlock(void) {					\
+	int i;								\
+	rwlock_release(&name##_lock_dep_map, 1, _RET_IP_);		\
+	for_each_possible_cpu(i) {					\
+		struct rt_mutex *lock;					\
+		lock = &per_cpu(name##_lock, i);			\
+		__rt_spin_unlock(lock);					\
+	}								\
+ }									\
+ EXPORT_SYMBOL(name##_global_unlock);
+#endif /* PRREMPT_RT_FULL */
+
 #endif
@ include/linux/list.h:365 @ static inline void list_splice_tail_init(struct list_head *list,
 	list_entry((ptr)->next, type, member)
 
 /**
+ * list_last_entry - get the last element from a list
+ * @ptr:	the list head to take the element from.
+ * @type:	the type of the struct this is embedded in.
+ * @member:	the name of the list_struct within the struct.
+ *
+ * Note, that list is expected to be not empty.
+ */
+#define list_last_entry(ptr, type, member) \
+	list_entry((ptr)->prev, type, member)
+
+/**
  * list_for_each	-	iterate over a list
  * @pos:	the &struct list_head to use as a loop cursor.
  * @head:	the head for your list.
@ include/linux/locallock.h:4 @
+#ifndef _LINUX_LOCALLOCK_H
+#define _LINUX_LOCALLOCK_H
+
+#include <linux/spinlock.h>
+
+#ifdef CONFIG_PREEMPT_RT_BASE
+
+#ifdef CONFIG_DEBUG_SPINLOCK
+# define LL_WARN(cond)	WARN_ON(cond)
+#else
+# define LL_WARN(cond)	do { } while (0)
+#endif
+
+/*
+ * per cpu lock based substitute for local_irq_*()
+ */
+struct local_irq_lock {
+	spinlock_t		lock;
+	struct task_struct	*owner;
+	int			nestcnt;
+	unsigned long		flags;
+};
+
+#define DEFINE_LOCAL_IRQ_LOCK(lvar)					\
+	DEFINE_PER_CPU(struct local_irq_lock, lvar) = {			\
+		.lock = __SPIN_LOCK_UNLOCKED((lvar).lock) }
+
+#define DECLARE_LOCAL_IRQ_LOCK(lvar)					\
+	DECLARE_PER_CPU(struct local_irq_lock, lvar)
+
+#define local_irq_lock_init(lvar)					\
+	do {								\
+		int __cpu;						\
+		for_each_possible_cpu(__cpu)				\
+			spin_lock_init(&per_cpu(lvar, __cpu).lock);	\
+	} while (0)
+
+static inline void __local_lock(struct local_irq_lock *lv)
+{
+	if (lv->owner != current) {
+		spin_lock(&lv->lock);
+		LL_WARN(lv->owner);
+		LL_WARN(lv->nestcnt);
+		lv->owner = current;
+	}
+	lv->nestcnt++;
+}
+
+#define local_lock(lvar)					\
+	do { __local_lock(&get_local_var(lvar)); } while (0)
+
+static inline int __local_trylock(struct local_irq_lock *lv)
+{
+	if (lv->owner != current && spin_trylock(&lv->lock)) {
+		LL_WARN(lv->owner);
+		LL_WARN(lv->nestcnt);
+		lv->owner = current;
+		lv->nestcnt = 1;
+		return 1;
+	}
+	return 0;
+}
+
+#define local_trylock(lvar)						\
+	({								\
+		int __locked;						\
+		__locked = __local_trylock(&get_local_var(lvar));	\
+		if (!__locked)						\
+			put_local_var(lvar);				\
+		__locked;						\
+	})
+
+static inline void __local_unlock(struct local_irq_lock *lv)
+{
+	LL_WARN(lv->nestcnt == 0);
+	LL_WARN(lv->owner != current);
+	if (--lv->nestcnt)
+		return;
+
+	lv->owner = NULL;
+	spin_unlock(&lv->lock);
+}
+
+#define local_unlock(lvar)					\
+	do {							\
+		__local_unlock(&__get_cpu_var(lvar));		\
+		put_local_var(lvar);				\
+	} while (0)
+
+static inline void __local_lock_irq(struct local_irq_lock *lv)
+{
+	spin_lock_irqsave(&lv->lock, lv->flags);
+	LL_WARN(lv->owner);
+	LL_WARN(lv->nestcnt);
+	lv->owner = current;
+	lv->nestcnt = 1;
+}
+
+#define local_lock_irq(lvar)						\
+	do { __local_lock_irq(&get_local_var(lvar)); } while (0)
+
+#define local_lock_irq_on(lvar, cpu)					\
+	do { __local_lock_irq(&per_cpu(lvar, cpu)); } while (0)
+
+static inline void __local_unlock_irq(struct local_irq_lock *lv)
+{
+	LL_WARN(!lv->nestcnt);
+	LL_WARN(lv->owner != current);
+	lv->owner = NULL;
+	lv->nestcnt = 0;
+	spin_unlock_irq(&lv->lock);
+}
+
+#define local_unlock_irq(lvar)						\
+	do {								\
+		__local_unlock_irq(&__get_cpu_var(lvar));		\
+		put_local_var(lvar);					\
+	} while (0)
+
+#define local_unlock_irq_on(lvar, cpu)					\
+	do {								\
+		__local_unlock_irq(&per_cpu(lvar, cpu));		\
+	} while (0)
+
+static inline int __local_lock_irqsave(struct local_irq_lock *lv)
+{
+	if (lv->owner != current) {
+		__local_lock_irq(lv);
+		return 0;
+	} else {
+		lv->nestcnt++;
+		return 1;
+	}
+}
+
+#define local_lock_irqsave(lvar, _flags)				\
+	do {								\
+		if (__local_lock_irqsave(&get_local_var(lvar)))		\
+			put_local_var(lvar);				\
+		_flags = __get_cpu_var(lvar).flags;			\
+	} while (0)
+
+#define local_lock_irqsave_on(lvar, _flags, cpu)			\
+	do {								\
+		__local_lock_irqsave(&per_cpu(lvar, cpu));		\
+		_flags = per_cpu(lvar, cpu).flags;			\
+	} while (0)
+
+static inline int __local_unlock_irqrestore(struct local_irq_lock *lv,
+					    unsigned long flags)
+{
+	LL_WARN(!lv->nestcnt);
+	LL_WARN(lv->owner != current);
+	if (--lv->nestcnt)
+		return 0;
+
+	lv->owner = NULL;
+	spin_unlock_irqrestore(&lv->lock, lv->flags);
+	return 1;
+}
+
+#define local_unlock_irqrestore(lvar, flags)				\
+	do {								\
+		if (__local_unlock_irqrestore(&__get_cpu_var(lvar), flags)) \
+			put_local_var(lvar);				\
+	} while (0)
+
+#define local_unlock_irqrestore_on(lvar, flags, cpu)			\
+	do {								\
+		__local_unlock_irqrestore(&per_cpu(lvar, cpu), flags);	\
+	} while (0)
+
+#define local_spin_trylock_irq(lvar, lock)				\
+	({								\
+		int __locked;						\
+		local_lock_irq(lvar);					\
+		__locked = spin_trylock(lock);				\
+		if (!__locked)						\
+			local_unlock_irq(lvar);				\
+		__locked;						\
+	})
+
+#define local_spin_lock_irq(lvar, lock)					\
+	do {								\
+		local_lock_irq(lvar);					\
+		spin_lock(lock);					\
+	} while (0)
+
+#define local_spin_unlock_irq(lvar, lock)				\
+	do {								\
+		spin_unlock(lock);					\
+		local_unlock_irq(lvar);					\
+	} while (0)
+
+#define local_spin_lock_irqsave(lvar, lock, flags)			\
+	do {								\
+		local_lock_irqsave(lvar, flags);			\
+		spin_lock(lock);					\
+	} while (0)
+
+#define local_spin_unlock_irqrestore(lvar, lock, flags)			\
+	do {								\
+		spin_unlock(lock);					\
+		local_unlock_irqrestore(lvar, flags);			\
+	} while (0)
+
+#define get_locked_var(lvar, var)					\
+	(*({								\
+		local_lock(lvar);					\
+		&__get_cpu_var(var);					\
+	}))
+
+#define put_locked_var(lvar, var)		local_unlock(lvar)
+
+#define local_lock_cpu(lvar)						\
+	({								\
+		local_lock(lvar);					\
+		smp_processor_id();					\
+	})
+
+#define local_unlock_cpu(lvar)			local_unlock(lvar)
+
+#else /* PREEMPT_RT_BASE */
+
+#define DEFINE_LOCAL_IRQ_LOCK(lvar)		__typeof__(const int) lvar
+#define DECLARE_LOCAL_IRQ_LOCK(lvar)		extern __typeof__(const int) lvar
+
+static inline void local_irq_lock_init(int lvar) { }
+
+#define local_lock(lvar)			preempt_disable()
+#define local_unlock(lvar)			preempt_enable()
+#define local_lock_irq(lvar)			local_irq_disable()
+#define local_unlock_irq(lvar)			local_irq_enable()
+#define local_lock_irqsave(lvar, flags)		local_irq_save(flags)
+#define local_unlock_irqrestore(lvar, flags)	local_irq_restore(flags)
+
+#define local_spin_trylock_irq(lvar, lock)	spin_trylock_irq(lock)
+#define local_spin_lock_irq(lvar, lock)		spin_lock_irq(lock)
+#define local_spin_unlock_irq(lvar, lock)	spin_unlock_irq(lock)
+#define local_spin_lock_irqsave(lvar, lock, flags)	\
+	spin_lock_irqsave(lock, flags)
+#define local_spin_unlock_irqrestore(lvar, lock, flags)	\
+	spin_unlock_irqrestore(lock, flags)
+
+#define get_locked_var(lvar, var)		get_cpu_var(var)
+#define put_locked_var(lvar, var)		put_cpu_var(var)
+
+#define local_lock_cpu(lvar)			get_cpu()
+#define local_unlock_cpu(lvar)			put_cpu()
+
+#endif
+
+#endif
@ include/linux/mm.h:1198 @ static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long a
  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  * When freeing, reset page->mapping so free_pages_check won't complain.
  */
+#ifndef CONFIG_PREEMPT_RT_FULL
+
 #define __pte_lockptr(page)	&((page)->ptl)
-#define pte_lock_init(_page)	do {					\
-	spin_lock_init(__pte_lockptr(_page));				\
-} while (0)
+
+static inline struct page *pte_lock_init(struct page *page)
+{
+	spin_lock_init(__pte_lockptr(page));
+	return page;
+}
+
 #define pte_lock_deinit(page)	((page)->mapping = NULL)
+
+#else /* !PREEMPT_RT_FULL */
+
+/*
+ * On PREEMPT_RT_FULL the spinlock_t's are too large to embed in the
+ * page frame, hence it only has a pointer and we need to dynamically
+ * allocate the lock when we allocate PTE-pages.
+ *
+ * This is an overall win, since only a small fraction of the pages
+ * will be PTE pages under normal circumstances.
+ */
+
+#define __pte_lockptr(page)	((page)->ptl)
+
+extern struct page *pte_lock_init(struct page *page);
+extern void pte_lock_deinit(struct page *page);
+
+#endif /* PREEMPT_RT_FULL */
+
 #define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
 #else	/* !USE_SPLIT_PTLOCKS */
 /*
  * We use mm->page_table_lock to guard all pagetable pages of the mm.
  */
-#define pte_lock_init(page)	do {} while (0)
+static inline struct page *pte_lock_init(struct page *page) { return page; }
 #define pte_lock_deinit(page)	do {} while (0)
 #define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;})
 #endif /* USE_SPLIT_PTLOCKS */
 
-static inline void pgtable_page_ctor(struct page *page)
+static inline struct page *__pgtable_page_ctor(struct page *page)
 {
-	pte_lock_init(page);
-	inc_zone_page_state(page, NR_PAGETABLE);
+	page = pte_lock_init(page);
+	if (page)
+		inc_zone_page_state(page, NR_PAGETABLE);
+	return page;
 }
 
+#define pgtable_page_ctor(page)				\
+do {							\
+	page = __pgtable_page_ctor(page);		\
+} while (0)
+
 static inline void pgtable_page_dtor(struct page *page)
 {
 	pte_lock_deinit(page);
@ include/linux/mm_types.h:15 @
 #include <linux/completion.h>
 #include <linux/cpumask.h>
 #include <linux/page-debug-flags.h>
+#include <linux/rcupdate.h>
 #include <asm/page.h>
 #include <asm/mmu.h>
 
@ include/linux/mm_types.h:122 @ struct page {
 						 * system if PG_buddy is set.
 						 */
 #if USE_SPLIT_PTLOCKS
-		spinlock_t ptl;
+# ifndef CONFIG_PREEMPT_RT_FULL
+	    spinlock_t ptl;
+# else
+	    spinlock_t *ptl;
+# endif
 #endif
 		struct kmem_cache *slab;	/* SLUB: Pointer to slab */
 		struct page *first_page;	/* Compound tail pages */
@ include/linux/mm_types.h:397 @ struct mm_struct {
 #ifdef CONFIG_CPUMASK_OFFSTACK
 	struct cpumask cpumask_allocation;
 #endif
+#ifdef CONFIG_PREEMPT_RT_BASE
+	struct rcu_head delayed_drop;
+#endif
 };
 
 static inline void mm_init_cpumask(struct mm_struct *mm)
@ include/linux/mutex.h:20 @
 
 #include <linux/atomic.h>
 
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+# define __DEP_MAP_MUTEX_INITIALIZER(lockname) \
+		, .dep_map = { .name = #lockname }
+#else
+# define __DEP_MAP_MUTEX_INITIALIZER(lockname)
+#endif
+
+#ifdef CONFIG_PREEMPT_RT_FULL
+# include <linux/mutex_rt.h>
+#else
+
 /*
  * Simple, straightforward mutexes with strict semantics:
  *
@ include/linux/mutex.h:109 @ do {							\
 static inline void mutex_destroy(struct mutex *lock) {}
 #endif
 
-#ifdef CONFIG_DEBUG_LOCK_ALLOC
-# define __DEP_MAP_MUTEX_INITIALIZER(lockname) \
-		, .dep_map = { .name = #lockname }
-#else
-# define __DEP_MAP_MUTEX_INITIALIZER(lockname)
-#endif
-
 #define __MUTEX_INITIALIZER(lockname) \
 		{ .count = ATOMIC_INIT(1) \
 		, .wait_lock = __SPIN_LOCK_UNLOCKED(lockname.wait_lock) \
@ include/linux/mutex.h:174 @ extern int __must_check mutex_lock_killable(struct mutex *lock);
  */
 extern int mutex_trylock(struct mutex *lock);
 extern void mutex_unlock(struct mutex *lock);
+
+#endif /* !PREEMPT_RT_FULL */
+
 extern int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock);
 
 #ifndef CONFIG_HAVE_ARCH_MUTEX_CPU_RELAX
@ include/linux/mutex_rt.h:4 @
+#ifndef __LINUX_MUTEX_RT_H
+#define __LINUX_MUTEX_RT_H
+
+#ifndef __LINUX_MUTEX_H
+#error "Please include mutex.h"
+#endif
+
+#include <linux/rtmutex.h>
+
+/* FIXME: Just for __lockfunc */
+#include <linux/spinlock.h>
+
+struct mutex {
+	struct rt_mutex		lock;
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+	struct lockdep_map	dep_map;
+#endif
+};
+
+#define __MUTEX_INITIALIZER(mutexname)					\
+	{								\
+		.lock = __RT_MUTEX_INITIALIZER(mutexname.lock)		\
+		__DEP_MAP_MUTEX_INITIALIZER(mutexname)			\
+	}
+
+#define DEFINE_MUTEX(mutexname)						\
+	struct mutex mutexname = __MUTEX_INITIALIZER(mutexname)
+
+extern void __mutex_do_init(struct mutex *lock, const char *name, struct lock_class_key *key);
+extern void __lockfunc _mutex_lock(struct mutex *lock);
+extern int __lockfunc _mutex_lock_interruptible(struct mutex *lock);
+extern int __lockfunc _mutex_lock_killable(struct mutex *lock);
+extern void __lockfunc _mutex_lock_nested(struct mutex *lock, int subclass);
+extern void __lockfunc _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest_lock);
+extern int __lockfunc _mutex_lock_interruptible_nested(struct mutex *lock, int subclass);
+extern int __lockfunc _mutex_lock_killable_nested(struct mutex *lock, int subclass);
+extern int __lockfunc _mutex_trylock(struct mutex *lock);
+extern void __lockfunc _mutex_unlock(struct mutex *lock);
+
+#define mutex_is_locked(l)		rt_mutex_is_locked(&(l)->lock)
+#define mutex_lock(l)			_mutex_lock(l)
+#define mutex_lock_interruptible(l)	_mutex_lock_interruptible(l)
+#define mutex_lock_killable(l)		_mutex_lock_killable(l)
+#define mutex_trylock(l)		_mutex_trylock(l)
+#define mutex_unlock(l)			_mutex_unlock(l)
+#define mutex_destroy(l)		rt_mutex_destroy(&(l)->lock)
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+# define mutex_lock_nested(l, s)	_mutex_lock_nested(l, s)
+# define mutex_lock_interruptible_nested(l, s) \
+					_mutex_lock_interruptible_nested(l, s)
+# define mutex_lock_killable_nested(l, s) \
+					_mutex_lock_killable_nested(l, s)
+
+# define mutex_lock_nest_lock(lock, nest_lock)				\
+do {									\
+	typecheck(struct lockdep_map *, &(nest_lock)->dep_map);		\
+	_mutex_lock_nest_lock(lock, &(nest_lock)->dep_map);		\
+} while (0)
+
+#else
+# define mutex_lock_nested(l, s)	_mutex_lock(l)
+# define mutex_lock_interruptible_nested(l, s) \
+					_mutex_lock_interruptible(l)
+# define mutex_lock_killable_nested(l, s) \
+					_mutex_lock_killable(l)
+# define mutex_lock_nest_lock(lock, nest_lock) mutex_lock(lock)
+#endif
+
+# define mutex_init(mutex)				\
+do {							\
+	static struct lock_class_key __key;		\
+							\
+	rt_mutex_init(&(mutex)->lock);			\
+	__mutex_do_init((mutex), #mutex, &__key);	\
+} while (0)
+
+# define __mutex_init(mutex, name, key)			\
+do {							\
+	rt_mutex_init(&(mutex)->lock);			\
+	__mutex_do_init((mutex), name, key);		\
+} while (0)
+
+#endif
@ include/linux/netdevice.h:1758 @ struct softnet_data {
 	unsigned		dropped;
 	struct sk_buff_head	input_pkt_queue;
 	struct napi_struct	backlog;
+	struct sk_buff_head	tofree_queue;
 };
 
 static inline void input_queue_head_incr(struct softnet_data *sd)
@ include/linux/netfilter/x_tables.h:189 @ struct xt_counters_info {
 #ifdef __KERNEL__
 
 #include <linux/netdevice.h>
+#include <linux/locallock.h>
 
 /**
  * struct xt_action_param - parameters for matches/targets
@ include/linux/netfilter/x_tables.h:470 @ extern void xt_free_table_info(struct xt_table_info *info);
  */
 DECLARE_PER_CPU(seqcount_t, xt_recseq);
 
+DECLARE_LOCAL_IRQ_LOCK(xt_write_lock);
+
 /**
  * xt_write_recseq_begin - start of a write section
  *
@ include/linux/netfilter/x_tables.h:486 @ static inline unsigned int xt_write_recseq_begin(void)
 {
 	unsigned int addend;
 
+	/* RT protection */
+	local_lock(xt_write_lock);
+
 	/*
 	 * Low order bit of sequence is set if we already
 	 * called xt_write_recseq_begin().
@ include/linux/netfilter/x_tables.h:519 @ static inline void xt_write_recseq_end(unsigned int addend)
 	/* this is kind of a write_seqcount_end(), but addend is 0 or 1 */
 	smp_wmb();
 	__this_cpu_add(xt_recseq.sequence, addend);
+	local_unlock(xt_write_lock);
 }
 
 /*
@ include/linux/of.h:74 @ struct device_node {
 extern struct device_node *allnodes;
 extern struct device_node *of_chosen;
 extern struct device_node *of_aliases;
-extern rwlock_t devtree_lock;
+extern raw_spinlock_t devtree_lock;
 
 static inline bool of_have_populated_dt(void)
 {
@ include/linux/page_cgroup.h:33 @ enum {
  */
 struct page_cgroup {
 	unsigned long flags;
+#ifdef CONFIG_PREEMPT_RT_BASE
+	spinlock_t pcg_lock;
+	spinlock_t pcm_lock;
+#endif
 	struct mem_cgroup *mem_cgroup;
 	struct list_head lru;		/* per cgroup LRU list */
 };
@ include/linux/page_cgroup.h:103 @ static inline void lock_page_cgroup(struct page_cgroup *pc)
 	 * Don't take this lock in IRQ context.
 	 * This lock is for pc->mem_cgroup, USED, CACHE, MIGRATION
 	 */
+#ifndef CONFIG_PREEMPT_RT_BASE
 	bit_spin_lock(PCG_LOCK, &pc->flags);
+#else
+	spin_lock(&pc->pcg_lock);
+#endif
 }
 
 static inline void unlock_page_cgroup(struct page_cgroup *pc)
 {
+#ifndef CONFIG_PREEMPT_RT_BASE
 	bit_spin_unlock(PCG_LOCK, &pc->flags);
+#else
+	spin_unlock(&pc->pcg_lock);
+#endif
 }
 
 static inline void move_lock_page_cgroup(struct page_cgroup *pc,
 	unsigned long *flags)
 {
+#ifndef CONFIG_PREEMPT_RT_BASE
 	/*
 	 * We know updates to pc->flags of page cache's stats are from both of
 	 * usual context or IRQ context. Disable IRQ to avoid deadlock.
 	 */
 	local_irq_save(*flags);
 	bit_spin_lock(PCG_MOVE_LOCK, &pc->flags);
+#else
+	spin_lock_irqsave(&pc->pcm_lock, *flags);
+#endif
 }
 
 static inline void move_unlock_page_cgroup(struct page_cgroup *pc,
 	unsigned long *flags)
 {
+#ifndef CONFIG_PREEMPT_RT_BASE
 	bit_spin_unlock(PCG_MOVE_LOCK, &pc->flags);
 	local_irq_restore(*flags);
+#else
+	spin_unlock_irqrestore(&pc->pcm_lock, *flags);
+#endif
+}
+
+static inline void page_cgroup_lock_init(struct page_cgroup *pc)
+{
+#ifdef CONFIG_PREEMPT_RT_BASE
+	spin_lock_init(&pc->pcg_lock);
+	spin_lock_init(&pc->pcm_lock);
+#endif
 }
 
 #ifdef CONFIG_SPARSEMEM
@ include/linux/percpu.h:51 @
 	preempt_enable();				\
 } while (0)
 
+#ifndef CONFIG_PREEMPT_RT_FULL
+# define get_local_var(var)	get_cpu_var(var)
+# define put_local_var(var)	put_cpu_var(var)
+# define get_local_ptr(var)	get_cpu_ptr(var)
+# define put_local_ptr(var)	put_cpu_ptr(var)
+#else
+# define get_local_var(var) (*({			\
+	migrate_disable();				\
+	&__get_cpu_var(var); }))
+
+# define put_local_var(var) do {			\
+	(void)&(var);					\
+	migrate_enable();				\
+} while (0)
+
+# define get_local_ptr(var) ({				\
+	migrate_disable();				\
+	this_cpu_ptr(var); })
+
+# define put_local_ptr(var) do {			\
+	(void)(var);					\
+	migrate_enable();				\
+} while (0)
+#endif
+
 /* minimum unit size, also is the maximum supported allocation size */
 #define PCPU_MIN_UNIT_SIZE		PFN_ALIGN(32 << 10)
 
@ include/linux/pid.h:5 @
 #define _LINUX_PID_H
 
 #include <linux/rcupdate.h>
+#include <linux/atomic.h>
 
 enum pid_type
 {
@ include/linux/preempt.h:51 @ do { \
 	barrier(); \
 } while (0)
 
-#define preempt_enable_no_resched() \
+#define __preempt_enable_no_resched() \
 do { \
 	barrier(); \
 	dec_preempt_count(); \
 } while (0)
 
+#ifndef CONFIG_PREEMPT_RT_BASE
+# define preempt_enable_no_resched()	__preempt_enable_no_resched()
+# define preempt_check_resched_rt()	do { } while (0)
+#else
+# define preempt_enable_no_resched()	preempt_enable()
+# define preempt_check_resched_rt()	preempt_check_resched()
+#endif
+
 #define preempt_enable() \
 do { \
-	preempt_enable_no_resched(); \
+	__preempt_enable_no_resched(); \
 	barrier(); \
 	preempt_check_resched(); \
 } while (0)
@ include/linux/preempt.h:103 @ do { \
 #else /* !CONFIG_PREEMPT_COUNT */
 
 #define preempt_disable()		do { } while (0)
+#define __preempt_enable_no_resched()	do { } while (0)
 #define preempt_enable_no_resched()	do { } while (0)
 #define preempt_enable()		do { } while (0)
 
 #define preempt_disable_notrace()		do { } while (0)
 #define preempt_enable_no_resched_notrace()	do { } while (0)
 #define preempt_enable_notrace()		do { } while (0)
+#define preempt_check_resched_rt()	do { } while (0)
 
 #endif /* CONFIG_PREEMPT_COUNT */
 
+#ifdef CONFIG_PREEMPT_RT_FULL
+# define preempt_disable_rt()		preempt_disable()
+# define preempt_enable_rt()		preempt_enable()
+# define preempt_disable_nort()		do { } while (0)
+# define preempt_enable_nort()		do { } while (0)
+# ifdef CONFIG_SMP
+   extern void migrate_disable(void);
+   extern void migrate_enable(void);
+# else /* CONFIG_SMP */
+#  define migrate_disable()		do { } while (0)
+#  define migrate_enable()		do { } while (0)
+# endif /* CONFIG_SMP */
+#else
+# define preempt_disable_rt()		do { } while (0)
+# define preempt_enable_rt()		do { } while (0)
+# define preempt_disable_nort()		preempt_disable()
+# define preempt_enable_nort()		preempt_enable()
+# define migrate_disable()		preempt_disable()
+# define migrate_enable()		preempt_enable()
+#endif
+
 #ifdef CONFIG_PREEMPT_NOTIFIERS
 
 struct preempt_notifier;
@ include/linux/printk.h:91 @ int no_printk(const char *fmt, ...)
 	return 0;
 }
 
+#ifdef CONFIG_EARLY_PRINTK
 extern asmlinkage __printf(1, 2)
 void early_printk(const char *fmt, ...);
+extern void printk_kill(void);
+#else
+static inline __printf(1, 2) __cold
+void early_printk(const char *s, ...) { }
+static inline void printk_kill(void) { }
+#endif
 
 extern int printk_needs_cpu(int cpu);
 extern void printk_tick(void);
@ include/linux/printk.h:119 @ extern int __printk_ratelimit(const char *func);
 #define printk_ratelimit() __printk_ratelimit(__func__)
 extern bool printk_timed_ratelimit(unsigned long *caller_jiffies,
 				   unsigned int interval_msec);
-
 extern int printk_delay_msec;
 extern int dmesg_restrict;
 extern int kptr_restrict;
@ include/linux/radix-tree.h:234 @ unsigned long radix_tree_next_hole(struct radix_tree_root *root,
 				unsigned long index, unsigned long max_scan);
 unsigned long radix_tree_prev_hole(struct radix_tree_root *root,
 				unsigned long index, unsigned long max_scan);
+
+#ifndef CONFIG_PREEMPT_RT_FULL
 int radix_tree_preload(gfp_t gfp_mask);
+#else
+static inline int radix_tree_preload(gfp_t gm) { return 0; }
+#endif
+
 void radix_tree_init(void);
 void *radix_tree_tag_set(struct radix_tree_root *root,
 			unsigned long index, unsigned int tag);
@ include/linux/radix-tree.h:265 @ unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item);
 
 static inline void radix_tree_preload_end(void)
 {
-	preempt_enable();
+	preempt_enable_nort();
 }
 
 #endif /* _LINUX_RADIX_TREE_H */
@ include/linux/random.h:56 @ extern void rand_initialize_irq(int irq);
 extern void add_device_randomness(const void *, unsigned int);
 extern void add_input_randomness(unsigned int type, unsigned int code,
 				 unsigned int value);
-extern void add_interrupt_randomness(int irq, int irq_flags);
+extern void add_interrupt_randomness(int irq, int irq_flags, __u64 ip);
 
 extern void get_random_bytes(void *buf, int nbytes);
 extern void get_random_bytes_arch(void *buf, int nbytes);
@ include/linux/rcupdate.h:95 @ extern void call_rcu(struct rcu_head *head,
 
 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 
+#ifdef CONFIG_PREEMPT_RT_FULL
+#define call_rcu_bh	call_rcu
+#else
 /**
  * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
  * @head: structure to be used for queueing the RCU updates.
@ include/linux/rcupdate.h:118 @ extern void call_rcu(struct rcu_head *head,
  */
 extern void call_rcu_bh(struct rcu_head *head,
 			void (*func)(struct rcu_head *head));
+#endif
 
 /**
  * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
@ include/linux/rcupdate.h:154 @ void synchronize_rcu(void);
  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
  */
 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
+#ifndef CONFIG_PREEMPT_RT_FULL
+#define sched_rcu_preempt_depth()	rcu_preempt_depth()
+#else
+static inline int sched_rcu_preempt_depth(void) { return 0; }
+#endif
 
 #else /* #ifdef CONFIG_PREEMPT_RCU */
 
@ include/linux/rcupdate.h:182 @ static inline int rcu_preempt_depth(void)
 	return 0;
 }
 
+#define sched_rcu_preempt_depth()	rcu_preempt_depth()
+
 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 
 /* Internal to kernel */
@ include/linux/rcupdate.h:288 @ static inline int rcu_read_lock_held(void)
  * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
  * hell.
  */
+#ifdef CONFIG_PREEMPT_RT_FULL
+static inline int rcu_read_lock_bh_held(void)
+{
+	return rcu_read_lock_held();
+}
+#else
 extern int rcu_read_lock_bh_held(void);
+#endif
 
 /**
  * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
@ include/linux/rcupdate.h:698 @ static inline void rcu_read_unlock(void)
 static inline void rcu_read_lock_bh(void)
 {
 	local_bh_disable();
+#ifdef CONFIG_PREEMPT_RT_FULL
+	rcu_read_lock();
+#else
 	__acquire(RCU_BH);
 	rcu_read_acquire_bh();
+#endif
 }
 
 /*
@ include/linux/rcupdate.h:713 @ static inline void rcu_read_lock_bh(void)
  */
 static inline void rcu_read_unlock_bh(void)
 {
+#ifdef CONFIG_PREEMPT_RT_FULL
+	rcu_read_unlock();
+#else
 	rcu_read_release_bh();
 	__release(RCU_BH);
+#endif
 	local_bh_enable();
 }
 
@ include/linux/rcutree.h:60 @ static inline void exit_rcu(void)
 
 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 extern void synchronize_rcu_bh(void);
+#else
+# define synchronize_rcu_bh	synchronize_rcu
+#endif
 extern void synchronize_sched_expedited(void);
 extern void synchronize_rcu_expedited(void);
 
@ include/linux/rcutree.h:74 @ static inline void synchronize_rcu_bh_expedited(void)
 }
 
 extern void rcu_barrier(void);
+#ifdef CONFIG_PREEMPT_RT_FULL
+# define rcu_barrier_bh		rcu_barrier
+#else
 extern void rcu_barrier_bh(void);
+#endif
 extern void rcu_barrier_sched(void);
 
 extern unsigned long rcutorture_testseq;
 extern unsigned long rcutorture_vernum;
 extern long rcu_batches_completed(void);
-extern long rcu_batches_completed_bh(void);
 extern long rcu_batches_completed_sched(void);
 
 extern void rcu_force_quiescent_state(void);
-extern void rcu_bh_force_quiescent_state(void);
 extern void rcu_sched_force_quiescent_state(void);
 
+#ifndef CONFIG_PREEMPT_RT_FULL
+extern void rcu_bh_force_quiescent_state(void);
+extern long rcu_batches_completed_bh(void);
+#else
+# define rcu_bh_force_quiescent_state	rcu_force_quiescent_state
+# define rcu_batches_completed_bh	rcu_batches_completed
+#endif
+
 /* A context switch is a grace period for RCU-sched and RCU-bh. */
 static inline int rcu_blocking_is_gp(void)
 {
@ include/linux/rtmutex.h:17 @
 
 #include <linux/linkage.h>
 #include <linux/plist.h>
-#include <linux/spinlock_types.h>
+#include <linux/spinlock_types_raw.h>
 
 extern int max_lock_depth; /* for sysctl */
 
@ include/linux/rtmutex.h:32 @ struct rt_mutex {
 	raw_spinlock_t		wait_lock;
 	struct plist_head	wait_list;
 	struct task_struct	*owner;
-#ifdef CONFIG_DEBUG_RT_MUTEXES
 	int			save_state;
-	const char 		*name, *file;
+#ifdef CONFIG_DEBUG_RT_MUTEXES
+	const char		*file;
+	const char		*name;
 	int			line;
 	void			*magic;
 #endif
@ include/linux/rtmutex.h:60 @ struct hrtimer_sleeper;
 #ifdef CONFIG_DEBUG_RT_MUTEXES
 # define __DEBUG_RT_MUTEX_INITIALIZER(mutexname) \
 	, .name = #mutexname, .file = __FILE__, .line = __LINE__
-# define rt_mutex_init(mutex)			__rt_mutex_init(mutex, __func__)
+
+# define rt_mutex_init(mutex)					\
+	do {							\
+		raw_spin_lock_init(&(mutex)->wait_lock);	\
+		__rt_mutex_init(mutex, #mutex);			\
+	} while (0)
+
  extern void rt_mutex_debug_task_free(struct task_struct *tsk);
 #else
 # define __DEBUG_RT_MUTEX_INITIALIZER(mutexname)
-# define rt_mutex_init(mutex)			__rt_mutex_init(mutex, NULL)
+
+# define rt_mutex_init(mutex)					\
+	do {							\
+		raw_spin_lock_init(&(mutex)->wait_lock);	\
+		__rt_mutex_init(mutex, #mutex);			\
+	} while (0)
+
 # define rt_mutex_debug_task_free(t)			do { } while (0)
 #endif
 
-#define __RT_MUTEX_INITIALIZER(mutexname) \
-	{ .wait_lock = __RAW_SPIN_LOCK_UNLOCKED(mutexname.wait_lock) \
+#define __RT_MUTEX_INITIALIZER_PLAIN(mutexname) \
+	.wait_lock = __RAW_SPIN_LOCK_UNLOCKED(mutexname.wait_lock) \
 	, .wait_list = PLIST_HEAD_INIT(mutexname.wait_list) \
 	, .owner = NULL \
-	__DEBUG_RT_MUTEX_INITIALIZER(mutexname)}
+	__DEBUG_RT_MUTEX_INITIALIZER(mutexname)
+
+
+#define __RT_MUTEX_INITIALIZER(mutexname) \
+	{ __RT_MUTEX_INITIALIZER_PLAIN(mutexname) }
+
+#define __RT_MUTEX_INITIALIZER_SAVE_STATE(mutexname) \
+	{ __RT_MUTEX_INITIALIZER_PLAIN(mutexname)    \
+	  , .save_state = 1 }
 
 #define DEFINE_RT_MUTEX(mutexname) \
 	struct rt_mutex mutexname = __RT_MUTEX_INITIALIZER(mutexname)
@ include/linux/rtmutex.h:114 @ extern void rt_mutex_destroy(struct rt_mutex *lock);
 extern void rt_mutex_lock(struct rt_mutex *lock);
 extern int rt_mutex_lock_interruptible(struct rt_mutex *lock,
 						int detect_deadlock);
+extern int rt_mutex_lock_killable(struct rt_mutex *lock, int detect_deadlock);
 extern int rt_mutex_timed_lock(struct rt_mutex *lock,
 					struct hrtimer_sleeper *timeout,
 					int detect_deadlock);
@ include/linux/rwlock_rt.h:4 @
+#ifndef __LINUX_RWLOCK_RT_H
+#define __LINUX_RWLOCK_RT_H
+
+#ifndef __LINUX_SPINLOCK_H
+#error Do not include directly. Use spinlock.h
+#endif
+
+#define rwlock_init(rwl)				\
+do {							\
+	static struct lock_class_key __key;		\
+							\
+	rt_mutex_init(&(rwl)->lock);			\
+	__rt_rwlock_init(rwl, #rwl, &__key);		\
+} while (0)
+
+extern void __lockfunc rt_write_lock(rwlock_t *rwlock);
+extern void __lockfunc rt_read_lock(rwlock_t *rwlock);
+extern int __lockfunc rt_write_trylock(rwlock_t *rwlock);
+extern int __lockfunc rt_write_trylock_irqsave(rwlock_t *trylock, unsigned long *flags);
+extern int __lockfunc rt_read_trylock(rwlock_t *rwlock);
+extern void __lockfunc rt_write_unlock(rwlock_t *rwlock);
+extern void __lockfunc rt_read_unlock(rwlock_t *rwlock);
+extern unsigned long __lockfunc rt_write_lock_irqsave(rwlock_t *rwlock);
+extern unsigned long __lockfunc rt_read_lock_irqsave(rwlock_t *rwlock);
+extern void __rt_rwlock_init(rwlock_t *rwlock, char *name, struct lock_class_key *key);
+
+#define read_trylock(lock)	__cond_lock(lock, rt_read_trylock(lock))
+#define write_trylock(lock)	__cond_lock(lock, rt_write_trylock(lock))
+
+#define write_trylock_irqsave(lock, flags)	\
+	__cond_lock(lock, rt_write_trylock_irqsave(lock, &flags))
+
+#define read_lock_irqsave(lock, flags)			\
+	do {						\
+		typecheck(unsigned long, flags);	\
+		migrate_disable();			\
+		flags = rt_read_lock_irqsave(lock);	\
+	} while (0)
+
+#define write_lock_irqsave(lock, flags)			\
+	do {						\
+		typecheck(unsigned long, flags);	\
+		migrate_disable();			\
+		flags = rt_write_lock_irqsave(lock);	\
+	} while (0)
+
+#define read_lock(lock)					\
+	do {						\
+		migrate_disable();			\
+		rt_read_lock(lock);			\
+	} while (0)
+
+#define read_lock_bh(lock)				\
+	do {						\
+		local_bh_disable();			\
+		migrate_disable();			\
+		rt_read_lock(lock);			\
+	} while (0)
+
+#define read_lock_irq(lock)	read_lock(lock)
+
+#define write_lock(lock)				\
+	do {						\
+		migrate_disable();			\
+		rt_write_lock(lock);			\
+	} while (0)
+
+#define write_lock_bh(lock)				\
+	do {						\
+		local_bh_disable();			\
+		migrate_disable();			\
+		rt_write_lock(lock);			\
+	} while (0)
+
+#define write_lock_irq(lock)	write_lock(lock)
+
+#define read_unlock(lock)				\
+	do {						\
+		rt_read_unlock(lock);			\
+		migrate_enable();			\
+	} while (0)
+
+#define read_unlock_bh(lock)				\
+	do {						\
+		rt_read_unlock(lock);			\
+		migrate_enable();			\
+		local_bh_enable();			\
+	} while (0)
+
+#define read_unlock_irq(lock)	read_unlock(lock)
+
+#define write_unlock(lock)				\
+	do {						\
+		rt_write_unlock(lock);			\
+		migrate_enable();			\
+	} while (0)
+
+#define write_unlock_bh(lock)				\
+	do {						\
+		rt_write_unlock(lock);			\
+		migrate_enable();			\
+		local_bh_enable();			\
+	} while (0)
+
+#define write_unlock_irq(lock)	write_unlock(lock)
+
+#define read_unlock_irqrestore(lock, flags)		\
+	do {						\
+		typecheck(unsigned long, flags);	\
+		(void) flags;				\
+		rt_read_unlock(lock);			\
+		migrate_enable();			\
+	} while (0)
+
+#define write_unlock_irqrestore(lock, flags) \
+	do {						\
+		typecheck(unsigned long, flags);	\
+		(void) flags;				\
+		rt_write_unlock(lock);			\
+		migrate_enable();			\
+	} while (0)
+
+#endif
@ include/linux/rwlock_types.h:4 @
 #ifndef __LINUX_RWLOCK_TYPES_H
 #define __LINUX_RWLOCK_TYPES_H
 
+#if !defined(__LINUX_SPINLOCK_TYPES_H)
+# error "Do not include directly, include spinlock_types.h"
+#endif
+
 /*
  * include/linux/rwlock_types.h - generic rwlock type definitions
  *				  and initializers
@ include/linux/rwlock_types.h:50 @ typedef struct {
 				RW_DEP_MAP_INIT(lockname) }
 #endif
 
-#define DEFINE_RWLOCK(x)	rwlock_t x = __RW_LOCK_UNLOCKED(x)
+#define DEFINE_RWLOCK(name) \
+	rwlock_t name __cacheline_aligned_in_smp = __RW_LOCK_UNLOCKED(name)
 
 #endif /* __LINUX_RWLOCK_TYPES_H */
@ include/linux/rwlock_types_rt.h:4 @
+#ifndef __LINUX_RWLOCK_TYPES_RT_H
+#define __LINUX_RWLOCK_TYPES_RT_H
+
+#ifndef __LINUX_SPINLOCK_TYPES_H
+#error "Do not include directly. Include spinlock_types.h instead"
+#endif
+
+/*
+ * rwlocks - rtmutex which allows single reader recursion
+ */
+typedef struct {
+	struct rt_mutex		lock;
+	int			read_depth;
+	unsigned int		break_lock;
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+	struct lockdep_map	dep_map;
+#endif
+} rwlock_t;
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+# define RW_DEP_MAP_INIT(lockname)	.dep_map = { .name = #lockname }
+#else
+# define RW_DEP_MAP_INIT(lockname)
+#endif
+
+#define __RW_LOCK_UNLOCKED(name) \
+	{ .lock = __RT_MUTEX_INITIALIZER_SAVE_STATE(name.lock),	\
+	  RW_DEP_MAP_INIT(name) }
+
+#define DEFINE_RWLOCK(name) \
+	rwlock_t name __cacheline_aligned_in_smp = __RW_LOCK_UNLOCKED(name)
+
+#endif
@ include/linux/rwsem.h:20 @
 #include <asm/system.h>
 #include <linux/atomic.h>
 
+#ifdef CONFIG_PREEMPT_RT_FULL
+#include <linux/rwsem_rt.h>
+#else /* PREEMPT_RT_FULL */
+
 struct rw_semaphore;
 
 #ifdef CONFIG_RWSEM_GENERIC_SPINLOCK
@ include/linux/rwsem.h:138 @ extern void down_write_nested(struct rw_semaphore *sem, int subclass);
 # define down_write_nested(sem, subclass)	down_write(sem)
 #endif
 
+#endif /* !PREEMPT_RT_FULL */
+
 #endif /* _LINUX_RWSEM_H */
@ include/linux/rwsem_rt.h:4 @
+#ifndef _LINUX_RWSEM_RT_H
+#define _LINUX_RWSEM_RT_H
+
+#ifndef _LINUX_RWSEM_H
+#error "Include rwsem.h"
+#endif
+
+/*
+ * RW-semaphores are a spinlock plus a reader-depth count.
+ *
+ * Note that the semantics are different from the usual
+ * Linux rw-sems, in PREEMPT_RT mode we do not allow
+ * multiple readers to hold the lock at once, we only allow
+ * a read-lock owner to read-lock recursively. This is
+ * better for latency, makes the implementation inherently
+ * fair and makes it simpler as well.
+ */
+
+#include <linux/rtmutex.h>
+
+struct rw_semaphore {
+	struct rt_mutex		lock;
+	int			read_depth;
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+	struct lockdep_map	dep_map;
+#endif
+};
+
+#define __RWSEM_INITIALIZER(name) \
+	{ .lock = __RT_MUTEX_INITIALIZER(name.lock), \
+	  RW_DEP_MAP_INIT(name) }
+
+#define DECLARE_RWSEM(lockname) \
+	struct rw_semaphore lockname = __RWSEM_INITIALIZER(lockname)
+
+extern void  __rt_rwsem_init(struct rw_semaphore *rwsem, char *name,
+				     struct lock_class_key *key);
+
+# define rt_init_rwsem(sem)				\
+do {							\
+	static struct lock_class_key __key;		\
+							\
+	rt_mutex_init(&(sem)->lock);			\
+	__rt_rwsem_init((sem), #sem, &__key);		\
+} while (0)
+
+extern void  rt_down_write(struct rw_semaphore *rwsem);
+extern void rt_down_read_nested(struct rw_semaphore *rwsem, int subclass);
+extern void rt_down_write_nested(struct rw_semaphore *rwsem, int subclass);
+extern void  rt_down_read(struct rw_semaphore *rwsem);
+extern int  rt_down_write_trylock(struct rw_semaphore *rwsem);
+extern int  rt_down_read_trylock(struct rw_semaphore *rwsem);
+extern void  rt_up_read(struct rw_semaphore *rwsem);
+extern void  rt_up_write(struct rw_semaphore *rwsem);
+extern void  rt_downgrade_write(struct rw_semaphore *rwsem);
+
+#define init_rwsem(sem)		rt_init_rwsem(sem)
+#define rwsem_is_locked(s)	rt_mutex_is_locked(&(s)->lock)
+
+static inline void down_read(struct rw_semaphore *sem)
+{
+	rt_down_read(sem);
+}
+
+static inline int down_read_trylock(struct rw_semaphore *sem)
+{
+	return rt_down_read_trylock(sem);
+}
+
+static inline void down_write(struct rw_semaphore *sem)
+{
+	rt_down_write(sem);
+}
+
+static inline int down_write_trylock(struct rw_semaphore *sem)
+{
+	return rt_down_write_trylock(sem);
+}
+
+static inline void up_read(struct rw_semaphore *sem)
+{
+	rt_up_read(sem);
+}
+
+static inline void up_write(struct rw_semaphore *sem)
+{
+	rt_up_write(sem);
+}
+
+static inline void downgrade_write(struct rw_semaphore *sem)
+{
+	rt_downgrade_write(sem);
+}
+
+static inline void down_read_nested(struct rw_semaphore *sem, int subclass)
+{
+	return rt_down_read_nested(sem, subclass);
+}
+
+static inline void down_write_nested(struct rw_semaphore *sem, int subclass)
+{
+	rt_down_write_nested(sem, subclass);
+}
+
+#endif
@ include/linux/sched.h:66 @ struct sched_param {
 #include <linux/nodemask.h>
 #include <linux/mm_types.h>
 
+#include <asm/kmap_types.h>
 #include <asm/system.h>
 #include <asm/page.h>
 #include <asm/ptrace.h>
@ include/linux/sched.h:95 @ struct sched_param {
 #include <linux/latencytop.h>
 #include <linux/cred.h>
 #include <linux/llist.h>
+#include <linux/hardirq.h>
 
 #include <asm/processor.h>
 
@ include/linux/sched.h:365 @ extern signed long schedule_timeout_interruptible(signed long timeout);
 extern signed long schedule_timeout_killable(signed long timeout);
 extern signed long schedule_timeout_uninterruptible(signed long timeout);
 asmlinkage void schedule(void);
+extern void schedule_preempt_disabled(void);
 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
 
 struct nsproxy;
@ include/linux/sched.h:1077 @ struct sched_domain;
 #define WF_SYNC		0x01		/* waker goes to sleep after wakup */
 #define WF_FORK		0x02		/* child wakeup after fork */
 #define WF_MIGRATED	0x04		/* internal use, task got migrated */
+#define WF_LOCK_SLEEPER	0x08		/* wakeup spinlock "sleeper" */
 
 #define ENQUEUE_WAKEUP		1
 #define ENQUEUE_HEAD		2
@ include/linux/sched.h:1227 @ enum perf_event_task_context {
 
 struct task_struct {
 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
+	volatile long saved_state;	/* saved state for "spinlock sleepers" */
 	void *stack;
 	atomic_t usage;
 	unsigned int flags;	/* per process flags, defined below */
@ include/linux/sched.h:1267 @ struct task_struct {
 #endif
 
 	unsigned int policy;
+#ifdef CONFIG_PREEMPT_RT_FULL
+	int migrate_disable;
+#ifdef CONFIG_SCHED_DEBUG
+	int migrate_disable_atomic;
+#endif
+#endif
 	cpumask_t cpus_allowed;
 
 #ifdef CONFIG_PREEMPT_RCU
@ include/linux/sched.h:1371 @ struct task_struct {
 
 	struct task_cputime cputime_expires;
 	struct list_head cpu_timers[3];
+#ifdef CONFIG_PREEMPT_RT_BASE
+	struct task_struct *posix_timer_list;
+#endif
 
 /* process credentials */
 	const struct cred __rcu *real_cred; /* objective and real subjective task
@ include/linux/sched.h:1407 @ struct task_struct {
 /* signal handlers */
 	struct signal_struct *signal;
 	struct sighand_struct *sighand;
+	struct sigqueue *sigqueue_cache;
 
 	sigset_t blocked, real_blocked;
 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
 	struct sigpending pending;
+#ifdef CONFIG_PREEMPT_RT_FULL
+	/* TODO: move me into ->restart_block ? */
+	struct siginfo forced_info;
+#endif
 
 	unsigned long sas_ss_sp;
 	size_t sas_ss_size;
@ include/linux/sched.h:1455 @ struct task_struct {
 	/* mutex deadlock detection */
 	struct mutex_waiter *blocked_on;
 #endif
+#ifdef CONFIG_PREEMPT_RT_FULL
+	int pagefault_disabled;
+#endif
 #ifdef CONFIG_TRACE_IRQFLAGS
 	unsigned int irq_events;
 	unsigned long hardirq_enable_ip;
@ include/linux/sched.h:1589 @ struct task_struct {
 	unsigned long trace;
 	/* bitmask and counter of trace recursion */
 	unsigned long trace_recursion;
+#ifdef CONFIG_WAKEUP_LATENCY_HIST
+	u64 preempt_timestamp_hist;
+#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST
+	long timer_offset;
+#endif
+#endif
 #endif /* CONFIG_TRACING */
 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
 	struct memcg_batch_info {
@ include/linux/sched.h:1607 @ struct task_struct {
 #ifdef CONFIG_HAVE_HW_BREAKPOINT
 	atomic_t ptrace_bp_refcnt;
 #endif
+#ifdef CONFIG_PREEMPT_RT_BASE
+	struct rcu_head put_rcu;
+	int softirq_nestcnt;
+#endif
+#ifdef CONFIG_PREEMPT_RT_FULL
+# if defined CONFIG_HIGHMEM || defined CONFIG_X86_32
+	int kmap_idx;
+	pte_t kmap_pte[KM_TYPE_NR];
+# endif
+#endif
+
+#ifdef CONFIG_DEBUG_PREEMPT
+	unsigned long preempt_disable_ip;
+#endif
 };
 
-/* Future-safe accessor for struct task_struct's cpus_allowed. */
-#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
+#ifdef CONFIG_PREEMPT_RT_FULL
+static inline bool cur_pf_disabled(void) { return current->pagefault_disabled; }
+#else
+static inline bool cur_pf_disabled(void) { return false; }
+#endif
+
+static inline bool pagefault_disabled(void)
+{
+	return in_atomic() || cur_pf_disabled();
+}
 
 /*
  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
@ include/linux/sched.h:1802 @ extern struct pid *cad_pid;
 extern void free_task(struct task_struct *tsk);
 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
 
+#ifdef CONFIG_PREEMPT_RT_BASE
+extern void __put_task_struct_cb(struct rcu_head *rhp);
+
+static inline void put_task_struct(struct task_struct *t)
+{
+	if (atomic_dec_and_test(&t->usage))
+		call_rcu(&t->put_rcu, __put_task_struct_cb);
+}
+#else
 extern void __put_task_struct(struct task_struct *t);
 
 static inline void put_task_struct(struct task_struct *t)
@ include/linux/sched.h:1818 @ static inline void put_task_struct(struct task_struct *t)
 	if (atomic_dec_and_test(&t->usage))
 		__put_task_struct(t);
 }
+#endif
 
 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
@ include/linux/sched.h:1844 @ extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *
 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
 #define PF_KSWAPD	0x00040000	/* I am kswapd */
+#define PF_STOMPER	0x00080000	/* I am a stomp machine thread */
 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
@ include/linux/sched.h:1946 @ extern void do_set_cpus_allowed(struct task_struct *p,
 
 extern int set_cpus_allowed_ptr(struct task_struct *p,
 				const struct cpumask *new_mask);
+int migrate_me(void);
+void tell_sched_cpu_down_begin(int cpu);
+void tell_sched_cpu_down_done(int cpu);
+
 #else
 static inline void do_set_cpus_allowed(struct task_struct *p,
 				      const struct cpumask *new_mask)
@ include/linux/sched.h:1962 @ static inline int set_cpus_allowed_ptr(struct task_struct *p,
 		return -EINVAL;
 	return 0;
 }
+static inline int migrate_me(void) { return 0; }
+static inline void tell_sched_cpu_down_begin(int cpu) { }
+static inline void tell_sched_cpu_down_done(int cpu) { }
 #endif
 
 #ifdef CONFIG_NO_HZ
@ include/linux/sched.h:2132 @ extern unsigned int sysctl_sched_cfs_bandwidth_slice;
 #ifdef CONFIG_RT_MUTEXES
 extern int rt_mutex_getprio(struct task_struct *p);
 extern void rt_mutex_setprio(struct task_struct *p, int prio);
+extern int rt_mutex_check_prio(struct task_struct *task, int newprio);
 extern void rt_mutex_adjust_pi(struct task_struct *p);
+static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
+{
+	return tsk->pi_blocked_on != NULL;
+}
 #else
 static inline int rt_mutex_getprio(struct task_struct *p)
 {
 	return p->normal_prio;
 }
+static inline int rt_mutex_check_prio(struct task_struct *task, int newprio)
+{
+	return 0;
+}
 # define rt_mutex_adjust_pi(p)		do { } while (0)
+static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
+{
+	return false;
+}
 #endif
 
 extern bool yield_to(struct task_struct *p, bool preempt);
@ include/linux/sched.h:2231 @ extern void xtime_update(unsigned long ticks);
 
 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
 extern int wake_up_process(struct task_struct *tsk);
+extern int wake_up_lock_sleeper(struct task_struct * tsk);
 extern void wake_up_new_task(struct task_struct *tsk);
 #ifdef CONFIG_SMP
  extern void kick_process(struct task_struct *tsk);
@ include/linux/sched.h:2322 @ extern struct mm_struct * mm_alloc(void);
 
 /* mmdrop drops the mm and the page tables */
 extern void __mmdrop(struct mm_struct *);
+
 static inline void mmdrop(struct mm_struct * mm)
 {
 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
 		__mmdrop(mm);
 }
 
+#ifdef CONFIG_PREEMPT_RT_BASE
+extern void __mmdrop_delayed(struct rcu_head *rhp);
+static inline void mmdrop_delayed(struct mm_struct *mm)
+{
+	if (atomic_dec_and_test(&mm->mm_count))
+		call_rcu(&mm->delayed_drop, __mmdrop_delayed);
+}
+#else
+# define mmdrop_delayed(mm)	mmdrop(mm)
+#endif
+
 /* mmput gets rid of the mappings and all user-space */
 extern void mmput(struct mm_struct *);
 /* Grab a reference to a task's mm, if it is not already going away */
@ include/linux/sched.h:2642 @ extern int _cond_resched(void);
 
 extern int __cond_resched_lock(spinlock_t *lock);
 
-#ifdef CONFIG_PREEMPT_COUNT
+#if defined(CONFIG_PREEMPT_COUNT) && !defined(CONFIG_PREEMPT_RT_FULL)
 #define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
 #else
 #define PREEMPT_LOCK_OFFSET	0
@ include/linux/sched.h:2653 @ extern int __cond_resched_lock(spinlock_t *lock);
 	__cond_resched_lock(lock);				\
 })
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 extern int __cond_resched_softirq(void);
 
 #define cond_resched_softirq() ({					\
 	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
 	__cond_resched_softirq();					\
 })
+#else
+# define cond_resched_softirq()		cond_resched()
+#endif
 
 /*
  * Does a critical section need to be broken due to another
@ include/linux/sched.h:2734 @ static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
 
 #endif /* CONFIG_SMP */
 
+static inline int __migrate_disabled(struct task_struct *p)
+{
+#ifdef CONFIG_PREEMPT_RT_FULL
+	return p->migrate_disable;
+#else
+	return 0;
+#endif
+}
+
+/* Future-safe accessor for struct task_struct's cpus_allowed. */
+static inline const struct cpumask *tsk_cpus_allowed(struct task_struct *p)
+{
+#ifdef CONFIG_PREEMPT_RT_FULL
+	if (p->migrate_disable)
+		return cpumask_of(task_cpu(p));
+#endif
+
+	return &p->cpus_allowed;
+}
+
 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
 
@ include/linux/seqlock.h:33 @
 #include <linux/preempt.h>
 #include <asm/processor.h>
 
-typedef struct {
-	unsigned sequence;
-	spinlock_t lock;
-} seqlock_t;
-
-/*
- * These macros triggered gcc-3.x compile-time problems.  We think these are
- * OK now.  Be cautious.
- */
-#define __SEQLOCK_UNLOCKED(lockname) \
-		 { 0, __SPIN_LOCK_UNLOCKED(lockname) }
-
-#define seqlock_init(x)					\
-	do {						\
-		(x)->sequence = 0;			\
-		spin_lock_init(&(x)->lock);		\
-	} while (0)
-
-#define DEFINE_SEQLOCK(x) \
-		seqlock_t x = __SEQLOCK_UNLOCKED(x)
-
-/* Lock out other writers and update the count.
- * Acts like a normal spin_lock/unlock.
- * Don't need preempt_disable() because that is in the spin_lock already.
- */
-static inline void write_seqlock(seqlock_t *sl)
-{
-	spin_lock(&sl->lock);
-	++sl->sequence;
-	smp_wmb();
-}
-
-static inline void write_sequnlock(seqlock_t *sl)
-{
-	smp_wmb();
-	sl->sequence++;
-	spin_unlock(&sl->lock);
-}
-
-static inline int write_tryseqlock(seqlock_t *sl)
-{
-	int ret = spin_trylock(&sl->lock);
-
-	if (ret) {
-		++sl->sequence;
-		smp_wmb();
-	}
-	return ret;
-}
-
-/* Start of read calculation -- fetch last complete writer token */
-static __always_inline unsigned read_seqbegin(const seqlock_t *sl)
-{
-	unsigned ret;
-
-repeat:
-	ret = ACCESS_ONCE(sl->sequence);
-	if (unlikely(ret & 1)) {
-		cpu_relax();
-		goto repeat;
-	}
-	smp_rmb();
-
-	return ret;
-}
-
-/*
- * Test if reader processed invalid data.
- *
- * If sequence value changed then writer changed data while in section.
- */
-static __always_inline int read_seqretry(const seqlock_t *sl, unsigned start)
-{
-	smp_rmb();
-
-	return unlikely(sl->sequence != start);
-}
-
-
 /*
  * Version using sequence counter only.
  * This can be used when code has its own mutex protecting the
  * updating starting before the write_seqcountbeqin() and ending
  * after the write_seqcount_end().
  */
-
 typedef struct seqcount {
 	unsigned sequence;
 } seqcount_t;
@ include/linux/seqlock.h:120 @ static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)
 static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
 {
 	smp_rmb();
-
 	return __read_seqcount_retry(s, start);
 }
 
@ include/linux/seqlock.h:128 @ static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
  * Sequence counter only version assumes that callers are using their
  * own mutexing.
  */
-static inline void write_seqcount_begin(seqcount_t *s)
+static inline void __write_seqcount_begin(seqcount_t *s)
 {
 	s->sequence++;
 	smp_wmb();
 }
 
-static inline void write_seqcount_end(seqcount_t *s)
+static inline void write_seqcount_begin(seqcount_t *s)
+{
+	preempt_disable_rt();
+	__write_seqcount_begin(s);
+}
+
+static inline void __write_seqcount_end(seqcount_t *s)
 {
 	smp_wmb();
 	s->sequence++;
 }
 
+static inline void write_seqcount_end(seqcount_t *s)
+{
+	__write_seqcount_end(s);
+	preempt_enable_rt();
+}
+
 /**
  * write_seqcount_barrier - invalidate in-progress read-side seq operations
  * @s: pointer to seqcount_t
@ include/linux/seqlock.h:165 @ static inline void write_seqcount_barrier(seqcount_t *s)
 	s->sequence+=2;
 }
 
+typedef struct {
+	struct seqcount seqcount;
+	spinlock_t lock;
+} seqlock_t;
+
+/*
+ * These macros triggered gcc-3.x compile-time problems.  We think these are
+ * OK now.  Be cautious.
+ */
+#define __SEQLOCK_UNLOCKED(lockname)			\
+	{						\
+		.seqcount = SEQCNT_ZERO,		\
+		.lock =	__SPIN_LOCK_UNLOCKED(lockname)	\
+	}
+
+#define seqlock_init(x)					\
+	do {						\
+		seqcount_init(&(x)->seqcount);		\
+		spin_lock_init(&(x)->lock);		\
+	} while (0)
+
+#define DEFINE_SEQLOCK(x) \
+		seqlock_t x = __SEQLOCK_UNLOCKED(x)
+
+/*
+ * Read side functions for starting and finalizing a read side section.
+ */
+#ifndef CONFIG_PREEMPT_RT_FULL
+static inline unsigned read_seqbegin(const seqlock_t *sl)
+{
+	return read_seqcount_begin(&sl->seqcount);
+}
+#else
+/*
+ * Starvation safe read side for RT
+ */
+static inline unsigned read_seqbegin(seqlock_t *sl)
+{
+	unsigned ret;
+
+repeat:
+	ret = sl->seqcount.sequence;
+	if (unlikely(ret & 1)) {
+		/*
+		 * Take the lock and let the writer proceed (i.e. evtl
+		 * boost it), otherwise we could loop here forever.
+		 */
+		spin_lock(&sl->lock);
+		spin_unlock(&sl->lock);
+		goto repeat;
+	}
+	return ret;
+}
+#endif
+
+static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
+{
+	return read_seqcount_retry(&sl->seqcount, start);
+}
+
 /*
- * Possible sw/hw IRQ protected versions of the interfaces.
+ * Lock out other writers and update the count.
+ * Acts like a normal spin_lock/unlock.
+ * Don't need preempt_disable() because that is in the spin_lock already.
  */
+static inline void write_seqlock(seqlock_t *sl)
+{
+	spin_lock(&sl->lock);
+	__write_seqcount_begin(&sl->seqcount);
+}
+
+static inline void write_sequnlock(seqlock_t *sl)
+{
+	__write_seqcount_end(&sl->seqcount);
+	spin_unlock(&sl->lock);
+}
+
+static inline void write_seqlock_bh(seqlock_t *sl)
+{
+	spin_lock_bh(&sl->lock);
+	__write_seqcount_begin(&sl->seqcount);
+}
+
+static inline void write_sequnlock_bh(seqlock_t *sl)
+{
+	__write_seqcount_end(&sl->seqcount);
+	spin_unlock_bh(&sl->lock);
+}
+
+static inline void write_seqlock_irq(seqlock_t *sl)
+{
+	spin_lock_irq(&sl->lock);
+	__write_seqcount_begin(&sl->seqcount);
+}
+
+static inline void write_sequnlock_irq(seqlock_t *sl)
+{
+	__write_seqcount_end(&sl->seqcount);
+	spin_unlock_irq(&sl->lock);
+}
+
+static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&sl->lock, flags);
+	__write_seqcount_begin(&sl->seqcount);
+	return flags;
+}
+
 #define write_seqlock_irqsave(lock, flags)				\
-	do { local_irq_save(flags); write_seqlock(lock); } while (0)
-#define write_seqlock_irq(lock)						\
-	do { local_irq_disable();   write_seqlock(lock); } while (0)
-#define write_seqlock_bh(lock)						\
-        do { local_bh_disable();    write_seqlock(lock); } while (0)
-
-#define write_sequnlock_irqrestore(lock, flags)				\
-	do { write_sequnlock(lock); local_irq_restore(flags); } while(0)
-#define write_sequnlock_irq(lock)					\
-	do { write_sequnlock(lock); local_irq_enable(); } while(0)
-#define write_sequnlock_bh(lock)					\
-	do { write_sequnlock(lock); local_bh_enable(); } while(0)
-
-#define read_seqbegin_irqsave(lock, flags)				\
-	({ local_irq_save(flags);   read_seqbegin(lock); })
-
-#define read_seqretry_irqrestore(lock, iv, flags)			\
-	({								\
-		int ret = read_seqretry(lock, iv);			\
-		local_irq_restore(flags);				\
-		ret;							\
-	})
+	do { flags = __write_seqlock_irqsave(lock); } while (0)
+
+static inline void
+write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
+{
+	__write_seqcount_end(&sl->seqcount);
+	spin_unlock_irqrestore(&sl->lock, flags);
+}
 
 #endif /* __LINUX_SEQLOCK_H */
@ include/linux/signal.h:232 @ static inline void init_sigpending(struct sigpending *sig)
 }
 
 extern void flush_sigqueue(struct sigpending *queue);
+extern void flush_task_sigqueue(struct task_struct *tsk);
 
 /* Test if 'sig' is valid signal. Use this instead of testing _NSIG directly */
 static inline int valid_signal(unsigned long sig)
@ include/linux/skbuff.h:127 @ struct sk_buff_head {
 
 	__u32		qlen;
 	spinlock_t	lock;
+	raw_spinlock_t	raw_lock;
 };
 
 struct sk_buff;
@ include/linux/skbuff.h:927 @ static inline void skb_queue_head_init(struct sk_buff_head *list)
 	__skb_queue_head_init(list);
 }
 
+static inline void skb_queue_head_init_raw(struct sk_buff_head *list)
+{
+	raw_spin_lock_init(&list->raw_lock);
+	__skb_queue_head_init(list);
+}
+
 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
 		struct lock_class_key *class)
 {
@ include/linux/smp.h:83 @ void __smp_call_function_single(int cpuid, struct call_single_data *data,
 
 int smp_call_function_any(const struct cpumask *mask,
 			  smp_call_func_t func, void *info, int wait);
-
 /*
  * Generic and arch helpers
  */
@ include/linux/smp.h:175 @ smp_call_function_any(const struct cpumask *mask, smp_call_func_t func,
 #define get_cpu()		({ preempt_disable(); smp_processor_id(); })
 #define put_cpu()		preempt_enable()
 
+#define get_cpu_light()		({ migrate_disable(); smp_processor_id(); })
+#define put_cpu_light()		migrate_enable()
+
 /*
  * Callback to arch code if there's nosmp or maxcpus=0 on the
  * boot command line:
@ include/linux/spinlock.h:257 @ static inline void do_raw_spin_unlock(raw_spinlock_t *lock) __releases(lock)
 #define raw_spin_can_lock(lock)	(!raw_spin_is_locked(lock))
 
 /* Include rwlock functions */
-#include <linux/rwlock.h>
+#ifdef CONFIG_PREEMPT_RT_FULL
+# include <linux/rwlock_rt.h>
+#else
+# include <linux/rwlock.h>
+#endif
 
 /*
  * Pull the _spin_*()/_read_*()/_write_*() functions/declarations:
@ include/linux/spinlock.h:272 @ static inline void do_raw_spin_unlock(raw_spinlock_t *lock) __releases(lock)
 # include <linux/spinlock_api_up.h>
 #endif
 
+#ifdef CONFIG_PREEMPT_RT_FULL
+# include <linux/spinlock_rt.h>
+#else /* PREEMPT_RT_FULL */
+
 /*
  * Map the spin_lock functions to the raw variants for PREEMPT_RT=n
  */
@ include/linux/spinlock.h:408 @ extern int _atomic_dec_and_lock(atomic_t *atomic, spinlock_t *lock);
 #define atomic_dec_and_lock(atomic, lock) \
 		__cond_lock(lock, _atomic_dec_and_lock(atomic, lock))
 
+#endif /* !PREEMPT_RT_FULL */
+
 #endif /* __LINUX_SPINLOCK_H */
@ include/linux/spinlock_api_smp.h:194 @ static inline int __raw_spin_trylock_bh(raw_spinlock_t *lock)
 	return 0;
 }
 
-#include <linux/rwlock_api_smp.h>
+#ifndef CONFIG_PREEMPT_RT_FULL
+# include <linux/rwlock_api_smp.h>
+#endif
 
 #endif /* __LINUX_SPINLOCK_API_SMP_H */
@ include/linux/spinlock_rt.h:4 @
+#ifndef __LINUX_SPINLOCK_RT_H
+#define __LINUX_SPINLOCK_RT_H
+
+#ifndef __LINUX_SPINLOCK_H
+#error Do not include directly. Use spinlock.h
+#endif
+
+extern void
+__rt_spin_lock_init(spinlock_t *lock, char *name, struct lock_class_key *key);
+
+#define spin_lock_init(slock)				\
+do {							\
+	static struct lock_class_key __key;		\
+							\
+	rt_mutex_init(&(slock)->lock);			\
+	__rt_spin_lock_init(slock, #slock, &__key);	\
+} while (0)
+
+extern void __lockfunc rt_spin_lock(spinlock_t *lock);
+extern unsigned long __lockfunc rt_spin_lock_trace_flags(spinlock_t *lock);
+extern void __lockfunc rt_spin_lock_nested(spinlock_t *lock, int subclass);
+extern void __lockfunc rt_spin_unlock(spinlock_t *lock);
+extern void __lockfunc rt_spin_unlock_wait(spinlock_t *lock);
+extern int __lockfunc rt_spin_trylock_irqsave(spinlock_t *lock, unsigned long *flags);
+extern int __lockfunc rt_spin_trylock_bh(spinlock_t *lock);
+extern int __lockfunc rt_spin_trylock(spinlock_t *lock);
+extern int atomic_dec_and_spin_lock(atomic_t *atomic, spinlock_t *lock);
+
+/*
+ * lockdep-less calls, for derived types like rwlock:
+ * (for trylock they can use rt_mutex_trylock() directly.
+ */
+extern void __lockfunc __rt_spin_lock(struct rt_mutex *lock);
+extern void __lockfunc __rt_spin_unlock(struct rt_mutex *lock);
+
+#define spin_lock_local(lock)			rt_spin_lock(lock)
+#define spin_unlock_local(lock)			rt_spin_unlock(lock)
+
+#define spin_lock(lock)				\
+	do {					\
+		migrate_disable();		\
+		rt_spin_lock(lock);		\
+	} while (0)
+
+#define spin_lock_bh(lock)			\
+	do {					\
+		local_bh_disable();		\
+		migrate_disable();		\
+		rt_spin_lock(lock);		\
+	} while (0)
+
+#define spin_lock_irq(lock)		spin_lock(lock)
+
+#define spin_do_trylock(lock)		__cond_lock(lock, rt_spin_trylock(lock))
+
+#define spin_trylock(lock)			\
+({						\
+	int __locked;				\
+	migrate_disable();			\
+	__locked = spin_do_trylock(lock);	\
+	if (!__locked)				\
+		migrate_enable();		\
+	__locked;				\
+})
+
+#ifdef CONFIG_LOCKDEP
+# define spin_lock_nested(lock, subclass)		\
+	do {						\
+		migrate_disable();			\
+		rt_spin_lock_nested(lock, subclass);	\
+	} while (0)
+
+# define spin_lock_irqsave_nested(lock, flags, subclass) \
+	do {						 \
+		typecheck(unsigned long, flags);	 \
+		flags = 0;				 \
+		migrate_disable();			 \
+		rt_spin_lock_nested(lock, subclass);	 \
+	} while (0)
+#else
+# define spin_lock_nested(lock, subclass)	spin_lock(lock)
+
+# define spin_lock_irqsave_nested(lock, flags, subclass) \
+	do {						 \
+		typecheck(unsigned long, flags);	 \
+		flags = 0;				 \
+		spin_lock(lock);			 \
+	} while (0)
+#endif
+
+#define spin_lock_irqsave(lock, flags)			 \
+	do {						 \
+		typecheck(unsigned long, flags);	 \
+		flags = 0;				 \
+		spin_lock(lock);			 \
+	} while (0)
+
+static inline unsigned long spin_lock_trace_flags(spinlock_t *lock)
+{
+	unsigned long flags = 0;
+#ifdef CONFIG_TRACE_IRQFLAGS
+	flags = rt_spin_lock_trace_flags(lock);
+#else
+	spin_lock(lock); /* lock_local */
+#endif
+	return flags;
+}
+
+/* FIXME: we need rt_spin_lock_nest_lock */
+#define spin_lock_nest_lock(lock, nest_lock) spin_lock_nested(lock, 0)
+
+#define spin_unlock(lock)				\
+	do {						\
+		rt_spin_unlock(lock);			\
+		migrate_enable();			\
+	} while (0)
+
+#define spin_unlock_bh(lock)				\
+	do {						\
+		rt_spin_unlock(lock);			\
+		migrate_enable();			\
+		local_bh_enable();			\
+	} while (0)
+
+#define spin_unlock_irq(lock)		spin_unlock(lock)
+
+#define spin_unlock_irqrestore(lock, flags)		\
+	do {						\
+		typecheck(unsigned long, flags);	\
+		(void) flags;				\
+		spin_unlock(lock);			\
+	} while (0)
+
+#define spin_trylock_bh(lock)	__cond_lock(lock, rt_spin_trylock_bh(lock))
+#define spin_trylock_irq(lock)	spin_trylock(lock)
+
+#define spin_trylock_irqsave(lock, flags)	\
+	rt_spin_trylock_irqsave(lock, &(flags))
+
+#define spin_unlock_wait(lock)		rt_spin_unlock_wait(lock)
+
+#ifdef CONFIG_GENERIC_LOCKBREAK
+# define spin_is_contended(lock)	((lock)->break_lock)
+#else
+# define spin_is_contended(lock)	(((void)(lock), 0))
+#endif
+
+static inline int spin_can_lock(spinlock_t *lock)
+{
+	return !rt_mutex_is_locked(&lock->lock);
+}
+
+static inline int spin_is_locked(spinlock_t *lock)
+{
+	return rt_mutex_is_locked(&lock->lock);
+}
+
+static inline void assert_spin_locked(spinlock_t *lock)
+{
+	BUG_ON(!spin_is_locked(lock));
+}
+
+#define atomic_dec_and_lock(atomic, lock) \
+	atomic_dec_and_spin_lock(atomic, lock)
+
+#endif
@ include/linux/spinlock_types.h:12 @
  * Released under the General Public License (GPL).
  */
 
-#if defined(CONFIG_SMP)
-# include <asm/spinlock_types.h>
-#else
-# include <linux/spinlock_types_up.h>
-#endif
-
-#include <linux/lockdep.h>
-
-typedef struct raw_spinlock {
-	arch_spinlock_t raw_lock;
-#ifdef CONFIG_GENERIC_LOCKBREAK
-	unsigned int break_lock;
-#endif
-#ifdef CONFIG_DEBUG_SPINLOCK
-	unsigned int magic, owner_cpu;
-	void *owner;
-#endif
-#ifdef CONFIG_DEBUG_LOCK_ALLOC
-	struct lockdep_map dep_map;
-#endif
-} raw_spinlock_t;
-
-#define SPINLOCK_MAGIC		0xdead4ead
-
-#define SPINLOCK_OWNER_INIT	((void *)-1L)
-
-#ifdef CONFIG_DEBUG_LOCK_ALLOC
-# define SPIN_DEP_MAP_INIT(lockname)	.dep_map = { .name = #lockname }
-#else
-# define SPIN_DEP_MAP_INIT(lockname)
-#endif
+#include <linux/spinlock_types_raw.h>
 
-#ifdef CONFIG_DEBUG_SPINLOCK
-# define SPIN_DEBUG_INIT(lockname)		\
-	.magic = SPINLOCK_MAGIC,		\
-	.owner_cpu = -1,			\
-	.owner = SPINLOCK_OWNER_INIT,
+#ifndef CONFIG_PREEMPT_RT_FULL
+# include <linux/spinlock_types_nort.h>
+# include <linux/rwlock_types.h>
 #else
-# define SPIN_DEBUG_INIT(lockname)
+# include <linux/rtmutex.h>
+# include <linux/spinlock_types_rt.h>
+# include <linux/rwlock_types_rt.h>
 #endif
 
-#define __RAW_SPIN_LOCK_INITIALIZER(lockname)	\
-	{					\
-	.raw_lock = __ARCH_SPIN_LOCK_UNLOCKED,	\
-	SPIN_DEBUG_INIT(lockname)		\
-	SPIN_DEP_MAP_INIT(lockname) }
-
-#define __RAW_SPIN_LOCK_UNLOCKED(lockname)	\
-	(raw_spinlock_t) __RAW_SPIN_LOCK_INITIALIZER(lockname)
-
-#define DEFINE_RAW_SPINLOCK(x)	raw_spinlock_t x = __RAW_SPIN_LOCK_UNLOCKED(x)
-
-typedef struct spinlock {
-	union {
-		struct raw_spinlock rlock;
-
-#ifdef CONFIG_DEBUG_LOCK_ALLOC
-# define LOCK_PADSIZE (offsetof(struct raw_spinlock, dep_map))
-		struct {
-			u8 __padding[LOCK_PADSIZE];
-			struct lockdep_map dep_map;
-		};
-#endif
-	};
-} spinlock_t;
-
-#define __SPIN_LOCK_INITIALIZER(lockname) \
-	{ { .rlock = __RAW_SPIN_LOCK_INITIALIZER(lockname) } }
-
-#define __SPIN_LOCK_UNLOCKED(lockname) \
-	(spinlock_t ) __SPIN_LOCK_INITIALIZER(lockname)
-
-#define DEFINE_SPINLOCK(x)	spinlock_t x = __SPIN_LOCK_UNLOCKED(x)
-
-#include <linux/rwlock_types.h>
-
 #endif /* __LINUX_SPINLOCK_TYPES_H */
@ include/linux/spinlock_types_nort.h:4 @
+#ifndef __LINUX_SPINLOCK_TYPES_NORT_H
+#define __LINUX_SPINLOCK_TYPES_NORT_H
+
+#ifndef __LINUX_SPINLOCK_TYPES_H
+#error "Do not include directly. Include spinlock_types.h instead"
+#endif
+
+/*
+ * The non RT version maps spinlocks to raw_spinlocks
+ */
+typedef struct spinlock {
+	union {
+		struct raw_spinlock rlock;
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+# define LOCK_PADSIZE (offsetof(struct raw_spinlock, dep_map))
+		struct {
+			u8 __padding[LOCK_PADSIZE];
+			struct lockdep_map dep_map;
+		};
+#endif
+	};
+} spinlock_t;
+
+#define __SPIN_LOCK_INITIALIZER(lockname) \
+	{ { .rlock = __RAW_SPIN_LOCK_INITIALIZER(lockname) } }
+
+#define __SPIN_LOCK_UNLOCKED(lockname) \
+	(spinlock_t ) __SPIN_LOCK_INITIALIZER(lockname)
+
+#define DEFINE_SPINLOCK(x)	spinlock_t x = __SPIN_LOCK_UNLOCKED(x)
+
+#endif
@ include/linux/spinlock_types_raw.h:4 @
+#ifndef __LINUX_SPINLOCK_TYPES_RAW_H
+#define __LINUX_SPINLOCK_TYPES_RAW_H
+
+#if defined(CONFIG_SMP)
+# include <asm/spinlock_types.h>
+#else
+# include <linux/spinlock_types_up.h>
+#endif
+
+#include <linux/lockdep.h>
+
+typedef struct raw_spinlock {
+	arch_spinlock_t raw_lock;
+#ifdef CONFIG_GENERIC_LOCKBREAK
+	unsigned int break_lock;
+#endif
+#ifdef CONFIG_DEBUG_SPINLOCK
+	unsigned int magic, owner_cpu;
+	void *owner;
+#endif
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+	struct lockdep_map dep_map;
+#endif
+} raw_spinlock_t;
+
+#define SPINLOCK_MAGIC		0xdead4ead
+
+#define SPINLOCK_OWNER_INIT	((void *)-1L)
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+# define SPIN_DEP_MAP_INIT(lockname)	.dep_map = { .name = #lockname }
+#else
+# define SPIN_DEP_MAP_INIT(lockname)
+#endif
+
+#ifdef CONFIG_DEBUG_SPINLOCK
+# define SPIN_DEBUG_INIT(lockname)		\
+	.magic = SPINLOCK_MAGIC,		\
+	.owner_cpu = -1,			\
+	.owner = SPINLOCK_OWNER_INIT,
+#else
+# define SPIN_DEBUG_INIT(lockname)
+#endif
+
+#define __RAW_SPIN_LOCK_INITIALIZER(lockname)	\
+	{					\
+	.raw_lock = __ARCH_SPIN_LOCK_UNLOCKED,	\
+	SPIN_DEBUG_INIT(lockname)		\
+	SPIN_DEP_MAP_INIT(lockname) }
+
+#define __RAW_SPIN_LOCK_UNLOCKED(lockname)	\
+	(raw_spinlock_t) __RAW_SPIN_LOCK_INITIALIZER(lockname)
+
+#define DEFINE_RAW_SPINLOCK(x)	raw_spinlock_t x = __RAW_SPIN_LOCK_UNLOCKED(x)
+
+#endif
@ include/linux/spinlock_types_rt.h:4 @
+#ifndef __LINUX_SPINLOCK_TYPES_RT_H
+#define __LINUX_SPINLOCK_TYPES_RT_H
+
+#ifndef __LINUX_SPINLOCK_TYPES_H
+#error "Do not include directly. Include spinlock_types.h instead"
+#endif
+
+/*
+ * PREEMPT_RT: spinlocks - an RT mutex plus lock-break field:
+ */
+typedef struct spinlock {
+	struct rt_mutex		lock;
+	unsigned int		break_lock;
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+	struct lockdep_map	dep_map;
+#endif
+} spinlock_t;
+
+#ifdef CONFIG_DEBUG_RT_MUTEXES
+# define __RT_SPIN_INITIALIZER(name) \
+	{ \
+	.wait_lock = __RAW_SPIN_LOCK_UNLOCKED(name.wait_lock), \
+	.save_state = 1, \
+	.file = __FILE__, \
+	.line = __LINE__ , \
+	}
+#else
+# define __RT_SPIN_INITIALIZER(name) \
+	{								\
+	.wait_lock = __RAW_SPIN_LOCK_UNLOCKED(name.wait_lock),		\
+	.save_state = 1, \
+	}
+#endif
+
+/*
+.wait_list = PLIST_HEAD_INIT_RAW((name).lock.wait_list, (name).lock.wait_lock)
+*/
+
+#define __SPIN_LOCK_UNLOCKED(name)			\
+	{ .lock = __RT_SPIN_INITIALIZER(name.lock),		\
+	  SPIN_DEP_MAP_INIT(name) }
+
+#define __DEFINE_SPINLOCK(name) \
+	spinlock_t name = __SPIN_LOCK_UNLOCKED(name)
+
+#define DEFINE_SPINLOCK(name) \
+	spinlock_t name __cacheline_aligned_in_smp = __SPIN_LOCK_UNLOCKED(name)
+
+#endif
@ include/linux/sysctl.h:935 @ enum
 #include <linux/list.h>
 #include <linux/rcupdate.h>
 #include <linux/wait.h>
+#include <linux/atomic.h>
 
 /* For the /proc/sys support */
 struct ctl_table;
@ include/linux/timer.h:279 @ extern void add_timer(struct timer_list *timer);
 
 extern int try_to_del_timer_sync(struct timer_list *timer);
 
-#ifdef CONFIG_SMP
+#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT_FULL)
   extern int del_timer_sync(struct timer_list *timer);
 #else
 # define del_timer_sync(t)		del_timer(t)
@ include/linux/uaccess.h:9 @
 
 /*
  * These routines enable/disable the pagefault handler in that
- * it will not take any locks and go straight to the fixup table.
- *
- * They have great resemblance to the preempt_disable/enable calls
- * and in fact they are identical; this is because currently there is
- * no other way to make the pagefault handlers do this. So we do
- * disable preemption but we don't necessarily care about that.
+ * it will not take any MM locks and go straight to the fixup table.
  */
-static inline void pagefault_disable(void)
+static inline void raw_pagefault_disable(void)
 {
 	inc_preempt_count();
-	/*
-	 * make sure to have issued the store before a pagefault
-	 * can hit.
-	 */
 	barrier();
 }
 
-static inline void pagefault_enable(void)
+static inline void raw_pagefault_enable(void)
 {
-	/*
-	 * make sure to issue those last loads/stores before enabling
-	 * the pagefault handler again.
-	 */
 	barrier();
 	dec_preempt_count();
-	/*
-	 * make sure we do..
-	 */
 	barrier();
 	preempt_check_resched();
 }
 
+#ifndef CONFIG_PREEMPT_RT_FULL
+static inline void pagefault_disable(void)
+{
+	raw_pagefault_disable();
+}
+
+static inline void pagefault_enable(void)
+{
+	raw_pagefault_enable();
+}
+#else
+extern void pagefault_disable(void);
+extern void pagefault_enable(void);
+#endif
+
 #ifndef ARCH_HAS_NOCACHE_UACCESS
 
 static inline unsigned long __copy_from_user_inatomic_nocache(void *to,
@ include/linux/uaccess.h:79 @ static inline unsigned long __copy_from_user_nocache(void *to,
 		mm_segment_t old_fs = get_fs();		\
 							\
 		set_fs(KERNEL_DS);			\
-		pagefault_disable();			\
+		raw_pagefault_disable();		\
 		ret = __copy_from_user_inatomic(&(retval), (__force typeof(retval) __user *)(addr), sizeof(retval));		\
-		pagefault_enable();			\
+		raw_pagefault_enable();			\
 		set_fs(old_fs);				\
 		ret;					\
 	})
@ include/linux/vmstat.h:32 @ DECLARE_PER_CPU(struct vm_event_state, vm_event_states);
 
 static inline void __count_vm_event(enum vm_event_item item)
 {
+	preempt_disable_rt();
 	__this_cpu_inc(vm_event_states.event[item]);
+	preempt_enable_rt();
 }
 
 static inline void count_vm_event(enum vm_event_item item)
@ include/linux/vmstat.h:44 @ static inline void count_vm_event(enum vm_event_item item)
 
 static inline void __count_vm_events(enum vm_event_item item, long delta)
 {
+	preempt_disable_rt();
 	__this_cpu_add(vm_event_states.event[item], delta);
+	preempt_enable_rt();
 }
 
 static inline void count_vm_events(enum vm_event_item item, long delta)
@ include/linux/wait-simple.h:4 @
+#ifndef _LINUX_WAIT_SIMPLE_H
+#define _LINUX_WAIT_SIMPLE_H
+
+#include <linux/spinlock.h>
+#include <linux/list.h>
+
+#include <asm/current.h>
+
+struct swaiter {
+	struct task_struct	*task;
+	struct list_head	node;
+};
+
+#define DEFINE_SWAITER(name)					\
+	struct swaiter name = {					\
+		.task	= current,				\
+		.node	= LIST_HEAD_INIT((name).node),		\
+	}
+
+struct swait_head {
+	raw_spinlock_t		lock;
+	struct list_head	list;
+};
+
+#define SWAIT_HEAD_INITIALIZER(name) {				\
+		.lock	= __RAW_SPIN_LOCK_UNLOCKED(name.lock),	\
+		.list	= LIST_HEAD_INIT((name).list),		\
+	}
+
+#define DEFINE_SWAIT_HEAD(name)					\
+	struct swait_head name = SWAIT_HEAD_INITIALIZER(name)
+
+extern void __init_swait_head(struct swait_head *h, struct lock_class_key *key);
+
+#define init_swait_head(swh)					\
+	do {							\
+		static struct lock_class_key __key;		\
+								\
+		__init_swait_head((swh), &__key);		\
+	} while (0)
+
+/*
+ * Waiter functions
+ */
+extern void swait_prepare_locked(struct swait_head *head, struct swaiter *w);
+extern void swait_prepare(struct swait_head *head, struct swaiter *w, int state);
+extern void swait_finish_locked(struct swait_head *head, struct swaiter *w);
+extern void swait_finish(struct swait_head *head, struct swaiter *w);
+
+/*
+ * Wakeup functions
+ */
+extern unsigned int __swait_wake(struct swait_head *head, unsigned int state, unsigned int num);
+extern unsigned int __swait_wake_locked(struct swait_head *head, unsigned int state, unsigned int num);
+
+#define swait_wake(head)			__swait_wake(head, TASK_NORMAL, 1)
+#define swait_wake_interruptible(head)		__swait_wake(head, TASK_INTERRUPTIBLE, 1)
+#define swait_wake_all(head)			__swait_wake(head, TASK_NORMAL, 0)
+#define swait_wake_all_interruptible(head)	__swait_wake(head, TASK_INTERRUPTIBLE, 0)
+
+/*
+ * Event API
+ */
+#define __swait_event(wq, condition)					\
+do {									\
+	DEFINE_SWAITER(__wait);						\
+									\
+	for (;;) {							\
+		swait_prepare(&wq, &__wait, TASK_UNINTERRUPTIBLE);	\
+		if (condition)						\
+			break;						\
+		schedule();						\
+	}								\
+	swait_finish(&wq, &__wait);					\
+} while (0)
+
+/**
+ * swait_event - sleep until a condition gets true
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ *
+ * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
+ * @condition evaluates to true. The @condition is checked each time
+ * the waitqueue @wq is woken up.
+ *
+ * wake_up() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ */
+#define swait_event(wq, condition)					\
+do {									\
+	if (condition)							\
+		break;							\
+	__swait_event(wq, condition);					\
+} while (0)
+
+#define __swait_event_interruptible(wq, condition, ret)			\
+do {									\
+	DEFINE_SWAITER(__wait);						\
+									\
+	for (;;) {							\
+		swait_prepare(&wq, &__wait, TASK_INTERRUPTIBLE);	\
+		if (condition)						\
+			break;						\
+		if (signal_pending(current)) {				\
+			ret = -ERESTARTSYS;				\
+			break;						\
+		}							\
+		schedule();						\
+	}								\
+	swait_finish(&wq, &__wait);					\
+} while (0)
+
+/**
+ * swait_event_interruptible - sleep until a condition gets true
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ *
+ * The process is put to sleep (TASK_INTERRUPTIBLE) until the
+ * @condition evaluates to true. The @condition is checked each time
+ * the waitqueue @wq is woken up.
+ *
+ * wake_up() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ */
+#define swait_event_interruptible(wq, condition)			\
+({									\
+	int __ret = 0;							\
+	if (!(condition))						\
+		__swait_event_interruptible(wq, condition, __ret);	\
+	__ret;								\
+})
+
+#define __swait_event_timeout(wq, condition, ret)			\
+do {									\
+	DEFINE_SWAITER(__wait);						\
+									\
+	for (;;) {							\
+		swait_prepare(&wq, &__wait, TASK_UNINTERRUPTIBLE);	\
+		if (condition)						\
+			break;						\
+		ret = schedule_timeout(ret);				\
+		if (!ret)						\
+			break;						\
+	}								\
+	swait_finish(&wq, &__wait);					\
+} while (0)
+
+/**
+ * swait_event_timeout - sleep until a condition gets true or a timeout elapses
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ * @timeout: timeout, in jiffies
+ *
+ * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
+ * @condition evaluates to true. The @condition is checked each time
+ * the waitqueue @wq is woken up.
+ *
+ * wake_up() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ *
+ * The function returns 0 if the @timeout elapsed, and the remaining
+ * jiffies if the condition evaluated to true before the timeout elapsed.
+ */
+#define swait_event_timeout(wq, condition, timeout)			\
+({									\
+	long __ret = timeout;						\
+	if (!(condition))						\
+		__swait_event_timeout(wq, condition, __ret);		\
+	__ret;								\
+})
+
+#endif
@ include/linux/wait.h:160 @ void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key);
 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr,
 			void *key);
-void __wake_up_locked(wait_queue_head_t *q, unsigned int mode);
+void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr);
 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr);
 void __wake_up_bit(wait_queue_head_t *, void *, int);
 int __wait_on_bit(wait_queue_head_t *, struct wait_bit_queue *, int (*)(void *), unsigned);
@ include/linux/wait.h:173 @ wait_queue_head_t *bit_waitqueue(void *, int);
 #define wake_up(x)			__wake_up(x, TASK_NORMAL, 1, NULL)
 #define wake_up_nr(x, nr)		__wake_up(x, TASK_NORMAL, nr, NULL)
 #define wake_up_all(x)			__wake_up(x, TASK_NORMAL, 0, NULL)
-#define wake_up_locked(x)		__wake_up_locked((x), TASK_NORMAL)
+#define wake_up_locked(x)		__wake_up_locked((x), TASK_NORMAL, 1)
+#define wake_up_all_locked(x)		__wake_up_locked((x), TASK_NORMAL, 0)
 
 #define wake_up_interruptible(x)	__wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
 #define wake_up_interruptible_nr(x, nr)	__wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)
@ include/net/neighbour.h:388 @ struct neighbour_cb {
 
 #define NEIGH_CB(skb)	((struct neighbour_cb *)(skb)->cb)
 
-static inline void neigh_ha_snapshot(char *dst, const struct neighbour *n,
+static inline void neigh_ha_snapshot(char *dst, struct neighbour *n,
 				     const struct net_device *dev)
 {
 	unsigned int seq;
@ include/net/netns/ipv4.h:50 @ struct netns_ipv4 {
 
 	int sysctl_icmp_echo_ignore_all;
 	int sysctl_icmp_echo_ignore_broadcasts;
+	int sysctl_icmp_echo_sysrq;
 	int sysctl_icmp_ignore_bogus_error_responses;
 	int sysctl_icmp_ratelimit;
 	int sysctl_icmp_ratemask;
@ include/trace/events/hist.h:4 @
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM hist
+
+#if !defined(_TRACE_HIST_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_HIST_H
+
+#include "latency_hist.h"
+#include <linux/tracepoint.h>
+
+#if !defined(CONFIG_PREEMPT_OFF_HIST) && !defined(CONFIG_INTERRUPT_OFF_HIST)
+#define trace_preemptirqsoff_hist(a,b)
+#else
+TRACE_EVENT(preemptirqsoff_hist,
+
+	TP_PROTO(int reason, int starthist),
+
+	TP_ARGS(reason, starthist),
+
+	TP_STRUCT__entry(
+		__field(int,	reason	)
+		__field(int,	starthist	)
+	),
+
+	TP_fast_assign(
+		__entry->reason		= reason;
+		__entry->starthist	= starthist;
+	),
+
+	TP_printk("reason=%s starthist=%s", getaction(__entry->reason),
+		  __entry->starthist ? "start" : "stop")
+);
+#endif
+
+#ifndef CONFIG_MISSED_TIMER_OFFSETS_HIST
+#define trace_hrtimer_interrupt(a,b,c,d)
+#else
+TRACE_EVENT(hrtimer_interrupt,
+
+	TP_PROTO(int cpu, long long offset, struct task_struct *curr, struct task_struct *task),
+
+	TP_ARGS(cpu, offset, curr, task),
+
+	TP_STRUCT__entry(
+		__field(int,		cpu	)
+		__field(long long,	offset	)
+		__array(char,		ccomm,	TASK_COMM_LEN)
+		__field(int,		cprio	)
+		__array(char,		tcomm,	TASK_COMM_LEN)
+		__field(int,		tprio	)
+	),
+
+	TP_fast_assign(
+		__entry->cpu	= cpu;
+		__entry->offset	= offset;
+		memcpy(__entry->ccomm, curr->comm, TASK_COMM_LEN);
+		__entry->cprio  = curr->prio;
+		memcpy(__entry->tcomm, task != NULL ? task->comm : "<none>", task != NULL ? TASK_COMM_LEN : 7);
+		__entry->tprio  = task != NULL ? task->prio : -1;
+	),
+
+	TP_printk("cpu=%d offset=%lld curr=%s[%d] thread=%s[%d]",
+		__entry->cpu, __entry->offset, __entry->ccomm, __entry->cprio, __entry->tcomm, __entry->tprio)
+);
+#endif
+
+#endif /* _TRACE_HIST_H */
+
+/* This part must be outside protection */
+#include <trace/define_trace.h>
@ include/trace/events/latency_hist.h:4 @
+#ifndef _LATENCY_HIST_H
+#define _LATENCY_HIST_H
+
+enum hist_action {
+	IRQS_ON,
+	PREEMPT_ON,
+	TRACE_STOP,
+	IRQS_OFF,
+	PREEMPT_OFF,
+	TRACE_START,
+};
+
+static char *actions[] = {
+	"IRQS_ON",
+	"PREEMPT_ON",
+	"TRACE_STOP",
+	"IRQS_OFF",
+	"PREEMPT_OFF",
+	"TRACE_START",
+};
+
+static inline char *getaction(int action)
+{
+	if (action >= 0 && action <= sizeof(actions)/sizeof(actions[0]))
+		return(actions[action]);
+	return("unknown");
+}
+
+#endif /* _LATENCY_HIST_H */
+
@ init/Kconfig:472 @ config RCU_FANOUT_EXACT
 
 config RCU_FAST_NO_HZ
 	bool "Accelerate last non-dyntick-idle CPU's grace periods"
-	depends on TREE_RCU && NO_HZ && SMP
+	depends on TREE_RCU && NO_HZ && SMP && !PREEMPT_RT_FULL
 	default n
 	help
 	  This option causes RCU to attempt to accelerate grace periods
@ init/Kconfig:734 @ config RT_GROUP_SCHED
 	bool "Group scheduling for SCHED_RR/FIFO"
 	depends on EXPERIMENTAL
 	depends on CGROUP_SCHED
+	depends on !PREEMPT_RT_FULL
 	default n
 	help
 	  This feature lets you explicitly allocate real CPU bandwidth
@ init/Kconfig:1243 @ config SLAB
 
 config SLUB
 	bool "SLUB (Unqueued Allocator)"
+	depends on !PREEMPT_RT_FULL
 	help
 	   SLUB is a slab allocator that minimizes cache line usage
 	   instead of managing queues of cached objects (SLAB approach).
@ init/Kconfig:1255 @ config SLUB
 config SLOB
 	depends on EXPERT
 	bool "SLOB (Simple Allocator)"
+	depends on !PREEMPT_RT_FULL
 	help
 	   SLOB replaces the stock allocator with a drastically simpler
 	   allocator. SLOB is generally more space efficient but
@ init/Makefile:32 @ silent_chk_compile.h = :
 include/generated/compile.h: FORCE
 	@$($(quiet)chk_compile.h)
 	$(Q)$(CONFIG_SHELL) $(srctree)/scripts/mkcompile_h $@ \
-	"$(UTS_MACHINE)" "$(CONFIG_SMP)" "$(CONFIG_PREEMPT)" "$(CC) $(KBUILD_CFLAGS)"
+	"$(UTS_MACHINE)" "$(CONFIG_SMP)" "$(CONFIG_PREEMPT)" "$(CONFIG_PREEMPT_RT_FULL)" "$(CC) $(KBUILD_CFLAGS)"
@ init/main.c:71 @
 #include <linux/shmem_fs.h>
 #include <linux/slab.h>
 #include <linux/perf_event.h>
+#include <linux/posix-timers.h>
 
 #include <asm/io.h>
 #include <asm/bugs.h>
@ init/main.c:382 @ static noinline void __init_refok rest_init(void)
 	 * at least once to get things moving:
 	 */
 	init_idle_bootup_task(current);
-	preempt_enable_no_resched();
-	schedule();
-
+	schedule_preempt_disabled();
 	/* Call into cpu_idle with preempt disabled */
-	preempt_disable();
 	cpu_idle();
 }
 
@ init/main.c:503 @ asmlinkage void __init start_kernel(void)
 	setup_command_line(command_line);
 	setup_nr_cpu_ids();
 	setup_per_cpu_areas();
+	softirq_early_init();
 	smp_prepare_boot_cpu();	/* arch-specific boot-cpu hooks */
 
 	build_all_zonelists(NULL);
@ ipc/mqueue.c:823 @ static inline void pipelined_send(struct mqueue_inode_info *info,
 				  struct msg_msg *message,
 				  struct ext_wait_queue *receiver)
 {
+	/*
+	 * Keep them in one critical section for PREEMPT_RT:
+	 */
+	preempt_disable_rt();
 	receiver->msg = message;
 	list_del(&receiver->list);
 	receiver->state = STATE_PENDING;
 	wake_up_process(receiver->task);
 	smp_wmb();
 	receiver->state = STATE_READY;
+	preempt_enable_rt();
 }
 
 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
@ ipc/mqueue.c:847 @ static inline void pipelined_receive(struct mqueue_inode_info *info)
 		wake_up_interruptible(&info->wait_q);
 		return;
 	}
+	/*
+	 * Keep them in one critical section for PREEMPT_RT:
+	 */
+	preempt_disable_rt();
 	msg_insert(sender->msg, info);
 	list_del(&sender->list);
 	sender->state = STATE_PENDING;
 	wake_up_process(sender->task);
 	smp_wmb();
 	sender->state = STATE_READY;
+	preempt_enable_rt();
 }
-
-SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
+ SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
 		size_t, msg_len, unsigned int, msg_prio,
 		const struct timespec __user *, u_abs_timeout)
 {
@ ipc/msg.c:262 @ static void expunge_all(struct msg_queue *msq, int res)
 	while (tmp != &msq->q_receivers) {
 		struct msg_receiver *msr;
 
+		/*
+		 * Make sure that the wakeup doesnt preempt
+		 * this CPU prematurely. (on PREEMPT_RT)
+		 */
+		preempt_disable_rt();
+
 		msr = list_entry(tmp, struct msg_receiver, r_list);
 		tmp = tmp->next;
 		msr->r_msg = NULL;
 		wake_up_process(msr->r_tsk);
 		smp_mb();
 		msr->r_msg = ERR_PTR(res);
+
+		preempt_enable_rt();
 	}
 }
 
@ ipc/msg.c:622 @ static inline int pipelined_send(struct msg_queue *msq, struct msg_msg *msg)
 		    !security_msg_queue_msgrcv(msq, msg, msr->r_tsk,
 					       msr->r_msgtype, msr->r_mode)) {
 
+			/*
+			 * Make sure that the wakeup doesnt preempt
+			 * this CPU prematurely. (on PREEMPT_RT)
+			 */
+			preempt_disable_rt();
+
 			list_del(&msr->r_list);
 			if (msr->r_maxsize < msg->m_ts) {
 				msr->r_msg = NULL;
@ ipc/msg.c:641 @ static inline int pipelined_send(struct msg_queue *msq, struct msg_msg *msg)
 				wake_up_process(msr->r_tsk);
 				smp_mb();
 				msr->r_msg = msg;
+				preempt_enable_rt();
 
 				return 1;
 			}
+			preempt_enable_rt();
 		}
 	}
 	return 0;
@ ipc/sem.c:464 @ undo:
 static void wake_up_sem_queue_prepare(struct list_head *pt,
 				struct sem_queue *q, int error)
 {
+#ifdef CONFIG_PREEMPT_RT_BASE
+	struct task_struct *p = q->sleeper;
+	get_task_struct(p);
+	q->status = error;
+	wake_up_process(p);
+	put_task_struct(p);
+#else
 	if (list_empty(pt)) {
 		/*
 		 * Hold preempt off so that we don't get preempted and have the
@ ipc/sem.c:482 @ static void wake_up_sem_queue_prepare(struct list_head *pt,
 	q->pid = error;
 
 	list_add_tail(&q->simple_list, pt);
+#endif
 }
 
 /**
@ ipc/sem.c:496 @ static void wake_up_sem_queue_prepare(struct list_head *pt,
  */
 static void wake_up_sem_queue_do(struct list_head *pt)
 {
+#ifndef CONFIG_PREEMPT_RT_BASE
 	struct sem_queue *q, *t;
 	int did_something;
 
@ ipc/sem.c:509 @ static void wake_up_sem_queue_do(struct list_head *pt)
 	}
 	if (did_something)
 		preempt_enable();
+#endif
 }
 
 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
@ kernel/Kconfig.locks:202 @ config INLINE_WRITE_UNLOCK_IRQRESTORE
 	def_bool !DEBUG_SPINLOCK && ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE
 
 config MUTEX_SPIN_ON_OWNER
-	def_bool SMP && !DEBUG_MUTEXES
+	def_bool SMP && !DEBUG_MUTEXES && !PREEMPT_RT_FULL
@ kernel/Kconfig.preempt:4 @
+config PREEMPT
+	bool
+	select PREEMPT_COUNT
+
+config PREEMPT_RT_BASE
+	bool
+	select PREEMPT
 
 choice
 	prompt "Preemption Model"
@ kernel/Kconfig.preempt:43 @ config PREEMPT_VOLUNTARY
 
 	  Select this if you are building a kernel for a desktop system.
 
-config PREEMPT
+config PREEMPT__LL
 	bool "Preemptible Kernel (Low-Latency Desktop)"
-	select PREEMPT_COUNT
+	select PREEMPT
 	help
 	  This option reduces the latency of the kernel by making
 	  all kernel code (that is not executing in a critical section)
@ kernel/Kconfig.preempt:61 @ config PREEMPT
 	  embedded system with latency requirements in the milliseconds
 	  range.
 
+config PREEMPT_RTB
+	bool "Preemptible Kernel (Basic RT)"
+	select PREEMPT_RT_BASE
+	help
+	  This option is basically the same as (Low-Latency Desktop) but
+	  enables changes which are preliminary for the full preemptiple
+	  RT kernel.
+
+config PREEMPT_RT_FULL
+	bool "Fully Preemptible Kernel (RT)"
+	depends on IRQ_FORCED_THREADING
+	select PREEMPT_RT_BASE
+	help
+	  All and everything
+
 endchoice
 
 config PREEMPT_COUNT
@ kernel/Makefile:10 @ obj-y     = sched.o fork.o exec_domain.o panic.o printk.o \
 	    sysctl.o sysctl_binary.o capability.o ptrace.o timer.o user.o \
 	    signal.o sys.o kmod.o workqueue.o pid.o \
 	    rcupdate.o extable.o params.o posix-timers.o \
-	    kthread.o wait.o kfifo.o sys_ni.o posix-cpu-timers.o mutex.o \
-	    hrtimer.o rwsem.o nsproxy.o srcu.o semaphore.o \
+	    kthread.o wait.o kfifo.o sys_ni.o posix-cpu-timers.o \
+	    hrtimer.o nsproxy.o srcu.o semaphore.o \
 	    notifier.o ksysfs.o sched_clock.o cred.o \
 	    async.o range.o
-obj-y += groups.o
+obj-y += groups.o wait-simple.o
 
 ifdef CONFIG_FUNCTION_TRACER
 # Do not trace debug files and internal ftrace files
@ kernel/Makefile:32 @ obj-$(CONFIG_PROFILING) += profile.o
 obj-$(CONFIG_SYSCTL_SYSCALL_CHECK) += sysctl_check.o
 obj-$(CONFIG_STACKTRACE) += stacktrace.o
 obj-y += time/
+ifneq ($(CONFIG_PREEMPT_RT_FULL),y)
+obj-y += mutex.o
 obj-$(CONFIG_DEBUG_MUTEXES) += mutex-debug.o
+obj-y += rwsem.o
+endif
 obj-$(CONFIG_LOCKDEP) += lockdep.o
 ifeq ($(CONFIG_PROC_FS),y)
 obj-$(CONFIG_LOCKDEP) += lockdep_proc.o
@ kernel/Makefile:48 @ endif
 obj-$(CONFIG_RT_MUTEXES) += rtmutex.o
 obj-$(CONFIG_DEBUG_RT_MUTEXES) += rtmutex-debug.o
 obj-$(CONFIG_RT_MUTEX_TESTER) += rtmutex-tester.o
+obj-$(CONFIG_PREEMPT_RT_FULL) += rt.o
 obj-$(CONFIG_GENERIC_ISA_DMA) += dma.o
 obj-$(CONFIG_SMP) += smp.o
 ifneq ($(CONFIG_SMP),y)
@ kernel/cpu.c:61 @ static struct {
 	.refcount = 0,
 };
 
+/**
+ * hotplug_pcp - per cpu hotplug descriptor
+ * @unplug:	set when pin_current_cpu() needs to sync tasks
+ * @sync_tsk:	the task that waits for tasks to finish pinned sections
+ * @refcount:	counter of tasks in pinned sections
+ * @grab_lock:	set when the tasks entering pinned sections should wait
+ * @synced:	notifier for @sync_tsk to tell cpu_down it's finished
+ * @mutex:	the mutex to make tasks wait (used when @grab_lock is true)
+ * @mutex_init:	zero if the mutex hasn't been initialized yet.
+ *
+ * Although @unplug and @sync_tsk may point to the same task, the @unplug
+ * is used as a flag and still exists after @sync_tsk has exited and
+ * @sync_tsk set to NULL.
+ */
+struct hotplug_pcp {
+	struct task_struct *unplug;
+	struct task_struct *sync_tsk;
+	int refcount;
+	int grab_lock;
+	struct completion synced;
+#ifdef CONFIG_PREEMPT_RT_FULL
+	spinlock_t lock;
+#else
+	struct mutex mutex;
+#endif
+	int mutex_init;
+};
+
+#ifdef CONFIG_PREEMPT_RT_FULL
+# define hotplug_lock(hp) rt_spin_lock(&(hp)->lock)
+# define hotplug_unlock(hp) rt_spin_unlock(&(hp)->lock)
+#else
+# define hotplug_lock(hp) mutex_lock(&(hp)->mutex)
+# define hotplug_unlock(hp) mutex_unlock(&(hp)->mutex)
+#endif
+
+static DEFINE_PER_CPU(struct hotplug_pcp, hotplug_pcp);
+
+/**
+ * pin_current_cpu - Prevent the current cpu from being unplugged
+ *
+ * Lightweight version of get_online_cpus() to prevent cpu from being
+ * unplugged when code runs in a migration disabled region.
+ *
+ * Must be called with preemption disabled (preempt_count = 1)!
+ */
+void pin_current_cpu(void)
+{
+	struct hotplug_pcp *hp;
+	int force = 0;
+
+retry:
+	hp = &__get_cpu_var(hotplug_pcp);
+
+	if (!hp->unplug || hp->refcount || force || preempt_count() > 1 ||
+	    hp->unplug == current || (current->flags & PF_STOMPER)) {
+		hp->refcount++;
+		return;
+	}
+
+	if (hp->grab_lock) {
+		preempt_enable();
+		hotplug_lock(hp);
+		hotplug_unlock(hp);
+	} else {
+		preempt_enable();
+		/*
+		 * Try to push this task off of this CPU.
+		 */
+		if (!migrate_me()) {
+			preempt_disable();
+			hp = &__get_cpu_var(hotplug_pcp);
+			if (!hp->grab_lock) {
+				/*
+				 * Just let it continue it's already pinned
+				 * or about to sleep.
+				 */
+				force = 1;
+				goto retry;
+			}
+			preempt_enable();
+		}
+	}
+	preempt_disable();
+	goto retry;
+}
+
+/**
+ * unpin_current_cpu - Allow unplug of current cpu
+ *
+ * Must be called with preemption or interrupts disabled!
+ */
+void unpin_current_cpu(void)
+{
+	struct hotplug_pcp *hp = &__get_cpu_var(hotplug_pcp);
+
+	WARN_ON(hp->refcount <= 0);
+
+	/* This is safe. sync_unplug_thread is pinned to this cpu */
+	if (!--hp->refcount && hp->unplug && hp->unplug != current &&
+	    !(current->flags & PF_STOMPER))
+		wake_up_process(hp->unplug);
+}
+
+static void wait_for_pinned_cpus(struct hotplug_pcp *hp)
+{
+	set_current_state(TASK_UNINTERRUPTIBLE);
+	while (hp->refcount) {
+		schedule_preempt_disabled();
+		set_current_state(TASK_UNINTERRUPTIBLE);
+	}
+}
+
+static int sync_unplug_thread(void *data)
+{
+	struct hotplug_pcp *hp = data;
+
+	preempt_disable();
+	hp->unplug = current;
+	wait_for_pinned_cpus(hp);
+
+	/*
+	 * This thread will synchronize the cpu_down() with threads
+	 * that have pinned the CPU. When the pinned CPU count reaches
+	 * zero, we inform the cpu_down code to continue to the next step.
+	 */
+	set_current_state(TASK_UNINTERRUPTIBLE);
+	preempt_enable();
+	complete(&hp->synced);
+
+	/*
+	 * If all succeeds, the next step will need tasks to wait till
+	 * the CPU is offline before continuing. To do this, the grab_lock
+	 * is set and tasks going into pin_current_cpu() will block on the
+	 * mutex. But we still need to wait for those that are already in
+	 * pinned CPU sections. If the cpu_down() failed, the kthread_should_stop()
+	 * will kick this thread out.
+	 */
+	while (!hp->grab_lock && !kthread_should_stop()) {
+		schedule();
+		set_current_state(TASK_UNINTERRUPTIBLE);
+	}
+
+	/* Make sure grab_lock is seen before we see a stale completion */
+	smp_mb();
+
+	/*
+	 * Now just before cpu_down() enters stop machine, we need to make
+	 * sure all tasks that are in pinned CPU sections are out, and new
+	 * tasks will now grab the lock, keeping them from entering pinned
+	 * CPU sections.
+	 */
+	if (!kthread_should_stop()) {
+		preempt_disable();
+		wait_for_pinned_cpus(hp);
+		preempt_enable();
+		complete(&hp->synced);
+	}
+
+	set_current_state(TASK_UNINTERRUPTIBLE);
+	while (!kthread_should_stop()) {
+		schedule();
+		set_current_state(TASK_UNINTERRUPTIBLE);
+	}
+	set_current_state(TASK_RUNNING);
+
+	/*
+	 * Force this thread off this CPU as it's going down and
+	 * we don't want any more work on this CPU.
+	 */
+	current->flags &= ~PF_THREAD_BOUND;
+	do_set_cpus_allowed(current, cpu_present_mask);
+	migrate_me();
+	return 0;
+}
+
+static void __cpu_unplug_sync(struct hotplug_pcp *hp)
+{
+	wake_up_process(hp->sync_tsk);
+	wait_for_completion(&hp->synced);
+}
+
+/*
+ * Start the sync_unplug_thread on the target cpu and wait for it to
+ * complete.
+ */
+static int cpu_unplug_begin(unsigned int cpu)
+{
+	struct hotplug_pcp *hp = &per_cpu(hotplug_pcp, cpu);
+	int err;
+
+	/* Protected by cpu_hotplug.lock */
+	if (!hp->mutex_init) {
+#ifdef CONFIG_PREEMPT_RT_FULL
+		spin_lock_init(&hp->lock);
+#else
+		mutex_init(&hp->mutex);
+#endif
+		hp->mutex_init = 1;
+	}
+
+	/* Inform the scheduler to migrate tasks off this CPU */
+	tell_sched_cpu_down_begin(cpu);
+
+	init_completion(&hp->synced);
+
+	hp->sync_tsk = kthread_create(sync_unplug_thread, hp, "sync_unplug/%d", cpu);
+	if (IS_ERR(hp->sync_tsk)) {
+		err = PTR_ERR(hp->sync_tsk);
+		hp->sync_tsk = NULL;
+		return err;
+	}
+	kthread_bind(hp->sync_tsk, cpu);
+
+	/*
+	 * Wait for tasks to get out of the pinned sections,
+	 * it's still OK if new tasks enter. Some CPU notifiers will
+	 * wait for tasks that are going to enter these sections and
+	 * we must not have them block.
+	 */
+	__cpu_unplug_sync(hp);
+
+	return 0;
+}
+
+static void cpu_unplug_sync(unsigned int cpu)
+{
+	struct hotplug_pcp *hp = &per_cpu(hotplug_pcp, cpu);
+
+	init_completion(&hp->synced);
+	/* The completion needs to be initialzied before setting grab_lock */
+	smp_wmb();
+
+	/* Grab the mutex before setting grab_lock */
+	hotplug_lock(hp);
+	hp->grab_lock = 1;
+
+	/*
+	 * The CPU notifiers have been completed.
+	 * Wait for tasks to get out of pinned CPU sections and have new
+	 * tasks block until the CPU is completely down.
+	 */
+	__cpu_unplug_sync(hp);
+
+	/* All done with the sync thread */
+	kthread_stop(hp->sync_tsk);
+	hp->sync_tsk = NULL;
+}
+
+static void cpu_unplug_done(unsigned int cpu)
+{
+	struct hotplug_pcp *hp = &per_cpu(hotplug_pcp, cpu);
+
+	hp->unplug = NULL;
+	/* Let all tasks know cpu unplug is finished before cleaning up */
+	smp_wmb();
+
+	if (hp->sync_tsk)
+		kthread_stop(hp->sync_tsk);
+
+	if (hp->grab_lock) {
+		hotplug_unlock(hp);
+		/* protected by cpu_hotplug.lock */
+		hp->grab_lock = 0;
+	}
+	tell_sched_cpu_down_done(cpu);
+}
+
 void get_online_cpus(void)
 {
 	might_sleep();
@ kernel/cpu.c:482 @ static int __ref take_cpu_down(void *_param)
 /* Requires cpu_add_remove_lock to be held */
 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
 {
-	int err, nr_calls = 0;
+	int mycpu, err, nr_calls = 0;
 	void *hcpu = (void *)(long)cpu;
 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
 	struct take_cpu_down_param tcd_param = {
 		.mod = mod,
 		.hcpu = hcpu,
 	};
+	cpumask_var_t cpumask;
 
 	if (num_online_cpus() == 1)
 		return -EBUSY;
@ kernel/cpu.c:497 @ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
 	if (!cpu_online(cpu))
 		return -EINVAL;
 
+	/* Move the downtaker off the unplug cpu */
+	if (!alloc_cpumask_var(&cpumask, GFP_KERNEL))
+		return -ENOMEM;
+	cpumask_andnot(cpumask, cpu_online_mask, cpumask_of(cpu));
+	set_cpus_allowed_ptr(current, cpumask);
+	free_cpumask_var(cpumask);
+	migrate_disable();
+	mycpu = smp_processor_id();
+	if (mycpu == cpu) {
+		printk(KERN_ERR "Yuck! Still on unplug CPU\n!");
+		migrate_enable();
+		return -EBUSY;
+	}
+
 	cpu_hotplug_begin();
+	err = cpu_unplug_begin(cpu);
+	if (err) {
+		printk("cpu_unplug_begin(%d) failed\n", cpu);
+		goto out_cancel;
+	}
 
 	err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
 	if (err) {
@ kernel/cpu.c:527 @ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
 		goto out_release;
 	}
 
+	/* Notifiers are done. Don't let any more tasks pin this CPU. */
+	cpu_unplug_sync(cpu);
+
 	err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
 	if (err) {
 		/* CPU didn't die: tell everyone.  Can't complain. */
@ kernel/cpu.c:558 @ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
 	check_for_tasks(cpu);
 
 out_release:
+	cpu_unplug_done(cpu);
+out_cancel:
+	migrate_enable();
 	cpu_hotplug_done();
 	if (!err)
 		cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
@ kernel/cred.c:38 @ static struct kmem_cache *cred_jar;
 static struct thread_group_cred init_tgcred = {
 	.usage	= ATOMIC_INIT(2),
 	.tgid	= 0,
-	.lock	= __SPIN_LOCK_UNLOCKED(init_cred.tgcred.lock),
+	.lock	= __SPIN_LOCK_UNLOCKED(init_tgcred.lock),
 };
 #endif
 
@ kernel/debug/kdb/kdb_io.c:556 @ int vkdb_printf(const char *fmt, va_list ap)
 	int diag;
 	int linecount;
 	int logging, saved_loglevel = 0;
-	int saved_trap_printk;
 	int got_printf_lock = 0;
 	int retlen = 0;
 	int fnd, len;
@ kernel/debug/kdb/kdb_io.c:566 @ int vkdb_printf(const char *fmt, va_list ap)
 	unsigned long uninitialized_var(flags);
 
 	preempt_disable();
-	saved_trap_printk = kdb_trap_printk;
-	kdb_trap_printk = 0;
 
 	/* Serialize kdb_printf if multiple cpus try to write at once.
 	 * But if any cpu goes recursive in kdb, just print the output,
@ kernel/debug/kdb/kdb_io.c:821 @ kdb_print_out:
 	} else {
 		__release(kdb_printf_lock);
 	}
-	kdb_trap_printk = saved_trap_printk;
 	preempt_enable();
 	return retlen;
 }
@ kernel/debug/kdb/kdb_io.c:830 @ int kdb_printf(const char *fmt, ...)
 	va_list ap;
 	int r;
 
+	kdb_trap_printk++;
 	va_start(ap, fmt);
 	r = vkdb_printf(fmt, ap);
 	va_end(ap);
+	kdb_trap_printk--;
 
 	return r;
 }
@ kernel/events/core.c:5431 @ static void perf_swevent_init_hrtimer(struct perf_event *event)
 
 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 	hwc->hrtimer.function = perf_swevent_hrtimer;
+	hwc->hrtimer.irqsafe = 1;
 
 	/*
 	 * Since hrtimers have a fixed rate, we can do a static freq->period
@ kernel/exit.c:144 @ static void __exit_signal(struct task_struct *tsk)
 	 * Do this under ->siglock, we can race with another thread
 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 	 */
-	flush_sigqueue(&tsk->pending);
+	flush_task_sigqueue(tsk);
 	tsk->sighand = NULL;
 	spin_unlock(&sighand->siglock);
 
@ kernel/fork.c:91 @ int max_threads;		/* tunable limit on nr_threads */
 
 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 
-__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
+DEFINE_RWLOCK(tasklist_lock);  /* outer */
 
 #ifdef CONFIG_PROVE_RCU
 int lockdep_tasklist_lock_is_held(void)
@ kernel/fork.c:201 @ void __put_task_struct(struct task_struct *tsk)
 	if (!profile_handoff_task(tsk))
 		free_task(tsk);
 }
+#ifndef CONFIG_PREEMPT_RT_BASE
 EXPORT_SYMBOL_GPL(__put_task_struct);
+#else
+void __put_task_struct_cb(struct rcu_head *rhp)
+{
+	struct task_struct *tsk = container_of(rhp, struct task_struct, put_rcu);
+
+	__put_task_struct(tsk);
+
+}
+EXPORT_SYMBOL_GPL(__put_task_struct_cb);
+#endif
 
 /*
  * macro override instead of weak attribute alias, to workaround
@ kernel/fork.c:558 @ void __mmdrop(struct mm_struct *mm)
 }
 EXPORT_SYMBOL_GPL(__mmdrop);
 
+#ifdef CONFIG_PREEMPT_RT_BASE
+/*
+ * RCU callback for delayed mm drop. Not strictly rcu, but we don't
+ * want another facility to make this work.
+ */
+void __mmdrop_delayed(struct rcu_head *rhp)
+{
+	struct mm_struct *mm = container_of(rhp, struct mm_struct, delayed_drop);
+
+	__mmdrop(mm);
+}
+#endif
+
 /*
  * Decrement the use count and release all resources for an mm.
  */
@ kernel/fork.c:1058 @ void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  */
 static void posix_cpu_timers_init(struct task_struct *tsk)
 {
+#ifdef CONFIG_PREEMPT_RT_BASE
+	tsk->posix_timer_list = NULL;
+#endif
 	tsk->cputime_expires.prof_exp = cputime_zero;
 	tsk->cputime_expires.virt_exp = cputime_zero;
 	tsk->cputime_expires.sched_exp = 0;
@ kernel/fork.c:1168 @ static struct task_struct *copy_process(unsigned long clone_flags,
 	spin_lock_init(&p->alloc_lock);
 
 	init_sigpending(&p->pending);
+	p->sigqueue_cache = NULL;
 
 	p->utime = cputime_zero;
 	p->stime = cputime_zero;
@ kernel/fork.c:1230 @ static struct task_struct *copy_process(unsigned long clone_flags,
 	p->hardirq_context = 0;
 	p->softirq_context = 0;
 #endif
+#ifdef CONFIG_PREEMPT_RT_FULL
+	p->pagefault_disabled = 0;
+#endif
 #ifdef CONFIG_LOCKDEP
 	p->lockdep_depth = 0; /* no locks held yet */
 	p->curr_chain_key = 0;
@ kernel/futex.c:1445 @ retry_private:
 				requeue_pi_wake_futex(this, &key2, hb2);
 				drop_count++;
 				continue;
+			} else if (ret == -EAGAIN) {
+				/*
+				 * Waiter was woken by timeout or
+				 * signal and has set pi_blocked_on to
+				 * PI_WAKEUP_INPROGRESS before we
+				 * tried to enqueue it on the rtmutex.
+				 */
+				this->pi_state = NULL;
+				free_pi_state(pi_state);
+				continue;
 			} else if (ret) {
 				/* -EDEADLK */
 				this->pi_state = NULL;
@ kernel/futex.c:2299 @ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
 	struct hrtimer_sleeper timeout, *to = NULL;
 	struct rt_mutex_waiter rt_waiter;
 	struct rt_mutex *pi_mutex = NULL;
-	struct futex_hash_bucket *hb;
+	struct futex_hash_bucket *hb, *hb2;
 	union futex_key key2 = FUTEX_KEY_INIT;
 	struct futex_q q = futex_q_init;
 	int res, ret;
@ kernel/futex.c:2324 @ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
 	 * The waiter is allocated on our stack, manipulated by the requeue
 	 * code while we sleep on uaddr.
 	 */
-	debug_rt_mutex_init_waiter(&rt_waiter);
-	rt_waiter.task = NULL;
+	rt_mutex_init_waiter(&rt_waiter, false);
 
 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
 	if (unlikely(ret != 0))
@ kernel/futex.c:2345 @ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
 	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
 	futex_wait_queue_me(hb, &q, to);
 
-	spin_lock(&hb->lock);
-	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
-	spin_unlock(&hb->lock);
-	if (ret)
-		goto out_put_keys;
+	/*
+	 * On RT we must avoid races with requeue and trying to block
+	 * on two mutexes (hb->lock and uaddr2's rtmutex) by
+	 * serializing access to pi_blocked_on with pi_lock.
+	 */
+	raw_spin_lock_irq(&current->pi_lock);
+	if (current->pi_blocked_on) {
+		/*
+		 * We have been requeued or are in the process of
+		 * being requeued.
+		 */
+		raw_spin_unlock_irq(&current->pi_lock);
+	} else {
+		/*
+		 * Setting pi_blocked_on to PI_WAKEUP_INPROGRESS
+		 * prevents a concurrent requeue from moving us to the
+		 * uaddr2 rtmutex. After that we can safely acquire
+		 * (and possibly block on) hb->lock.
+		 */
+		current->pi_blocked_on = PI_WAKEUP_INPROGRESS;
+		raw_spin_unlock_irq(&current->pi_lock);
+
+		spin_lock(&hb->lock);
+
+		/*
+		 * Clean up pi_blocked_on. We might leak it otherwise
+		 * when we succeeded with the hb->lock in the fast
+		 * path.
+		 */
+		raw_spin_lock_irq(&current->pi_lock);
+		current->pi_blocked_on = NULL;
+		raw_spin_unlock_irq(&current->pi_lock);
+
+		ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
+		spin_unlock(&hb->lock);
+		if (ret)
+			goto out_put_keys;
+	}
 
 	/*
-	 * In order for us to be here, we know our q.key == key2, and since
-	 * we took the hb->lock above, we also know that futex_requeue() has
-	 * completed and we no longer have to concern ourselves with a wakeup
-	 * race with the atomic proxy lock acquisition by the requeue code. The
-	 * futex_requeue dropped our key1 reference and incremented our key2
-	 * reference count.
+	 * In order to be here, we have either been requeued, are in
+	 * the process of being requeued, or requeue successfully
+	 * acquired uaddr2 on our behalf.  If pi_blocked_on was
+	 * non-null above, we may be racing with a requeue.  Do not
+	 * rely on q->lock_ptr to be hb2->lock until after blocking on
+	 * hb->lock or hb2->lock. The futex_requeue dropped our key1
+	 * reference and incremented our key2 reference count.
 	 */
+	hb2 = hash_futex(&key2);
 
 	/* Check if the requeue code acquired the second futex for us. */
 	if (!q.rt_waiter) {
@ kernel/futex.c:2402 @ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
 		 * did a lock-steal - fix up the PI-state in that case.
 		 */
 		if (q.pi_state && (q.pi_state->owner != current)) {
-			spin_lock(q.lock_ptr);
+			spin_lock(&hb2->lock);
+			BUG_ON(&hb2->lock != q.lock_ptr);
 			ret = fixup_pi_state_owner(uaddr2, &q, current);
-			spin_unlock(q.lock_ptr);
+			spin_unlock(&hb2->lock);
 		}
 	} else {
 		/*
@ kernel/futex.c:2418 @ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
 		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
 		debug_rt_mutex_free_waiter(&rt_waiter);
 
-		spin_lock(q.lock_ptr);
+		spin_lock(&hb2->lock);
+		BUG_ON(&hb2->lock != q.lock_ptr);
 		/*
 		 * Fixup the pi_state owner and possibly acquire the lock if we
 		 * haven't already.
@ kernel/hrtimer.c:52 @
 #include <asm/uaccess.h>
 
 #include <trace/events/timer.h>
+#include <trace/events/hist.h>
 
 /*
  * The timer bases:
@ kernel/hrtimer.c:592 @ static int hrtimer_reprogram(struct hrtimer *timer,
 	 * When the callback is running, we do not reprogram the clock event
 	 * device. The timer callback is either running on a different CPU or
 	 * the callback is executed in the hrtimer_interrupt context. The
-	 * reprogramming is handled either by the softirq, which called the
-	 * callback or at the end of the hrtimer_interrupt.
+	 * reprogramming is handled at the end of the hrtimer_interrupt.
 	 */
 	if (hrtimer_callback_running(timer))
 		return 0;
@ kernel/hrtimer.c:627 @ static int hrtimer_reprogram(struct hrtimer *timer,
 	return res;
 }
 
+static void __run_hrtimer(struct hrtimer *timer, ktime_t *now);
+static int hrtimer_rt_defer(struct hrtimer *timer);
+
 /*
  * Initialize the high resolution related parts of cpu_base
  */
@ kernel/hrtimer.c:650 @ static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
 					    int wakeup)
 {
 	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
-		if (wakeup) {
-			raw_spin_unlock(&base->cpu_base->lock);
-			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
-			raw_spin_lock(&base->cpu_base->lock);
-		} else
-			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
+		if (!wakeup)
+			return -ETIME;
 
-		return 1;
+#ifdef CONFIG_PREEMPT_RT_BASE
+		/*
+		 * Move softirq based timers away from the rbtree in
+		 * case it expired already. Otherwise we would have a
+		 * stale base->first entry until the softirq runs.
+		 */
+		if (!hrtimer_rt_defer(timer))
+			return -ETIME;
+#endif
+		raw_spin_unlock(&base->cpu_base->lock);
+		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
+		raw_spin_lock(&base->cpu_base->lock);
+
+		return 0;
 	}
 
 	return 0;
@ kernel/hrtimer.c:757 @ static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
 }
 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
 static inline void retrigger_next_event(void *arg) { }
+static inline int hrtimer_reprogram(struct hrtimer *timer,
+				    struct hrtimer_clock_base *base)
+{
+	return 0;
+}
 
 #endif /* CONFIG_HIGH_RES_TIMERS */
 
@ kernel/hrtimer.c:876 @ u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 }
 EXPORT_SYMBOL_GPL(hrtimer_forward);
 
+#ifdef CONFIG_PREEMPT_RT_BASE
+# define wake_up_timer_waiters(b)	wake_up(&(b)->wait)
+
+/**
+ * hrtimer_wait_for_timer - Wait for a running timer
+ *
+ * @timer:	timer to wait for
+ *
+ * The function waits in case the timers callback function is
+ * currently executed on the waitqueue of the timer base. The
+ * waitqueue is woken up after the timer callback function has
+ * finished execution.
+ */
+void hrtimer_wait_for_timer(const struct hrtimer *timer)
+{
+	struct hrtimer_clock_base *base = timer->base;
+
+	if (base && base->cpu_base && !timer->irqsafe)
+		wait_event(base->cpu_base->wait,
+			   !(timer->state & HRTIMER_STATE_CALLBACK));
+}
+
+#else
+# define wake_up_timer_waiters(b)	do { } while (0)
+#endif
+
 /*
  * enqueue_hrtimer - internal function to (re)start a timer
  *
@ kernel/hrtimer.c:945 @ static void __remove_hrtimer(struct hrtimer *timer,
 	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
 		goto out;
 
+	if (unlikely(!list_empty(&timer->cb_entry))) {
+		list_del_init(&timer->cb_entry);
+		goto out;
+	}
+
 	next_timer = timerqueue_getnext(&base->active);
 	timerqueue_del(&base->active, &timer->node);
 	if (&timer->node == next_timer) {
@ kernel/hrtimer.c:1034 @ int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
 #endif
 	}
 
+#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST
+	{
+		ktime_t now = new_base->get_time();
+
+		if (ktime_to_ns(tim) < ktime_to_ns(now))
+			timer->praecox = now;
+		else
+			timer->praecox = ktime_set(0, 0);
+	}
+#endif
+
 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
 
 	timer_stats_hrtimer_set_start_info(timer);
@ kernel/hrtimer.c:1057 @ int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
 	 *
 	 * XXX send_remote_softirq() ?
 	 */
-	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
-		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
+	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)) {
+		ret = hrtimer_enqueue_reprogram(timer, new_base, wakeup);
+		if (ret) {
+			/*
+			 * In case we failed to reprogram the timer (mostly
+			 * because out current timer is already elapsed),
+			 * remove it again and report a failure. This avoids
+			 * stale base->first entries.
+			 */
+			debug_deactivate(timer);
+			__remove_hrtimer(timer, new_base,
+					timer->state & HRTIMER_STATE_CALLBACK, 0);
+		}
+	}
 
 	unlock_hrtimer_base(timer, &flags);
 
@ kernel/hrtimer.c:1156 @ int hrtimer_cancel(struct hrtimer *timer)
 
 		if (ret >= 0)
 			return ret;
-		cpu_relax();
+		hrtimer_wait_for_timer(timer);
 	}
 }
 EXPORT_SYMBOL_GPL(hrtimer_cancel);
@ kernel/hrtimer.c:1235 @ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 
 	base = hrtimer_clockid_to_base(clock_id);
 	timer->base = &cpu_base->clock_base[base];
+	INIT_LIST_HEAD(&timer->cb_entry);
 	timerqueue_init(&timer->node);
 
 #ifdef CONFIG_TIMER_STATS
@ kernel/hrtimer.c:1319 @ static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
 	timer->state &= ~HRTIMER_STATE_CALLBACK;
 }
 
+static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer);
+
+#ifdef CONFIG_PREEMPT_RT_BASE
+static void hrtimer_rt_reprogram(int restart, struct hrtimer *timer,
+				 struct hrtimer_clock_base *base)
+{
+	/*
+	 * Note, we clear the callback flag before we requeue the
+	 * timer otherwise we trigger the callback_running() check
+	 * in hrtimer_reprogram().
+	 */
+	timer->state &= ~HRTIMER_STATE_CALLBACK;
+
+	if (restart != HRTIMER_NORESTART) {
+		BUG_ON(hrtimer_active(timer));
+		/*
+		 * Enqueue the timer, if it's the leftmost timer then
+		 * we need to reprogram it.
+		 */
+		if (!enqueue_hrtimer(timer, base))
+			return;
+
+#ifndef CONFIG_HIGH_RES_TIMERS
+	}
+#else
+		if (base->cpu_base->hres_active &&
+		    hrtimer_reprogram(timer, base))
+			goto requeue;
+
+	} else if (hrtimer_active(timer)) {
+		/*
+		 * If the timer was rearmed on another CPU, reprogram
+		 * the event device.
+		 */
+		if (&timer->node == base->active.next &&
+		    base->cpu_base->hres_active &&
+		    hrtimer_reprogram(timer, base))
+			goto requeue;
+	}
+	return;
+
+requeue:
+	/*
+	 * Timer is expired. Thus move it from tree to pending list
+	 * again.
+	 */
+	__remove_hrtimer(timer, base, timer->state, 0);
+	list_add_tail(&timer->cb_entry, &base->expired);
+#endif
+}
+
+/*
+ * The changes in mainline which removed the callback modes from
+ * hrtimer are not yet working with -rt. The non wakeup_process()
+ * based callbacks which involve sleeping locks need to be treated
+ * seperately.
+ */
+static void hrtimer_rt_run_pending(void)
+{
+	enum hrtimer_restart (*fn)(struct hrtimer *);
+	struct hrtimer_cpu_base *cpu_base;
+	struct hrtimer_clock_base *base;
+	struct hrtimer *timer;
+	int index, restart;
+
+	local_irq_disable();
+	cpu_base = &per_cpu(hrtimer_bases, smp_processor_id());
+
+	raw_spin_lock(&cpu_base->lock);
+
+	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
+		base = &cpu_base->clock_base[index];
+
+		while (!list_empty(&base->expired)) {
+			timer = list_first_entry(&base->expired,
+						 struct hrtimer, cb_entry);
+
+			/*
+			 * Same as the above __run_hrtimer function
+			 * just we run with interrupts enabled.
+			 */
+			debug_hrtimer_deactivate(timer);
+			__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
+			timer_stats_account_hrtimer(timer);
+			fn = timer->function;
+
+			raw_spin_unlock_irq(&cpu_base->lock);
+			restart = fn(timer);
+			raw_spin_lock_irq(&cpu_base->lock);
+
+			hrtimer_rt_reprogram(restart, timer, base);
+		}
+	}
+
+	raw_spin_unlock_irq(&cpu_base->lock);
+
+	wake_up_timer_waiters(cpu_base);
+}
+
+static int hrtimer_rt_defer(struct hrtimer *timer)
+{
+	if (timer->irqsafe)
+		return 0;
+
+	__remove_hrtimer(timer, timer->base, timer->state, 0);
+	list_add_tail(&timer->cb_entry, &timer->base->expired);
+	return 1;
+}
+
+#else
+
+static inline void hrtimer_rt_run_pending(void) { }
+static inline int hrtimer_rt_defer(struct hrtimer *timer) { return 0; }
+
+#endif
+
 #ifdef CONFIG_HIGH_RES_TIMERS
 
 /*
@ kernel/hrtimer.c:1445 @ void hrtimer_interrupt(struct clock_event_device *dev)
 {
 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
 	ktime_t expires_next, now, entry_time, delta;
-	int i, retries = 0;
+	int i, retries = 0, raise = 0;
 
 	BUG_ON(!cpu_base->hres_active);
 	cpu_base->nr_events++;
@ kernel/hrtimer.c:1480 @ retry:
 
 			timer = container_of(node, struct hrtimer, node);
 
+			trace_hrtimer_interrupt(raw_smp_processor_id(),
+			    ktime_to_ns(ktime_sub(ktime_to_ns(timer->praecox) ?
+				timer->praecox : hrtimer_get_expires(timer),
+				basenow)),
+			    current,
+			    timer->function == hrtimer_wakeup ?
+			    container_of(timer, struct hrtimer_sleeper,
+				timer)->task : NULL);
+
 			/*
 			 * The immediate goal for using the softexpires is
 			 * minimizing wakeups, not running timers at the
@ kernel/hrtimer.c:1512 @ retry:
 				break;
 			}
 
-			__run_hrtimer(timer, &basenow);
+			if (!hrtimer_rt_defer(timer))
+				__run_hrtimer(timer, &basenow);
+			else
+				raise = 1;
 		}
 	}
 
@ kernel/hrtimer.c:1530 @ retry:
 	if (expires_next.tv64 == KTIME_MAX ||
 	    !tick_program_event(expires_next, 0)) {
 		cpu_base->hang_detected = 0;
-		return;
+		goto out;
 	}
 
 	/*
@ kernel/hrtimer.c:1574 @ retry:
 	tick_program_event(expires_next, 1);
 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
 		    ktime_to_ns(delta));
+out:
+	if (raise)
+		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
 }
 
 /*
@ kernel/hrtimer.c:1613 @ void hrtimer_peek_ahead_timers(void)
 	local_irq_restore(flags);
 }
 
+#else /* CONFIG_HIGH_RES_TIMERS */
+
+static inline void __hrtimer_peek_ahead_timers(void) { }
+
+#endif	/* !CONFIG_HIGH_RES_TIMERS */
+
 static void run_hrtimer_softirq(struct softirq_action *h)
 {
 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
@ kernel/hrtimer.c:1628 @ static void run_hrtimer_softirq(struct softirq_action *h)
 		clock_was_set();
 	}
 
-	hrtimer_peek_ahead_timers();
+	hrtimer_rt_run_pending();
 }
 
-#else /* CONFIG_HIGH_RES_TIMERS */
-
-static inline void __hrtimer_peek_ahead_timers(void) { }
-
-#endif	/* !CONFIG_HIGH_RES_TIMERS */
-
 /*
  * Called from timer softirq every jiffy, expire hrtimers:
  *
@ kernel/hrtimer.c:1663 @ void hrtimer_run_queues(void)
 	struct timerqueue_node *node;
 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
 	struct hrtimer_clock_base *base;
-	int index, gettime = 1;
+	int index, gettime = 1, raise = 0;
 
 	if (hrtimer_hres_active())
 		return;
@ kernel/hrtimer.c:1688 @ void hrtimer_run_queues(void)
 					hrtimer_get_expires_tv64(timer))
 				break;
 
-			__run_hrtimer(timer, &base->softirq_time);
+			if (!hrtimer_rt_defer(timer))
+				__run_hrtimer(timer, &base->softirq_time);
+			else
+				raise = 1;
 		}
 		raw_spin_unlock(&cpu_base->lock);
 	}
+
+	if (raise)
+		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
 }
 
 /*
@ kernel/hrtimer.c:1719 @ static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
 {
 	sl->timer.function = hrtimer_wakeup;
+	sl->timer.irqsafe = 1;
 	sl->task = task;
 }
 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
@ kernel/hrtimer.c:1858 @ static void __cpuinit init_hrtimers_cpu(int cpu)
 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
 		cpu_base->clock_base[i].cpu_base = cpu_base;
 		timerqueue_init_head(&cpu_base->clock_base[i].active);
+		INIT_LIST_HEAD(&cpu_base->clock_base[i].expired);
 	}
 
 	hrtimer_init_hres(cpu_base);
+#ifdef CONFIG_PREEMPT_RT_BASE
+	init_waitqueue_head(&cpu_base->wait);
+#endif
 }
 
 #ifdef CONFIG_HOTPLUG_CPU
@ kernel/hrtimer.c:1977 @ void __init hrtimers_init(void)
 	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
 			  (void *)(long)smp_processor_id());
 	register_cpu_notifier(&hrtimers_nb);
-#ifdef CONFIG_HIGH_RES_TIMERS
 	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
-#endif
 }
 
 /**
@ kernel/irq/handle.c:119 @ static void irq_wake_thread(struct irq_desc *desc, struct irqaction *action)
 irqreturn_t
 handle_irq_event_percpu(struct irq_desc *desc, struct irqaction *action)
 {
+	struct pt_regs *regs = get_irq_regs();
+	u64 ip = regs ? instruction_pointer(regs) : 0;
 	irqreturn_t retval = IRQ_NONE;
 	unsigned int flags = 0, irq = desc->irq_data.irq;
 
@ kernel/irq/handle.c:161 @ handle_irq_event_percpu(struct irq_desc *desc, struct irqaction *action)
 		action = action->next;
 	} while (action);
 
-	add_interrupt_randomness(irq, flags);
+#ifndef CONFIG_PREEMPT_RT_FULL
+	add_interrupt_randomness(irq, flags, ip);
+#else
+	desc->random_ip = ip;
+#endif
 
 	if (!noirqdebug)
 		note_interrupt(irq, desc, retval);
@ kernel/irq/manage.c:21 @
 #include "internals.h"
 
 #ifdef CONFIG_IRQ_FORCED_THREADING
+# ifndef CONFIG_PREEMPT_RT_BASE
 __read_mostly bool force_irqthreads;
 
 static int __init setup_forced_irqthreads(char *arg)
@ kernel/irq/manage.c:30 @ static int __init setup_forced_irqthreads(char *arg)
 	return 0;
 }
 early_param("threadirqs", setup_forced_irqthreads);
+# endif
 #endif
 
 /**
@ kernel/irq/manage.c:754 @ irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
 	local_bh_disable();
 	ret = action->thread_fn(action->irq, action->dev_id);
 	irq_finalize_oneshot(desc, action, false);
-	local_bh_enable();
+	/*
+	 * Interrupts which have real time requirements can be set up
+	 * to avoid softirq processing in the thread handler. This is
+	 * safe as these interrupts do not raise soft interrupts.
+	 */
+	if (irq_settings_no_softirq_call(desc))
+		_local_bh_enable();
+	else
+		local_bh_enable();
 	return ret;
 }
 
@ kernel/irq/manage.c:828 @ static int irq_thread(void *data)
 			action_ret = handler_fn(desc, action);
 			if (!noirqdebug)
 				note_interrupt(action->irq, desc, action_ret);
+#ifdef CONFIG_PREEMPT_RT_FULL
+			migrate_disable();
+			add_interrupt_randomness(action->irq, 0,
+						 desc->random_ip ^ (u64) action);
+			migrate_enable();
+#endif
 		}
 
 		wake = atomic_dec_and_test(&desc->threads_active);
@ kernel/irq/manage.c:1108 @ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
 		}
 
+		if (new->flags & IRQF_NO_SOFTIRQ_CALL)
+			irq_settings_set_no_softirq_call(desc);
+
 		/* Set default affinity mask once everything is setup */
 		setup_affinity(irq, desc, mask);
 
@ kernel/irq/settings.h:17 @ enum {
 	_IRQ_NO_BALANCING	= IRQ_NO_BALANCING,
 	_IRQ_NESTED_THREAD	= IRQ_NESTED_THREAD,
 	_IRQ_PER_CPU_DEVID	= IRQ_PER_CPU_DEVID,
+	_IRQ_NO_SOFTIRQ_CALL	= IRQ_NO_SOFTIRQ_CALL,
 	_IRQF_MODIFY_MASK	= IRQF_MODIFY_MASK,
 };
 
@ kernel/irq/settings.h:30 @ enum {
 #define IRQ_NOAUTOEN		GOT_YOU_MORON
 #define IRQ_NESTED_THREAD	GOT_YOU_MORON
 #define IRQ_PER_CPU_DEVID	GOT_YOU_MORON
+#define IRQ_NO_SOFTIRQ_CALL	GOT_YOU_MORON
 #undef IRQF_MODIFY_MASK
 #define IRQF_MODIFY_MASK	GOT_YOU_MORON
 
@ kernel/irq/settings.h:41 @ irq_settings_clr_and_set(struct irq_desc *desc, u32 clr, u32 set)
 	desc->status_use_accessors |= (set & _IRQF_MODIFY_MASK);
 }
 
+static inline bool irq_settings_no_softirq_call(struct irq_desc *desc)
+{
+	return desc->status_use_accessors & _IRQ_NO_SOFTIRQ_CALL;
+}
+
+static inline void irq_settings_set_no_softirq_call(struct irq_desc *desc)
+{
+	desc->status_use_accessors |= _IRQ_NO_SOFTIRQ_CALL;
+}
+
 static inline bool irq_settings_is_per_cpu(struct irq_desc *desc)
 {
 	return desc->status_use_accessors & _IRQ_PER_CPU;
@ kernel/irq/spurious.c:344 @ MODULE_PARM_DESC(noirqdebug, "Disable irq lockup detection when true");
 
 static int __init irqfixup_setup(char *str)
 {
+#ifdef CONFIG_PREEMPT_RT_BASE
+	printk(KERN_WARNING "irqfixup boot option not supported "
+		"w/ CONFIG_PREEMPT_RT\n");
+	return 1;
+#endif
 	irqfixup = 1;
 	printk(KERN_WARNING "Misrouted IRQ fixup support enabled.\n");
 	printk(KERN_WARNING "This may impact system performance.\n");
@ kernel/irq/spurious.c:361 @ module_param(irqfixup, int, 0644);
 
 static int __init irqpoll_setup(char *str)
 {
+#ifdef CONFIG_PREEMPT_RT_BASE
+	printk(KERN_WARNING "irqpoll boot option not supported "
+		"w/ CONFIG_PREEMPT_RT\n");
+	return 1;
+#endif
 	irqfixup = 2;
 	printk(KERN_WARNING "Misrouted IRQ fixup and polling support "
 				"enabled\n");
@ kernel/irq_work.c:108 @ void irq_work_run(void)
 	if (llist_empty(this_list))
 		return;
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 	BUG_ON(!in_irq());
 	BUG_ON(!irqs_disabled());
+#endif
 
 	llnode = llist_del_all(this_list);
 	while (llnode != NULL) {
@ kernel/itimer.c:217 @ again:
 		/* We are sharing ->siglock with it_real_fn() */
 		if (hrtimer_try_to_cancel(timer) < 0) {
 			spin_unlock_irq(&tsk->sighand->siglock);
+			hrtimer_wait_for_timer(&tsk->signal->real_timer);
 			goto again;
 		}
 		expires = timeval_to_ktime(value->it_value);
@ kernel/ksysfs.c:136 @ KERNEL_ATTR_RO(vmcoreinfo);
 
 #endif /* CONFIG_KEXEC */
 
+#if defined(CONFIG_PREEMPT_RT_FULL)
+static ssize_t  realtime_show(struct kobject *kobj,
+			      struct kobj_attribute *attr, char *buf)
+{
+	return sprintf(buf, "%d\n", 1);
+}
+KERNEL_ATTR_RO(realtime);
+#endif
+
 /* whether file capabilities are enabled */
 static ssize_t fscaps_show(struct kobject *kobj,
 				  struct kobj_attribute *attr, char *buf)
@ kernel/ksysfs.c:194 @ static struct attribute * kernel_attrs[] = {
 	&kexec_crash_size_attr.attr,
 	&vmcoreinfo_attr.attr,
 #endif
+#ifdef CONFIG_PREEMPT_RT_FULL
+	&realtime_attr.attr,
+#endif
 	NULL
 };
 
@ kernel/lockdep.c:3497 @ static void check_flags(unsigned long flags)
 		}
 	}
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 	/*
 	 * We dont accurately track softirq state in e.g.
 	 * hardirq contexts (such as on 4KSTACKS), so only
@ kernel/lockdep.c:3512 @ static void check_flags(unsigned long flags)
 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
 		}
 	}
+#endif
 
 	if (!debug_locks)
 		print_irqtrace_events(current);
@ kernel/mutex.c:243 @ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
 
 		/* didn't get the lock, go to sleep: */
 		spin_unlock_mutex(&lock->wait_lock, flags);
-		preempt_enable_no_resched();
-		schedule();
-		preempt_disable();
+		schedule_preempt_disabled();
 		spin_lock_mutex(&lock->wait_lock, flags);
 	}
 
@ kernel/panic.c:346 @ static u64 oops_id;
 
 static int init_oops_id(void)
 {
+#ifndef CONFIG_PREEMPT_RT_FULL
 	if (!oops_id)
 		get_random_bytes(&oops_id, sizeof(oops_id));
 	else
+#endif
 		oops_id++;
 
 	return 0;
@ kernel/posix-cpu-timers.c:704 @ static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
 	/*
 	 * Disarm any old timer after extracting its expiry time.
 	 */
-	BUG_ON(!irqs_disabled());
+	BUG_ON_NONRT(!irqs_disabled());
 
 	ret = 0;
 	old_incr = timer->it.cpu.incr;
@ kernel/posix-cpu-timers.c:1226 @ void posix_cpu_timer_schedule(struct k_itimer *timer)
 	/*
 	 * Now re-arm for the new expiry time.
 	 */
-	BUG_ON(!irqs_disabled());
+	BUG_ON_NONRT(!irqs_disabled());
 	arm_timer(timer);
 	spin_unlock(&p->sighand->siglock);
 
@ kernel/posix-cpu-timers.c:1293 @ static inline int fastpath_timer_check(struct task_struct *tsk)
 	sig = tsk->signal;
 	if (sig->cputimer.running) {
 		struct task_cputime group_sample;
+		unsigned long flags;
 
-		raw_spin_lock(&sig->cputimer.lock);
+		raw_spin_lock_irqsave(&sig->cputimer.lock, flags);
 		group_sample = sig->cputimer.cputime;
-		raw_spin_unlock(&sig->cputimer.lock);
+		raw_spin_unlock_irqrestore(&sig->cputimer.lock, flags);
 
 		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
 			return 1;
@ kernel/posix-cpu-timers.c:1311 @ static inline int fastpath_timer_check(struct task_struct *tsk)
  * already updated our counts.  We need to check if any timers fire now.
  * Interrupts are disabled.
  */
-void run_posix_cpu_timers(struct task_struct *tsk)
+static void __run_posix_cpu_timers(struct task_struct *tsk)
 {
 	LIST_HEAD(firing);
 	struct k_itimer *timer, *next;
 	unsigned long flags;
 
-	BUG_ON(!irqs_disabled());
+	BUG_ON_NONRT(!irqs_disabled());
 
 	/*
 	 * The fast path checks that there are no expired thread or thread
@ kernel/posix-cpu-timers.c:1375 @ void run_posix_cpu_timers(struct task_struct *tsk)
 	}
 }
 
+#ifdef CONFIG_PREEMPT_RT_BASE
+#include <linux/kthread.h>
+#include <linux/cpu.h>
+DEFINE_PER_CPU(struct task_struct *, posix_timer_task);
+DEFINE_PER_CPU(struct task_struct *, posix_timer_tasklist);
+
+static int posix_cpu_timers_thread(void *data)
+{
+	int cpu = (long)data;
+
+	BUG_ON(per_cpu(posix_timer_task,cpu) != current);
+
+	while (!kthread_should_stop()) {
+		struct task_struct *tsk = NULL;
+		struct task_struct *next = NULL;
+
+		if (cpu_is_offline(cpu))
+			goto wait_to_die;
+
+		/* grab task list */
+		raw_local_irq_disable();
+		tsk = per_cpu(posix_timer_tasklist, cpu);
+		per_cpu(posix_timer_tasklist, cpu) = NULL;
+		raw_local_irq_enable();
+
+		/* its possible the list is empty, just return */
+		if (!tsk) {
+			set_current_state(TASK_INTERRUPTIBLE);
+			schedule();
+			__set_current_state(TASK_RUNNING);
+			continue;
+		}
+
+		/* Process task list */
+		while (1) {
+			/* save next */
+			next = tsk->posix_timer_list;
+
+			/* run the task timers, clear its ptr and
+			 * unreference it
+			 */
+			__run_posix_cpu_timers(tsk);
+			tsk->posix_timer_list = NULL;
+			put_task_struct(tsk);
+
+			/* check if this is the last on the list */
+			if (next == tsk)
+				break;
+			tsk = next;
+		}
+	}
+	return 0;
+
+wait_to_die:
+	/* Wait for kthread_stop */
+	set_current_state(TASK_INTERRUPTIBLE);
+	while (!kthread_should_stop()) {
+		schedule();
+		set_current_state(TASK_INTERRUPTIBLE);
+	}
+	__set_current_state(TASK_RUNNING);
+	return 0;
+}
+
+static inline int __fastpath_timer_check(struct task_struct *tsk)
+{
+	/* tsk == current, ensure it is safe to use ->signal/sighand */
+	if (unlikely(tsk->exit_state))
+		return 0;
+
+	if (!task_cputime_zero(&tsk->cputime_expires))
+			return 1;
+
+	if (!task_cputime_zero(&tsk->signal->cputime_expires))
+			return 1;
+
+	return 0;
+}
+
+void run_posix_cpu_timers(struct task_struct *tsk)
+{
+	unsigned long cpu = smp_processor_id();
+	struct task_struct *tasklist;
+
+	BUG_ON(!irqs_disabled());
+	if(!per_cpu(posix_timer_task, cpu))
+		return;
+	/* get per-cpu references */
+	tasklist = per_cpu(posix_timer_tasklist, cpu);
+
+	/* check to see if we're already queued */
+	if (!tsk->posix_timer_list && __fastpath_timer_check(tsk)) {
+		get_task_struct(tsk);
+		if (tasklist) {
+			tsk->posix_timer_list = tasklist;
+		} else {
+			/*
+			 * The list is terminated by a self-pointing
+			 * task_struct
+			 */
+			tsk->posix_timer_list = tsk;
+		}
+		per_cpu(posix_timer_tasklist, cpu) = tsk;
+
+		wake_up_process(per_cpu(posix_timer_task, cpu));
+	}
+}
+
+/*
+ * posix_cpu_thread_call - callback that gets triggered when a CPU is added.
+ * Here we can start up the necessary migration thread for the new CPU.
+ */
+static int posix_cpu_thread_call(struct notifier_block *nfb,
+				 unsigned long action, void *hcpu)
+{
+	int cpu = (long)hcpu;
+	struct task_struct *p;
+	struct sched_param param;
+
+	switch (action) {
+	case CPU_UP_PREPARE:
+		p = kthread_create(posix_cpu_timers_thread, hcpu,
+					"posixcputmr/%d",cpu);
+		if (IS_ERR(p))
+			return NOTIFY_BAD;
+		p->flags |= PF_NOFREEZE;
+		kthread_bind(p, cpu);
+		/* Must be high prio to avoid getting starved */
+		param.sched_priority = MAX_RT_PRIO-1;
+		sched_setscheduler(p, SCHED_FIFO, &param);
+		per_cpu(posix_timer_task,cpu) = p;
+		break;
+	case CPU_ONLINE:
+		/* Strictly unneccessary, as first user will wake it. */
+		wake_up_process(per_cpu(posix_timer_task,cpu));
+		break;
+#ifdef CONFIG_HOTPLUG_CPU
+	case CPU_UP_CANCELED:
+		/* Unbind it from offline cpu so it can run.  Fall thru. */
+		kthread_bind(per_cpu(posix_timer_task,cpu),
+			     any_online_cpu(cpu_online_map));
+		kthread_stop(per_cpu(posix_timer_task,cpu));
+		per_cpu(posix_timer_task,cpu) = NULL;
+		break;
+	case CPU_DEAD:
+		kthread_stop(per_cpu(posix_timer_task,cpu));
+		per_cpu(posix_timer_task,cpu) = NULL;
+		break;
+#endif
+	}
+	return NOTIFY_OK;
+}
+
+/* Register at highest priority so that task migration (migrate_all_tasks)
+ * happens before everything else.
+ */
+static struct notifier_block __devinitdata posix_cpu_thread_notifier = {
+	.notifier_call = posix_cpu_thread_call,
+	.priority = 10
+};
+
+static int __init posix_cpu_thread_init(void)
+{
+	void *hcpu = (void *)(long)smp_processor_id();
+	/* Start one for boot CPU. */
+	unsigned long cpu;
+
+	/* init the per-cpu posix_timer_tasklets */
+	for_each_cpu_mask(cpu, cpu_possible_map)
+		per_cpu(posix_timer_tasklist, cpu) = NULL;
+
+	posix_cpu_thread_call(&posix_cpu_thread_notifier, CPU_UP_PREPARE, hcpu);
+	posix_cpu_thread_call(&posix_cpu_thread_notifier, CPU_ONLINE, hcpu);
+	register_cpu_notifier(&posix_cpu_thread_notifier);
+	return 0;
+}
+early_initcall(posix_cpu_thread_init);
+#else /* CONFIG_PREEMPT_RT_BASE */
+void run_posix_cpu_timers(struct task_struct *tsk)
+{
+	__run_posix_cpu_timers(tsk);
+}
+#endif /* CONFIG_PREEMPT_RT_BASE */
+
 /*
  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
  * The tsk->sighand->siglock must be held by the caller.
@ kernel/posix-timers.c:442 @ static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
 static struct pid *good_sigevent(sigevent_t * event)
 {
 	struct task_struct *rtn = current->group_leader;
+	int sig = event->sigev_signo;
 
 	if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
 		(!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
@ kernel/posix-timers.c:451 @ static struct pid *good_sigevent(sigevent_t * event)
 		return NULL;
 
 	if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
-	    ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
+	    (sig <= 0 || sig > SIGRTMAX || sig_kernel_only(sig) ||
+	     sig_kernel_coredump(sig)))
 		return NULL;
 
 	return task_pid(rtn);
@ kernel/posix-timers.c:769 @ SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
 	return overrun;
 }
 
+/*
+ * Protected by RCU!
+ */
+static void timer_wait_for_callback(struct k_clock *kc, struct k_itimer *timr)
+{
+#ifdef CONFIG_PREEMPT_RT_FULL
+	if (kc->timer_set == common_timer_set)
+		hrtimer_wait_for_timer(&timr->it.real.timer);
+	else
+		/* FIXME: Whacky hack for posix-cpu-timers */
+		schedule_timeout(1);
+#endif
+}
+
 /* Set a POSIX.1b interval timer. */
 /* timr->it_lock is taken. */
 static int
@ kernel/posix-timers.c:860 @ retry:
 	if (!timr)
 		return -EINVAL;
 
+	rcu_read_lock();
 	kc = clockid_to_kclock(timr->it_clock);
 	if (WARN_ON_ONCE(!kc || !kc->timer_set))
 		error = -EINVAL;
@ kernel/posix-timers.c:869 @ retry:
 
 	unlock_timer(timr, flag);
 	if (error == TIMER_RETRY) {
+		timer_wait_for_callback(kc, timr);
 		rtn = NULL;	// We already got the old time...
+		rcu_read_unlock();
 		goto retry;
 	}
+	rcu_read_unlock();
 
 	if (old_setting && !error &&
 	    copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
@ kernel/posix-timers.c:912 @ retry_delete:
 	if (!timer)
 		return -EINVAL;
 
+	rcu_read_lock();
 	if (timer_delete_hook(timer) == TIMER_RETRY) {
 		unlock_timer(timer, flags);
+		timer_wait_for_callback(clockid_to_kclock(timer->it_clock),
+					timer);
+		rcu_read_unlock();
 		goto retry_delete;
 	}
+	rcu_read_unlock();
 
 	spin_lock(&current->sighand->siglock);
 	list_del(&timer->list);
@ kernel/posix-timers.c:946 @ static void itimer_delete(struct k_itimer *timer)
 retry_delete:
 	spin_lock_irqsave(&timer->it_lock, flags);
 
+	/* On RT we can race with a deletion */
+	if (!timer->it_signal) {
+		unlock_timer(timer, flags);
+		return;
+	}
+
 	if (timer_delete_hook(timer) == TIMER_RETRY) {
+		rcu_read_lock();
 		unlock_timer(timer, flags);
+		timer_wait_for_callback(clockid_to_kclock(timer->it_clock),
+					timer);
+		rcu_read_unlock();
 		goto retry_delete;
 	}
 	list_del(&timer->list);
@ kernel/power/hibernate.c:287 @ static int create_image(int platform_mode)
 
 	local_irq_disable();
 
+	system_state = SYSTEM_SUSPEND;
+
 	error = syscore_suspend();
 	if (error) {
 		printk(KERN_ERR "PM: Some system devices failed to power down, "
@ kernel/power/hibernate.c:316 @ static int create_image(int platform_mode)
 	syscore_resume();
 
  Enable_irqs:
+	system_state = SYSTEM_RUNNING;
 	local_irq_enable();
 
  Enable_cpus:
@ kernel/power/hibernate.c:445 @ static int resume_target_kernel(bool platform_mode)
 		goto Enable_cpus;
 
 	local_irq_disable();
+	system_state = SYSTEM_SUSPEND;
 
 	error = syscore_suspend();
 	if (error)
@ kernel/power/hibernate.c:479 @ static int resume_target_kernel(bool platform_mode)
 	syscore_resume();
 
  Enable_irqs:
+	system_state = SYSTEM_RUNNING;
 	local_irq_enable();
 
  Enable_cpus:
@ kernel/power/hibernate.c:562 @ int hibernation_platform_enter(void)
 		goto Platform_finish;
 
 	local_irq_disable();
+	system_state = SYSTEM_SUSPEND;
 	syscore_suspend();
 	if (pm_wakeup_pending()) {
 		error = -EAGAIN;
@ kernel/power/hibernate.c:575 @ int hibernation_platform_enter(void)
 
  Power_up:
 	syscore_resume();
+	system_state = SYSTEM_RUNNING;
 	local_irq_enable();
 	enable_nonboot_cpus();
 
@ kernel/power/suspend.c:175 @ static int suspend_enter(suspend_state_t state, bool *wakeup)
 	arch_suspend_disable_irqs();
 	BUG_ON(!irqs_disabled());
 
+	system_state = SYSTEM_SUSPEND;
+
 	error = syscore_suspend();
 	if (!error) {
 		*wakeup = pm_wakeup_pending();
@ kernel/power/suspend.c:187 @ static int suspend_enter(suspend_state_t state, bool *wakeup)
 		syscore_resume();
 	}
 
+	system_state = SYSTEM_RUNNING;
+
 	arch_suspend_enable_irqs();
 	BUG_ON(irqs_disabled());
 
@ kernel/printk.c:47 @
 
 #include <asm/uaccess.h>
 
-/*
- * Architectures can override it:
- */
-void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...)
-{
-}
-
 #define __LOG_BUF_LEN	(1 << CONFIG_LOG_BUF_SHIFT)
 
 /* printk's without a loglevel use this.. */
@ kernel/printk.c:507 @ static void __call_console_drivers(unsigned start, unsigned end)
 {
 	struct console *con;
 
+	migrate_disable();
 	for_each_console(con) {
 		if (exclusive_console && con != exclusive_console)
 			continue;
@ kernel/printk.c:516 @ static void __call_console_drivers(unsigned start, unsigned end)
 				(con->flags & CON_ANYTIME)))
 			con->write(con, &LOG_BUF(start), end - start);
 	}
+	migrate_enable();
+}
+
+#ifdef CONFIG_EARLY_PRINTK
+struct console *early_console;
+
+static void early_vprintk(const char *fmt, va_list ap)
+{
+	char buf[512];
+	int n = vscnprintf(buf, sizeof(buf), fmt, ap);
+	if (early_console)
+		early_console->write(early_console, buf, n);
+}
+
+asmlinkage void early_printk(const char *fmt, ...)
+{
+	va_list ap;
+	va_start(ap, fmt);
+	early_vprintk(fmt, ap);
+	va_end(ap);
+}
+
+/*
+ * This is independent of any log levels - a global
+ * kill switch that turns off all of printk.
+ *
+ * Used by the NMI watchdog if early-printk is enabled.
+ */
+static int __read_mostly printk_killswitch;
+
+static int __init force_early_printk_setup(char *str)
+{
+	printk_killswitch = 1;
+	return 0;
+}
+early_param("force_early_printk", force_early_printk_setup);
+
+void printk_kill(void)
+{
+	printk_killswitch = 1;
+}
+
+static int forced_early_printk(const char *fmt, va_list ap)
+{
+	if (!printk_killswitch)
+		return 0;
+	early_vprintk(fmt, ap);
+	return 1;
+}
+#else
+static inline int forced_early_printk(const char *fmt, va_list ap)
+{
+	return 0;
 }
+#endif
 
 static int __read_mostly ignore_loglevel;
 
@ kernel/printk.c:843 @ static inline int can_use_console(unsigned int cpu)
  * interrupts disabled. It should return with 'lockbuf_lock'
  * released but interrupts still disabled.
  */
-static int console_trylock_for_printk(unsigned int cpu)
+static int console_trylock_for_printk(unsigned int cpu, unsigned long flags)
 	__releases(&logbuf_lock)
 {
 	int retval = 0, wake = 0;
+#ifdef CONFIG_PREEMPT_RT_FULL
+	int lock = !early_boot_irqs_disabled && !irqs_disabled_flags(flags) &&
+		(preempt_count() <= 1);
+#else
+	int lock = 1;
+#endif
 
-	if (console_trylock()) {
+	if (lock && console_trylock()) {
 		retval = 1;
 
 		/*
@ kernel/printk.c:870 @ static int console_trylock_for_printk(unsigned int cpu)
 		}
 	}
 	printk_cpu = UINT_MAX;
+	raw_spin_unlock(&logbuf_lock);
 	if (wake)
 		up(&console_sem);
-	raw_spin_unlock(&logbuf_lock);
 	return retval;
 }
 static const char recursion_bug_msg [] =
@ kernel/printk.c:905 @ asmlinkage int vprintk(const char *fmt, va_list args)
 	size_t plen;
 	char special;
 
+	/*
+	 * Fall back to early_printk if a debugging subsystem has
+	 * killed printk output
+	 */
+	if (unlikely(forced_early_printk(fmt, args)))
+		return 1;
+
 	boot_delay_msec();
 	printk_delay();
 
-	preempt_disable();
+	migrate_disable();
 	/* This stops the holder of console_sem just where we want him */
 	raw_local_irq_save(flags);
 	this_cpu = smp_processor_id();
@ kernel/printk.c:1032 @ asmlinkage int vprintk(const char *fmt, va_list args)
 	 * will release 'logbuf_lock' regardless of whether it
 	 * actually gets the semaphore or not.
 	 */
-	if (console_trylock_for_printk(this_cpu))
+	if (console_trylock_for_printk(this_cpu, flags)) {
+#ifndef CONFIG_PREEMPT_RT_FULL
 		console_unlock();
+#else
+		raw_local_irq_restore(flags);
+		console_unlock();
+		raw_local_irq_save(flags);
+#endif
+	}
 
 	lockdep_on();
 out_restore_irqs:
 	raw_local_irq_restore(flags);
 
-	preempt_enable();
+	migrate_enable();
 	return printed_len;
 }
 EXPORT_SYMBOL(printk);
@ kernel/printk.c:1303 @ void printk_tick(void)
 
 int printk_needs_cpu(int cpu)
 {
-	if (cpu_is_offline(cpu))
-		printk_tick();
+	if (unlikely(cpu_is_offline(cpu)))
+		__this_cpu_write(printk_pending, 0);
 	return __this_cpu_read(printk_pending);
 }
 
@ kernel/printk.c:1350 @ again:
 		_con_start = con_start;
 		_log_end = log_end;
 		con_start = log_end;		/* Flush */
+#ifndef CONFIG_PREEMPT_RT_FULL
 		raw_spin_unlock(&logbuf_lock);
 		stop_critical_timings();	/* don't trace print latency */
 		call_console_drivers(_con_start, _log_end);
 		start_critical_timings();
 		local_irq_restore(flags);
+#else
+		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
+		call_console_drivers(_con_start, _log_end);
+#endif
 	}
 	console_locked = 0;
 
@ kernel/rcupdate.c:80 @ int debug_lockdep_rcu_enabled(void)
 }
 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 /**
  * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
  *
@ kernel/rcupdate.c:100 @ int rcu_read_lock_bh_held(void)
 	return in_softirq() || irqs_disabled();
 }
 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
+#endif
 
 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 
@ kernel/rcutiny.c:246 @ void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
 }
 EXPORT_SYMBOL_GPL(call_rcu_sched);
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 /*
  * Post an RCU bottom-half callback to be invoked after any subsequent
  * quiescent state.
@ kernel/rcutiny.c:256 @ void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
 	__call_rcu(head, func, &rcu_bh_ctrlblk);
 }
 EXPORT_SYMBOL_GPL(call_rcu_bh);
+#endif
@ kernel/rcutiny_plugin.h:29 @
 #include <linux/module.h>
 #include <linux/debugfs.h>
 #include <linux/seq_file.h>
+#include <linux/wait-simple.h>
 
 /* Global control variables for rcupdate callback mechanism. */
 struct rcu_ctrlblk {
@ kernel/rcutiny_plugin.h:254 @ static void show_tiny_preempt_stats(struct seq_file *m)
 
 /* Controls for rcu_kthread() kthread. */
 static struct task_struct *rcu_kthread_task;
-static DECLARE_WAIT_QUEUE_HEAD(rcu_kthread_wq);
+static DEFINE_SWAIT_HEAD(rcu_kthread_wq);
 static unsigned long have_rcu_kthread_work;
 
 /*
@ kernel/rcutiny_plugin.h:724 @ void synchronize_rcu(void)
 }
 EXPORT_SYMBOL_GPL(synchronize_rcu);
 
-static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
+static DEFINE_SWAIT_HEAD(sync_rcu_preempt_exp_wq);
 static unsigned long sync_rcu_preempt_exp_count;
 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
 
@ kernel/rcutiny_plugin.h:746 @ static int rcu_preempted_readers_exp(void)
  */
 static void rcu_report_exp_done(void)
 {
-	wake_up(&sync_rcu_preempt_exp_wq);
+	swait_wake(&sync_rcu_preempt_exp_wq);
 }
 
 /*
@ kernel/rcutiny_plugin.h:798 @ void synchronize_rcu_expedited(void)
 	else {
 		rcu_initiate_boost();
 		local_irq_restore(flags);
-		wait_event(sync_rcu_preempt_exp_wq,
-			   !rcu_preempted_readers_exp());
+		swait_event(sync_rcu_preempt_exp_wq,
+			    !rcu_preempted_readers_exp());
 	}
 
 	/* Clean up and exit. */
@ kernel/rcutiny_plugin.h:886 @ static void rcu_preempt_process_callbacks(void)
 static void invoke_rcu_callbacks(void)
 {
 	have_rcu_kthread_work = 1;
-	wake_up(&rcu_kthread_wq);
+	swake_up(&rcu_kthread_wq);
 }
 
 /*
@ kernel/rcutiny_plugin.h:903 @ static int rcu_kthread(void *arg)
 	unsigned long flags;
 
 	for (;;) {
-		wait_event_interruptible(rcu_kthread_wq,
-					 have_rcu_kthread_work != 0);
+		swait_event_interruptible(rcu_kthread_wq,
+					  have_rcu_kthread_work != 0);
 		morework = rcu_boost();
 		local_irq_save(flags);
 		work = have_rcu_kthread_work;
@ kernel/rcutree.c:173 @ void rcu_sched_qs(int cpu)
 	rdp->passed_quiesce = 1;
 }
 
+#ifdef CONFIG_PREEMPT_RT_FULL
+static void rcu_preempt_qs(int cpu);
+
+void rcu_bh_qs(int cpu)
+{
+	rcu_preempt_qs(cpu);
+}
+#else
 void rcu_bh_qs(int cpu)
 {
 	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
@ kernel/rcutree.c:191 @ void rcu_bh_qs(int cpu)
 		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
 	rdp->passed_quiesce = 1;
 }
+#endif
 
 /*
  * Note a context switch.  This is a quiescent state for RCU-sched,
@ kernel/rcutree.c:237 @ long rcu_batches_completed_sched(void)
 }
 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 /*
  * Return the number of RCU BH batches processed thus far for debug & stats.
  */
@ kernel/rcutree.c:255 @ void rcu_bh_force_quiescent_state(void)
 	force_quiescent_state(&rcu_bh_state, 0);
 }
 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
+#endif
 
 /*
  * Record the number of times rcutorture tests have been initiated and
@ kernel/rcutree.c:1237 @ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
 	else
 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 	if (need_report & RCU_OFL_TASKS_EXP_GP)
-		rcu_report_exp_rnp(rsp, rnp);
+		rcu_report_exp_rnp(rsp, rnp, true);
 	rcu_node_kthread_setaffinity(rnp, -1);
 }
 
@ kernel/rcutree.c:1683 @ void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
 }
 EXPORT_SYMBOL_GPL(call_rcu_sched);
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 /*
  * Queue an RCU for invocation after a quicker grace period.
  */
@ kernel/rcutree.c:1692 @ void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
 	__call_rcu(head, func, &rcu_bh_state);
 }
 EXPORT_SYMBOL_GPL(call_rcu_bh);
+#endif
 
 /**
  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
@ kernel/rcutree.c:1725 @ void synchronize_sched(void)
 }
 EXPORT_SYMBOL_GPL(synchronize_sched);
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 /**
  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
  *
@ kernel/rcutree.c:1742 @ void synchronize_rcu_bh(void)
 	wait_rcu_gp(call_rcu_bh);
 }
 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
+#endif
 
 /*
  * Check to see if there is any immediate RCU-related work to be done
@ kernel/rcutree.c:1897 @ static void _rcu_barrier(struct rcu_state *rsp,
 	mutex_unlock(&rcu_barrier_mutex);
 }
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 /**
  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
  */
@ kernel/rcutree.c:1906 @ void rcu_barrier_bh(void)
 	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
 }
 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
+#endif
 
 /**
  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
@ kernel/rcutree.h:454 @ static void rcu_preempt_check_callbacks(int cpu);
 static void rcu_preempt_process_callbacks(void);
 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu));
 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_TREE_PREEMPT_RCU)
-static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp);
+static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
+			       bool wake);
 #endif /* #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_TREE_PREEMPT_RCU) */
 static int rcu_preempt_pending(int cpu);
 static int rcu_preempt_needs_cpu(int cpu);
@ kernel/rcutree_plugin.h:339 @ static noinline void rcu_read_unlock_special(struct task_struct *t)
 	}
 
 	/* Hardware IRQ handlers cannot block. */
-	if (in_irq() || in_serving_softirq()) {
+	if (preempt_count() & (HARDIRQ_MASK | SOFTIRQ_OFFSET)) {
 		local_irq_restore(flags);
 		return;
 	}
@ kernel/rcutree_plugin.h:410 @ static noinline void rcu_read_unlock_special(struct task_struct *t)
 		 * then we need to report up the rcu_node hierarchy.
 		 */
 		if (!empty_exp && !rcu_preempted_readers_exp(rnp))
-			rcu_report_exp_rnp(&rcu_preempt_state, rnp);
+			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
 	} else {
 		local_irq_restore(flags);
 	}
@ kernel/rcutree_plugin.h:734 @ static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
  *
  * Caller must hold sync_rcu_preempt_exp_mutex.
  */
-static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
+static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
+			       bool wake)
 {
 	unsigned long flags;
 	unsigned long mask;
@ kernel/rcutree_plugin.h:748 @ static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
 		}
 		if (rnp->parent == NULL) {
 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
-			wake_up(&sync_rcu_preempt_exp_wq);
+			if (wake)
+				wake_up(&sync_rcu_preempt_exp_wq);
 			break;
 		}
 		mask = rnp->grpmask;
@ kernel/rcutree_plugin.h:782 @ sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
 		must_wait = 1;
 	}
 	if (!must_wait)
-		rcu_report_exp_rnp(rsp, rnp);
+		rcu_report_exp_rnp(rsp, rnp, false);
 }
 
 /*
@ kernel/rcutree_plugin.h:1074 @ EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
  * report on tasks preempted in RCU read-side critical sections during
  * expedited RCU grace periods.
  */
-static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
+static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
+			       bool wake)
 {
-	return;
 }
 
 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
@ kernel/rcutree_plugin.h:1936 @ EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
 
 #endif /* #else #ifndef CONFIG_SMP */
 
-#if !defined(CONFIG_RCU_FAST_NO_HZ)
+#if 1 /* !defined(CONFIG_RCU_FAST_NO_HZ) */
 
 /*
  * Check to see if any future RCU-related work will need to be done
@ kernel/relay.c:343 @ static void wakeup_readers(unsigned long data)
 {
 	struct rchan_buf *buf = (struct rchan_buf *)data;
 	wake_up_interruptible(&buf->read_wait);
+	/*
+	 * Stupid polling for now:
+	 */
+	mod_timer(&buf->timer, jiffies + 1);
 }
 
 /**
@ kernel/relay.c:364 @ static void __relay_reset(struct rchan_buf *buf, unsigned int init)
 		init_waitqueue_head(&buf->read_wait);
 		kref_init(&buf->kref);
 		setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
+		mod_timer(&buf->timer, jiffies + 1);
 	} else
 		del_timer_sync(&buf->timer);
 
@ kernel/relay.c:747 @ size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
 		else
 			buf->early_bytes += buf->chan->subbuf_size -
 					    buf->padding[old_subbuf];
-		smp_mb();
-		if (waitqueue_active(&buf->read_wait))
-			/*
-			 * Calling wake_up_interruptible() from here
-			 * will deadlock if we happen to be logging
-			 * from the scheduler (trying to re-grab
-			 * rq->lock), so defer it.
-			 */
-			mod_timer(&buf->timer, jiffies + 1);
 	}
 
 	old = buf->data;
@ kernel/res_counter.c:46 @ int res_counter_charge(struct res_counter *counter, unsigned long val,
 	struct res_counter *c, *u;
 
 	*limit_fail_at = NULL;
-	local_irq_save(flags);
+	local_irq_save_nort(flags);
 	for (c = counter; c != NULL; c = c->parent) {
 		spin_lock(&c->lock);
 		ret = res_counter_charge_locked(c, val);
@ kernel/res_counter.c:65 @ undo:
 		spin_unlock(&u->lock);
 	}
 done:
-	local_irq_restore(flags);
+	local_irq_restore_nort(flags);
 	return ret;
 }
 
@ kernel/res_counter.c:82 @ void res_counter_uncharge(struct res_counter *counter, unsigned long val)
 	unsigned long flags;
 	struct res_counter *c;
 
-	local_irq_save(flags);
+	local_irq_save_nort(flags);
 	for (c = counter; c != NULL; c = c->parent) {
 		spin_lock(&c->lock);
 		res_counter_uncharge_locked(c, val);
 		spin_unlock(&c->lock);
 	}
-	local_irq_restore(flags);
+	local_irq_restore_nort(flags);
 }
 
 
@ kernel/rt.c:4 @
+/*
+ * kernel/rt.c
+ *
+ * Real-Time Preemption Support
+ *
+ * started by Ingo Molnar:
+ *
+ *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
+ *  Copyright (C) 2006, Timesys Corp., Thomas Gleixner <tglx@timesys.com>
+ *
+ * historic credit for proving that Linux spinlocks can be implemented via
+ * RT-aware mutexes goes to many people: The Pmutex project (Dirk Grambow
+ * and others) who prototyped it on 2.4 and did lots of comparative
+ * research and analysis; TimeSys, for proving that you can implement a
+ * fully preemptible kernel via the use of IRQ threading and mutexes;
+ * Bill Huey for persuasively arguing on lkml that the mutex model is the
+ * right one; and to MontaVista, who ported pmutexes to 2.6.
+ *
+ * This code is a from-scratch implementation and is not based on pmutexes,
+ * but the idea of converting spinlocks to mutexes is used here too.
+ *
+ * lock debugging, locking tree, deadlock detection:
+ *
+ *  Copyright (C) 2004, LynuxWorks, Inc., Igor Manyilov, Bill Huey
+ *  Released under the General Public License (GPL).
+ *
+ * Includes portions of the generic R/W semaphore implementation from:
+ *
+ *  Copyright (c) 2001   David Howells (dhowells@redhat.com).
+ *  - Derived partially from idea by Andrea Arcangeli <andrea@suse.de>
+ *  - Derived also from comments by Linus
+ *
+ * Pending ownership of locks and ownership stealing:
+ *
+ *  Copyright (C) 2005, Kihon Technologies Inc., Steven Rostedt
+ *
+ *   (also by Steven Rostedt)
+ *    - Converted single pi_lock to individual task locks.
+ *
+ * By Esben Nielsen:
+ *    Doing priority inheritance with help of the scheduler.
+ *
+ *  Copyright (C) 2006, Timesys Corp., Thomas Gleixner <tglx@timesys.com>
+ *  - major rework based on Esben Nielsens initial patch
+ *  - replaced thread_info references by task_struct refs
+ *  - removed task->pending_owner dependency
+ *  - BKL drop/reacquire for semaphore style locks to avoid deadlocks
+ *    in the scheduler return path as discussed with Steven Rostedt
+ *
+ *  Copyright (C) 2006, Kihon Technologies Inc.
+ *    Steven Rostedt <rostedt@goodmis.org>
+ *  - debugged and patched Thomas Gleixner's rework.
+ *  - added back the cmpxchg to the rework.
+ *  - turned atomic require back on for SMP.
+ */
+
+#include <linux/spinlock.h>
+#include <linux/rtmutex.h>
+#include <linux/sched.h>
+#include <linux/delay.h>
+#include <linux/module.h>
+#include <linux/kallsyms.h>
+#include <linux/syscalls.h>
+#include <linux/interrupt.h>
+#include <linux/plist.h>
+#include <linux/fs.h>
+#include <linux/futex.h>
+#include <linux/hrtimer.h>
+
+#include "rtmutex_common.h"
+
+/*
+ * struct mutex functions
+ */
+void __mutex_do_init(struct mutex *mutex, const char *name,
+		     struct lock_class_key *key)
+{
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+	/*
+	 * Make sure we are not reinitializing a held lock:
+	 */
+	debug_check_no_locks_freed((void *)mutex, sizeof(*mutex));
+	lockdep_init_map(&mutex->dep_map, name, key, 0);
+#endif
+	mutex->lock.save_state = 0;
+}
+EXPORT_SYMBOL(__mutex_do_init);
+
+void __lockfunc _mutex_lock(struct mutex *lock)
+{
+	mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
+	rt_mutex_lock(&lock->lock);
+}
+EXPORT_SYMBOL(_mutex_lock);
+
+int __lockfunc _mutex_lock_interruptible(struct mutex *lock)
+{
+	int ret;
+
+	mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
+	ret = rt_mutex_lock_interruptible(&lock->lock, 0);
+	if (ret)
+		mutex_release(&lock->dep_map, 1, _RET_IP_);
+	return ret;
+}
+EXPORT_SYMBOL(_mutex_lock_interruptible);
+
+int __lockfunc _mutex_lock_killable(struct mutex *lock)
+{
+	int ret;
+
+	mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
+	ret = rt_mutex_lock_killable(&lock->lock, 0);
+	if (ret)
+		mutex_release(&lock->dep_map, 1, _RET_IP_);
+	return ret;
+}
+EXPORT_SYMBOL(_mutex_lock_killable);
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+void __lockfunc _mutex_lock_nested(struct mutex *lock, int subclass)
+{
+	mutex_acquire_nest(&lock->dep_map, subclass, 0, NULL, _RET_IP_);
+	rt_mutex_lock(&lock->lock);
+}
+EXPORT_SYMBOL(_mutex_lock_nested);
+
+void __lockfunc _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
+{
+	mutex_acquire_nest(&lock->dep_map, 0, 0, nest, _RET_IP_);
+	rt_mutex_lock(&lock->lock);
+}
+EXPORT_SYMBOL(_mutex_lock_nest_lock);
+
+int __lockfunc _mutex_lock_interruptible_nested(struct mutex *lock, int subclass)
+{
+	int ret;
+
+	mutex_acquire_nest(&lock->dep_map, subclass, 0, NULL, _RET_IP_);
+	ret = rt_mutex_lock_interruptible(&lock->lock, 0);
+	if (ret)
+		mutex_release(&lock->dep_map, 1, _RET_IP_);
+	return ret;
+}
+EXPORT_SYMBOL(_mutex_lock_interruptible_nested);
+
+int __lockfunc _mutex_lock_killable_nested(struct mutex *lock, int subclass)
+{
+	int ret;
+
+	mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
+	ret = rt_mutex_lock_killable(&lock->lock, 0);
+	if (ret)
+		mutex_release(&lock->dep_map, 1, _RET_IP_);
+	return ret;
+}
+EXPORT_SYMBOL(_mutex_lock_killable_nested);
+#endif
+
+int __lockfunc _mutex_trylock(struct mutex *lock)
+{
+	int ret = rt_mutex_trylock(&lock->lock);
+
+	if (ret)
+		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
+
+	return ret;
+}
+EXPORT_SYMBOL(_mutex_trylock);
+
+void __lockfunc _mutex_unlock(struct mutex *lock)
+{
+	mutex_release(&lock->dep_map, 1, _RET_IP_);
+	rt_mutex_unlock(&lock->lock);
+}
+EXPORT_SYMBOL(_mutex_unlock);
+
+/*
+ * rwlock_t functions
+ */
+int __lockfunc rt_write_trylock(rwlock_t *rwlock)
+{
+	int ret = rt_mutex_trylock(&rwlock->lock);
+
+	migrate_disable();
+	if (ret)
+		rwlock_acquire(&rwlock->dep_map, 0, 1, _RET_IP_);
+	else
+		migrate_enable();
+
+	return ret;
+}
+EXPORT_SYMBOL(rt_write_trylock);
+
+int __lockfunc rt_write_trylock_irqsave(rwlock_t *rwlock, unsigned long *flags)
+{
+	int ret;
+
+	*flags = 0;
+	migrate_disable();
+	ret = rt_write_trylock(rwlock);
+	if (!ret)
+		migrate_enable();
+	return ret;
+}
+EXPORT_SYMBOL(rt_write_trylock_irqsave);
+
+int __lockfunc rt_read_trylock(rwlock_t *rwlock)
+{
+	struct rt_mutex *lock = &rwlock->lock;
+	int ret = 1;
+
+	/*
+	 * recursive read locks succeed when current owns the lock,
+	 * but not when read_depth == 0 which means that the lock is
+	 * write locked.
+	 */
+	migrate_disable();
+	if (rt_mutex_owner(lock) != current) {
+		ret = rt_mutex_trylock(lock);
+		if (ret)
+			rwlock_acquire(&rwlock->dep_map, 0, 1, _RET_IP_);
+	} else if (!rwlock->read_depth) {
+		ret = 0;
+	}
+
+	if (ret)
+		rwlock->read_depth++;
+	else
+		migrate_enable();
+
+	return ret;
+}
+EXPORT_SYMBOL(rt_read_trylock);
+
+void __lockfunc rt_write_lock(rwlock_t *rwlock)
+{
+	rwlock_acquire(&rwlock->dep_map, 0, 0, _RET_IP_);
+	__rt_spin_lock(&rwlock->lock);
+}
+EXPORT_SYMBOL(rt_write_lock);
+
+void __lockfunc rt_read_lock(rwlock_t *rwlock)
+{
+	struct rt_mutex *lock = &rwlock->lock;
+
+	/*
+	 * recursive read locks succeed when current owns the lock
+	 */
+	if (rt_mutex_owner(lock) != current) {
+		rwlock_acquire(&rwlock->dep_map, 0, 0, _RET_IP_);
+		__rt_spin_lock(lock);
+	}
+	rwlock->read_depth++;
+}
+
+EXPORT_SYMBOL(rt_read_lock);
+
+void __lockfunc rt_write_unlock(rwlock_t *rwlock)
+{
+	/* NOTE: we always pass in '1' for nested, for simplicity */
+	rwlock_release(&rwlock->dep_map, 1, _RET_IP_);
+	__rt_spin_unlock(&rwlock->lock);
+}
+EXPORT_SYMBOL(rt_write_unlock);
+
+void __lockfunc rt_read_unlock(rwlock_t *rwlock)
+{
+	/* Release the lock only when read_depth is down to 0 */
+	if (--rwlock->read_depth == 0) {
+		rwlock_release(&rwlock->dep_map, 1, _RET_IP_);
+		__rt_spin_unlock(&rwlock->lock);
+	}
+}
+EXPORT_SYMBOL(rt_read_unlock);
+
+unsigned long __lockfunc rt_write_lock_irqsave(rwlock_t *rwlock)
+{
+	rt_write_lock(rwlock);
+
+	return 0;
+}
+EXPORT_SYMBOL(rt_write_lock_irqsave);
+
+unsigned long __lockfunc rt_read_lock_irqsave(rwlock_t *rwlock)
+{
+	rt_read_lock(rwlock);
+
+	return 0;
+}
+EXPORT_SYMBOL(rt_read_lock_irqsave);
+
+void __rt_rwlock_init(rwlock_t *rwlock, char *name, struct lock_class_key *key)
+{
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+	/*
+	 * Make sure we are not reinitializing a held lock:
+	 */
+	debug_check_no_locks_freed((void *)rwlock, sizeof(*rwlock));
+	lockdep_init_map(&rwlock->dep_map, name, key, 0);
+#endif
+	rwlock->lock.save_state = 1;
+	rwlock->read_depth = 0;
+}
+EXPORT_SYMBOL(__rt_rwlock_init);
+
+/*
+ * rw_semaphores
+ */
+
+void  rt_up_write(struct rw_semaphore *rwsem)
+{
+	rwsem_release(&rwsem->dep_map, 1, _RET_IP_);
+	rt_mutex_unlock(&rwsem->lock);
+}
+EXPORT_SYMBOL(rt_up_write);
+
+void  rt_up_read(struct rw_semaphore *rwsem)
+{
+	if (--rwsem->read_depth == 0) {
+		rwsem_release(&rwsem->dep_map, 1, _RET_IP_);
+		rt_mutex_unlock(&rwsem->lock);
+	}
+}
+EXPORT_SYMBOL(rt_up_read);
+
+/*
+ * downgrade a write lock into a read lock
+ * - just wake up any readers at the front of the queue
+ */
+void  rt_downgrade_write(struct rw_semaphore *rwsem)
+{
+	BUG_ON(rt_mutex_owner(&rwsem->lock) != current);
+	rwsem->read_depth = 1;
+}
+EXPORT_SYMBOL(rt_downgrade_write);
+
+int  rt_down_write_trylock(struct rw_semaphore *rwsem)
+{
+	int ret = rt_mutex_trylock(&rwsem->lock);
+
+	if (ret)
+		rwsem_acquire(&rwsem->dep_map, 0, 1, _RET_IP_);
+	return ret;
+}
+EXPORT_SYMBOL(rt_down_write_trylock);
+
+void  rt_down_write(struct rw_semaphore *rwsem)
+{
+	rwsem_acquire(&rwsem->dep_map, 0, 0, _RET_IP_);
+	rt_mutex_lock(&rwsem->lock);
+}
+EXPORT_SYMBOL(rt_down_write);
+
+void  rt_down_write_nested(struct rw_semaphore *rwsem, int subclass)
+{
+	rwsem_acquire(&rwsem->dep_map, subclass, 0, _RET_IP_);
+	rt_mutex_lock(&rwsem->lock);
+}
+EXPORT_SYMBOL(rt_down_write_nested);
+
+int  rt_down_read_trylock(struct rw_semaphore *rwsem)
+{
+	struct rt_mutex *lock = &rwsem->lock;
+	int ret = 1;
+
+	/*
+	 * recursive read locks succeed when current owns the rwsem,
+	 * but not when read_depth == 0 which means that the rwsem is
+	 * write locked.
+	 */
+	if (rt_mutex_owner(lock) != current) {
+		ret = rt_mutex_trylock(&rwsem->lock);
+		if (ret)
+			rwsem_acquire(&rwsem->dep_map, 0, 1, _RET_IP_);
+	} else if (!rwsem->read_depth) {
+		ret = 0;
+	}
+
+	if (ret)
+		rwsem->read_depth++;
+	return ret;
+}
+EXPORT_SYMBOL(rt_down_read_trylock);
+
+static void __rt_down_read(struct rw_semaphore *rwsem, int subclass)
+{
+	struct rt_mutex *lock = &rwsem->lock;
+
+	if (rt_mutex_owner(lock) != current) {
+		rwsem_acquire(&rwsem->dep_map, subclass, 0, _RET_IP_);
+		rt_mutex_lock(&rwsem->lock);
+	}
+	rwsem->read_depth++;
+}
+
+void  rt_down_read(struct rw_semaphore *rwsem)
+{
+	__rt_down_read(rwsem, 0);
+}
+EXPORT_SYMBOL(rt_down_read);
+
+void  rt_down_read_nested(struct rw_semaphore *rwsem, int subclass)
+{
+	__rt_down_read(rwsem, subclass);
+}
+EXPORT_SYMBOL(rt_down_read_nested);
+
+void  __rt_rwsem_init(struct rw_semaphore *rwsem, char *name,
+			      struct lock_class_key *key)
+{
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+	/*
+	 * Make sure we are not reinitializing a held lock:
+	 */
+	debug_check_no_locks_freed((void *)rwsem, sizeof(*rwsem));
+	lockdep_init_map(&rwsem->dep_map, name, key, 0);
+#endif
+	rwsem->read_depth = 0;
+	rwsem->lock.save_state = 0;
+}
+EXPORT_SYMBOL(__rt_rwsem_init);
+
+/**
+ * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
+ * @cnt: the atomic which we are to dec
+ * @lock: the mutex to return holding if we dec to 0
+ *
+ * return true and hold lock if we dec to 0, return false otherwise
+ */
+int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
+{
+	/* dec if we can't possibly hit 0 */
+	if (atomic_add_unless(cnt, -1, 1))
+		return 0;
+	/* we might hit 0, so take the lock */
+	mutex_lock(lock);
+	if (!atomic_dec_and_test(cnt)) {
+		/* when we actually did the dec, we didn't hit 0 */
+		mutex_unlock(lock);
+		return 0;
+	}
+	/* we hit 0, and we hold the lock */
+	return 1;
+}
+EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
@ kernel/rtmutex.c:11 @
  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
  *  Copyright (C) 2006 Esben Nielsen
  *
+ * Adaptive Spinlocks:
+ *  Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich,
+ *                                   and Peter Morreale,
+ * Adaptive Spinlocks simplification:
+ *  Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com>
+ *
  *  See Documentation/rt-mutex-design.txt for details.
  */
 #include <linux/spinlock.h>
@ kernel/rtmutex.c:76 @ static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
 		clear_rt_mutex_waiters(lock);
 }
 
+static int rt_mutex_real_waiter(struct rt_mutex_waiter *waiter)
+{
+	return waiter && waiter != PI_WAKEUP_INPROGRESS &&
+		waiter != PI_REQUEUE_INPROGRESS;
+}
+
 /*
  * We can speed up the acquire/release, if the architecture
  * supports cmpxchg and if there's no debugging state to be set up
@ kernel/rtmutex.c:105 @ static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
 }
 #endif
 
+static inline void init_lists(struct rt_mutex *lock)
+{
+	if (unlikely(!lock->wait_list.node_list.prev))
+		plist_head_init(&lock->wait_list);
+}
+
 /*
  * Calculate task priority from the waiter list priority
  *
@ kernel/rtmutex.c:127 @ int rt_mutex_getprio(struct task_struct *task)
 }
 
 /*
+ * Called by sched_setscheduler() to check whether the priority change
+ * is overruled by a possible priority boosting.
+ */
+int rt_mutex_check_prio(struct task_struct *task, int newprio)
+{
+	if (!task_has_pi_waiters(task))
+		return 0;
+
+	return task_top_pi_waiter(task)->pi_list_entry.prio <= newprio;
+}
+
+/*
  * Adjust the priority of a task, after its pi_waiters got modified.
  *
  * This can be both boosting and unboosting. task->pi_lock must be held.
@ kernel/rtmutex.c:169 @ static void rt_mutex_adjust_prio(struct task_struct *task)
 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 }
 
+static void rt_mutex_wake_waiter(struct rt_mutex_waiter *waiter)
+{
+	if (waiter->savestate)
+		wake_up_lock_sleeper(waiter->task);
+	else
+		wake_up_process(waiter->task);
+}
+
 /*
  * Max number of times we'll walk the boosting chain:
  */
@ kernel/rtmutex.c:237 @ static int rt_mutex_adjust_prio_chain(struct task_struct *task,
 	 * reached or the state of the chain has changed while we
 	 * dropped the locks.
 	 */
-	if (!waiter)
+	if (!rt_mutex_real_waiter(waiter))
 		goto out_unlock_pi;
 
 	/*
@ kernel/rtmutex.c:288 @ static int rt_mutex_adjust_prio_chain(struct task_struct *task,
 	/* Release the task */
 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 	if (!rt_mutex_owner(lock)) {
+		struct rt_mutex_waiter *lock_top_waiter;
+
 		/*
 		 * If the requeue above changed the top waiter, then we need
 		 * to wake the new top waiter up to try to get the lock.
 		 */
-
-		if (top_waiter != rt_mutex_top_waiter(lock))
-			wake_up_process(rt_mutex_top_waiter(lock)->task);
+		lock_top_waiter = rt_mutex_top_waiter(lock);
+		if (top_waiter != lock_top_waiter)
+			rt_mutex_wake_waiter(lock_top_waiter);
 		raw_spin_unlock(&lock->wait_lock);
 		goto out_put_task;
 	}
@ kernel/rtmutex.c:341 @ static int rt_mutex_adjust_prio_chain(struct task_struct *task,
 	return ret;
 }
 
+
+#define STEAL_NORMAL  0
+#define STEAL_LATERAL 1
+
+/*
+ * Note that RT tasks are excluded from lateral-steals to prevent the
+ * introduction of an unbounded latency
+ */
+static inline int lock_is_stealable(struct task_struct *task,
+				    struct task_struct *pendowner, int mode)
+{
+    if (mode == STEAL_NORMAL || rt_task(task)) {
+	    if (task->prio >= pendowner->prio)
+		    return 0;
+    } else if (task->prio > pendowner->prio)
+	    return 0;
+    return 1;
+}
+
 /*
  * Try to take an rt-mutex
  *
@ kernel/rtmutex.c:369 @ static int rt_mutex_adjust_prio_chain(struct task_struct *task,
  * @task:   the task which wants to acquire the lock
  * @waiter: the waiter that is queued to the lock's wait list. (could be NULL)
  */
-static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
-		struct rt_mutex_waiter *waiter)
+static int
+__try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
+		       struct rt_mutex_waiter *waiter, int mode)
 {
 	/*
 	 * We have to be careful here if the atomic speedups are
@ kernel/rtmutex.c:404 @ static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
 	 * 3) it is top waiter
 	 */
 	if (rt_mutex_has_waiters(lock)) {
-		if (task->prio >= rt_mutex_top_waiter(lock)->list_entry.prio) {
-			if (!waiter || waiter != rt_mutex_top_waiter(lock))
-				return 0;
-		}
+		struct task_struct *pown = rt_mutex_top_waiter(lock)->task;
+
+		if (task != pown && !lock_is_stealable(task, pown, mode))
+			return 0;
 	}
 
+	/* We got the lock. */
+
 	if (waiter || rt_mutex_has_waiters(lock)) {
 		unsigned long flags;
 		struct rt_mutex_waiter *top;
@ kernel/rtmutex.c:436 @ static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 	}
 
-	/* We got the lock. */
 	debug_rt_mutex_lock(lock);
 
 	rt_mutex_set_owner(lock, task);
@ kernel/rtmutex.c:445 @ static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
 	return 1;
 }
 
+static inline int
+try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
+		     struct rt_mutex_waiter *waiter)
+{
+	return __try_to_take_rt_mutex(lock, task, waiter, STEAL_NORMAL);
+}
+
 /*
  * Task blocks on lock.
  *
@ kernel/rtmutex.c:470 @ static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
 	int chain_walk = 0, res;
 
 	raw_spin_lock_irqsave(&task->pi_lock, flags);
+
+	/*
+	 * In the case of futex requeue PI, this will be a proxy
+	 * lock. The task will wake unaware that it is enqueueed on
+	 * this lock. Avoid blocking on two locks and corrupting
+	 * pi_blocked_on via the PI_WAKEUP_INPROGRESS
+	 * flag. futex_wait_requeue_pi() sets this when it wakes up
+	 * before requeue (due to a signal or timeout). Do not enqueue
+	 * the task if PI_WAKEUP_INPROGRESS is set.
+	 */
+	if (task != current && task->pi_blocked_on == PI_WAKEUP_INPROGRESS) {
+		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
+		return -EAGAIN;
+	}
+
+	BUG_ON(rt_mutex_real_waiter(task->pi_blocked_on));
+
 	__rt_mutex_adjust_prio(task);
 	waiter->task = task;
 	waiter->lock = lock;
@ kernel/rtmutex.c:511 @ static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
 		plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
 
 		__rt_mutex_adjust_prio(owner);
-		if (owner->pi_blocked_on)
+		if (rt_mutex_real_waiter(owner->pi_blocked_on))
 			chain_walk = 1;
 		raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
 	}
@ kernel/rtmutex.c:566 @ static void wakeup_next_waiter(struct rt_mutex *lock)
 
 	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
 
-	wake_up_process(waiter->task);
+	rt_mutex_wake_waiter(waiter);
 }
 
 /*
@ kernel/rtmutex.c:605 @ static void remove_waiter(struct rt_mutex *lock,
 		}
 		__rt_mutex_adjust_prio(owner);
 
-		if (owner->pi_blocked_on)
+		if (rt_mutex_real_waiter(owner->pi_blocked_on))
 			chain_walk = 1;
 
 		raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
@ kernel/rtmutex.c:639 @ void rt_mutex_adjust_pi(struct task_struct *task)
 	raw_spin_lock_irqsave(&task->pi_lock, flags);
 
 	waiter = task->pi_blocked_on;
-	if (!waiter || waiter->list_entry.prio == task->prio) {
+	if (!rt_mutex_real_waiter(waiter) ||
+	    waiter->list_entry.prio == task->prio) {
 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 		return;
 	}
 
-	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
-
 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
 	get_task_struct(task);
+	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 	rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
 }
 
+#ifdef CONFIG_PREEMPT_RT_FULL
+/*
+ * preemptible spin_lock functions:
+ */
+static inline void rt_spin_lock_fastlock(struct rt_mutex *lock,
+					 void  (*slowfn)(struct rt_mutex *lock))
+{
+	might_sleep();
+
+	if (likely(rt_mutex_cmpxchg(lock, NULL, current)))
+		rt_mutex_deadlock_account_lock(lock, current);
+	else
+		slowfn(lock);
+}
+
+static inline void rt_spin_lock_fastunlock(struct rt_mutex *lock,
+					   void  (*slowfn)(struct rt_mutex *lock))
+{
+	if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
+		rt_mutex_deadlock_account_unlock(current);
+	else
+		slowfn(lock);
+}
+
+#ifdef CONFIG_SMP
+/*
+ * Note that owner is a speculative pointer and dereferencing relies
+ * on rcu_read_lock() and the check against the lock owner.
+ */
+static int adaptive_wait(struct rt_mutex *lock,
+			 struct task_struct *owner)
+{
+	int res = 0;
+
+	rcu_read_lock();
+	for (;;) {
+		if (owner != rt_mutex_owner(lock))
+			break;
+		/*
+		 * Ensure that owner->on_cpu is dereferenced _after_
+		 * checking the above to be valid.
+		 */
+		barrier();
+		if (!owner->on_cpu) {
+			res = 1;
+			break;
+		}
+		cpu_relax();
+	}
+	rcu_read_unlock();
+	return res;
+}
+#else
+static int adaptive_wait(struct rt_mutex *lock,
+			 struct task_struct *orig_owner)
+{
+	return 1;
+}
+#endif
+
+# define pi_lock(lock)			raw_spin_lock_irq(lock)
+# define pi_unlock(lock)		raw_spin_unlock_irq(lock)
+
+/*
+ * Slow path lock function spin_lock style: this variant is very
+ * careful not to miss any non-lock wakeups.
+ *
+ * We store the current state under p->pi_lock in p->saved_state and
+ * the try_to_wake_up() code handles this accordingly.
+ */
+static void  noinline __sched rt_spin_lock_slowlock(struct rt_mutex *lock)
+{
+	struct task_struct *lock_owner, *self = current;
+	struct rt_mutex_waiter waiter, *top_waiter;
+	int ret;
+
+	rt_mutex_init_waiter(&waiter, true);
+
+	raw_spin_lock(&lock->wait_lock);
+	init_lists(lock);
+
+	if (__try_to_take_rt_mutex(lock, self, NULL, STEAL_LATERAL)) {
+		raw_spin_unlock(&lock->wait_lock);
+		return;
+	}
+
+	BUG_ON(rt_mutex_owner(lock) == self);
+
+	/*
+	 * We save whatever state the task is in and we'll restore it
+	 * after acquiring the lock taking real wakeups into account
+	 * as well. We are serialized via pi_lock against wakeups. See
+	 * try_to_wake_up().
+	 */
+	pi_lock(&self->pi_lock);
+	self->saved_state = self->state;
+	__set_current_state(TASK_UNINTERRUPTIBLE);
+	pi_unlock(&self->pi_lock);
+
+	ret = task_blocks_on_rt_mutex(lock, &waiter, self, 0);
+	BUG_ON(ret);
+
+	for (;;) {
+		/* Try to acquire the lock again. */
+		if (__try_to_take_rt_mutex(lock, self, &waiter, STEAL_LATERAL))
+			break;
+
+		top_waiter = rt_mutex_top_waiter(lock);
+		lock_owner = rt_mutex_owner(lock);
+
+		raw_spin_unlock(&lock->wait_lock);
+
+		debug_rt_mutex_print_deadlock(&waiter);
+
+		if (top_waiter != &waiter || adaptive_wait(lock, lock_owner))
+			schedule_rt_mutex(lock);
+
+		raw_spin_lock(&lock->wait_lock);
+
+		pi_lock(&self->pi_lock);
+		__set_current_state(TASK_UNINTERRUPTIBLE);
+		pi_unlock(&self->pi_lock);
+	}
+
+	/*
+	 * Restore the task state to current->saved_state. We set it
+	 * to the original state above and the try_to_wake_up() code
+	 * has possibly updated it when a real (non-rtmutex) wakeup
+	 * happened while we were blocked. Clear saved_state so
+	 * try_to_wakeup() does not get confused.
+	 */
+	pi_lock(&self->pi_lock);
+	__set_current_state(self->saved_state);
+	self->saved_state = TASK_RUNNING;
+	pi_unlock(&self->pi_lock);
+
+	/*
+	 * try_to_take_rt_mutex() sets the waiter bit
+	 * unconditionally. We might have to fix that up:
+	 */
+	fixup_rt_mutex_waiters(lock);
+
+	BUG_ON(rt_mutex_has_waiters(lock) && &waiter == rt_mutex_top_waiter(lock));
+	BUG_ON(!plist_node_empty(&waiter.list_entry));
+
+	raw_spin_unlock(&lock->wait_lock);
+
+	debug_rt_mutex_free_waiter(&waiter);
+}
+
+/*
+ * Slow path to release a rt_mutex spin_lock style
+ */
+static void  noinline __sched rt_spin_lock_slowunlock(struct rt_mutex *lock)
+{
+	raw_spin_lock(&lock->wait_lock);
+
+	debug_rt_mutex_unlock(lock);
+
+	rt_mutex_deadlock_account_unlock(current);
+
+	if (!rt_mutex_has_waiters(lock)) {
+		lock->owner = NULL;
+		raw_spin_unlock(&lock->wait_lock);
+		return;
+	}
+
+	wakeup_next_waiter(lock);
+
+	raw_spin_unlock(&lock->wait_lock);
+
+	/* Undo pi boosting.when necessary */
+	rt_mutex_adjust_prio(current);
+}
+
+void __lockfunc rt_spin_lock(spinlock_t *lock)
+{
+	rt_spin_lock_fastlock(&lock->lock, rt_spin_lock_slowlock);
+	spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);
+}
+EXPORT_SYMBOL(rt_spin_lock);
+
+void __lockfunc __rt_spin_lock(struct rt_mutex *lock)
+{
+	rt_spin_lock_fastlock(lock, rt_spin_lock_slowlock);
+}
+EXPORT_SYMBOL(__rt_spin_lock);
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+void __lockfunc rt_spin_lock_nested(spinlock_t *lock, int subclass)
+{
+	rt_spin_lock_fastlock(&lock->lock, rt_spin_lock_slowlock);
+	spin_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
+}
+EXPORT_SYMBOL(rt_spin_lock_nested);
+#endif
+
+void __lockfunc rt_spin_unlock(spinlock_t *lock)
+{
+	/* NOTE: we always pass in '1' for nested, for simplicity */
+	spin_release(&lock->dep_map, 1, _RET_IP_);
+	rt_spin_lock_fastunlock(&lock->lock, rt_spin_lock_slowunlock);
+}
+EXPORT_SYMBOL(rt_spin_unlock);
+
+void __lockfunc __rt_spin_unlock(struct rt_mutex *lock)
+{
+	rt_spin_lock_fastunlock(lock, rt_spin_lock_slowunlock);
+}
+EXPORT_SYMBOL(__rt_spin_unlock);
+
+/*
+ * Wait for the lock to get unlocked: instead of polling for an unlock
+ * (like raw spinlocks do), we lock and unlock, to force the kernel to
+ * schedule if there's contention:
+ */
+void __lockfunc rt_spin_unlock_wait(spinlock_t *lock)
+{
+	spin_lock(lock);
+	spin_unlock(lock);
+}
+EXPORT_SYMBOL(rt_spin_unlock_wait);
+
+int __lockfunc rt_spin_trylock(spinlock_t *lock)
+{
+	int ret = rt_mutex_trylock(&lock->lock);
+
+	if (ret)
+		spin_acquire(&lock->dep_map, 0, 1, _RET_IP_);
+	return ret;
+}
+EXPORT_SYMBOL(rt_spin_trylock);
+
+int __lockfunc rt_spin_trylock_bh(spinlock_t *lock)
+{
+	int ret;
+
+	local_bh_disable();
+	ret = rt_mutex_trylock(&lock->lock);
+	if (ret) {
+		migrate_disable();
+		spin_acquire(&lock->dep_map, 0, 1, _RET_IP_);
+	} else
+		local_bh_enable();
+	return ret;
+}
+EXPORT_SYMBOL(rt_spin_trylock_bh);
+
+int __lockfunc rt_spin_trylock_irqsave(spinlock_t *lock, unsigned long *flags)
+{
+	int ret;
+
+	*flags = 0;
+	migrate_disable();
+	ret = rt_mutex_trylock(&lock->lock);
+	if (ret)
+		spin_acquire(&lock->dep_map, 0, 1, _RET_IP_);
+	else
+		migrate_enable();
+	return ret;
+}
+EXPORT_SYMBOL(rt_spin_trylock_irqsave);
+
+int atomic_dec_and_spin_lock(atomic_t *atomic, spinlock_t *lock)
+{
+	/* Subtract 1 from counter unless that drops it to 0 (ie. it was 1) */
+	if (atomic_add_unless(atomic, -1, 1))
+		return 0;
+	migrate_disable();
+	rt_spin_lock(lock);
+	if (atomic_dec_and_test(atomic))
+		return 1;
+	rt_spin_unlock(lock);
+	migrate_enable();
+	return 0;
+}
+EXPORT_SYMBOL(atomic_dec_and_spin_lock);
+
+void
+__rt_spin_lock_init(spinlock_t *lock, char *name, struct lock_class_key *key)
+{
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+	/*
+	 * Make sure we are not reinitializing a held lock:
+	 */
+	debug_check_no_locks_freed((void *)lock, sizeof(*lock));
+	lockdep_init_map(&lock->dep_map, name, key, 0);
+#endif
+}
+EXPORT_SYMBOL(__rt_spin_lock_init);
+
+#endif /* PREEMPT_RT_FULL */
+
 /**
  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
  * @lock:		 the rt_mutex to take
  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
- * 			 or TASK_UNINTERRUPTIBLE)
+ *			 or TASK_UNINTERRUPTIBLE)
  * @timeout:		 the pre-initialized and started timer, or NULL for none
  * @waiter:		 the pre-initialized rt_mutex_waiter
  *
@ kernel/rtmutex.c:1012 @ rt_mutex_slowlock(struct rt_mutex *lock, int state,
 	struct rt_mutex_waiter waiter;
 	int ret = 0;
 
-	debug_rt_mutex_init_waiter(&waiter);
+	rt_mutex_init_waiter(&waiter, false);
 
 	raw_spin_lock(&lock->wait_lock);
+	init_lists(lock);
 
 	/* Try to acquire the lock again: */
 	if (try_to_take_rt_mutex(lock, current, NULL)) {
@ kernel/rtmutex.c:1068 @ rt_mutex_slowtrylock(struct rt_mutex *lock)
 	int ret = 0;
 
 	raw_spin_lock(&lock->wait_lock);
+	init_lists(lock);
 
 	if (likely(rt_mutex_owner(lock) != current)) {
 
@ kernel/rtmutex.c:1182 @ EXPORT_SYMBOL_GPL(rt_mutex_lock);
 /**
  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
  *
- * @lock: 		the rt_mutex to be locked
+ * @lock:		the rt_mutex to be locked
  * @detect_deadlock:	deadlock detection on/off
  *
  * Returns:
- *  0 		on success
- * -EINTR 	when interrupted by a signal
+ *  0		on success
+ * -EINTR	when interrupted by a signal
  * -EDEADLK	when the lock would deadlock (when deadlock detection is on)
  */
 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
@ kernel/rtmutex.c:1201 @ int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
 
 /**
+ * rt_mutex_lock_killable - lock a rt_mutex killable
+ *
+ * @lock:		the rt_mutex to be locked
+ * @detect_deadlock:	deadlock detection on/off
+ *
+ * Returns:
+ *  0		on success
+ * -EINTR	when interrupted by a signal
+ * -EDEADLK	when the lock would deadlock (when deadlock detection is on)
+ */
+int __sched rt_mutex_lock_killable(struct rt_mutex *lock,
+				   int detect_deadlock)
+{
+	might_sleep();
+
+	return rt_mutex_fastlock(lock, TASK_KILLABLE,
+				 detect_deadlock, rt_mutex_slowlock);
+}
+EXPORT_SYMBOL_GPL(rt_mutex_lock_killable);
+
+/**
  * rt_mutex_timed_lock - lock a rt_mutex interruptible
  *			the timeout structure is provided
  *			by the caller
  *
- * @lock: 		the rt_mutex to be locked
+ * @lock:		the rt_mutex to be locked
  * @timeout:		timeout structure or NULL (no timeout)
  * @detect_deadlock:	deadlock detection on/off
  *
  * Returns:
- *  0 		on success
- * -EINTR 	when interrupted by a signal
+ *  0		on success
+ * -EINTR	when interrupted by a signal
  * -ETIMEDOUT	when the timeout expired
  * -EDEADLK	when the lock would deadlock (when deadlock detection is on)
  */
@ kernel/rtmutex.c:1301 @ EXPORT_SYMBOL_GPL(rt_mutex_destroy);
 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
 {
 	lock->owner = NULL;
-	raw_spin_lock_init(&lock->wait_lock);
 	plist_head_init(&lock->wait_list);
 
 	debug_rt_mutex_init(lock, name);
 }
-EXPORT_SYMBOL_GPL(__rt_mutex_init);
+EXPORT_SYMBOL(__rt_mutex_init);
 
 /**
  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
@ kernel/rtmutex.c:1320 @ EXPORT_SYMBOL_GPL(__rt_mutex_init);
 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
 				struct task_struct *proxy_owner)
 {
-	__rt_mutex_init(lock, NULL);
+	rt_mutex_init(lock);
 	debug_rt_mutex_proxy_lock(lock, proxy_owner);
 	rt_mutex_set_owner(lock, proxy_owner);
 	rt_mutex_deadlock_account_lock(lock, proxy_owner);
@ kernel/rtmutex.c:1369 @ int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
 		return 1;
 	}
 
+#ifdef CONFIG_PREEMPT_RT_FULL
+	/*
+	 * In PREEMPT_RT there's an added race.
+	 * If the task, that we are about to requeue, times out,
+	 * it can set the PI_WAKEUP_INPROGRESS. This tells the requeue
+	 * to skip this task. But right after the task sets
+	 * its pi_blocked_on to PI_WAKEUP_INPROGRESS it can then
+	 * block on the spin_lock(&hb->lock), which in RT is an rtmutex.
+	 * This will replace the PI_WAKEUP_INPROGRESS with the actual
+	 * lock that it blocks on. We *must not* place this task
+	 * on this proxy lock in that case.
+	 *
+	 * To prevent this race, we first take the task's pi_lock
+	 * and check if it has updated its pi_blocked_on. If it has,
+	 * we assume that it woke up and we return -EAGAIN.
+	 * Otherwise, we set the task's pi_blocked_on to
+	 * PI_REQUEUE_INPROGRESS, so that if the task is waking up
+	 * it will know that we are in the process of requeuing it.
+	 */
+	raw_spin_lock_irq(&task->pi_lock);
+	if (task->pi_blocked_on) {
+		raw_spin_unlock_irq(&task->pi_lock);
+		raw_spin_unlock(&lock->wait_lock);
+		return -EAGAIN;
+	}
+	task->pi_blocked_on = PI_REQUEUE_INPROGRESS;
+	raw_spin_unlock_irq(&task->pi_lock);
+#endif
+
 	ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock);
 
 	if (ret && !rt_mutex_owner(lock)) {
@ kernel/rtmutex_common.h:52 @ struct rt_mutex_waiter {
 	struct plist_node	pi_list_entry;
 	struct task_struct	*task;
 	struct rt_mutex		*lock;
+	bool			savestate;
 #ifdef CONFIG_DEBUG_RT_MUTEXES
 	unsigned long		ip;
 	struct pid		*deadlock_task_pid;
@ kernel/rtmutex_common.h:107 @ static inline struct task_struct *rt_mutex_owner(struct rt_mutex *lock)
 /*
  * PI-futex support (proxy locking functions, etc.):
  */
+#define PI_WAKEUP_INPROGRESS	((struct rt_mutex_waiter *) 1)
+#define PI_REQUEUE_INPROGRESS	((struct rt_mutex_waiter *) 2)
+
 extern struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock);
 extern void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
 				       struct task_struct *proxy_owner);
@ kernel/rtmutex_common.h:130 @ extern int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
 # include "rtmutex.h"
 #endif
 
+static inline void
+rt_mutex_init_waiter(struct rt_mutex_waiter *waiter, bool savestate)
+{
+	debug_rt_mutex_init_waiter(waiter);
+	waiter->task = NULL;
+	waiter->savestate = savestate;
+}
+
 #endif
@ kernel/sched.c:192 @ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
 
 	hrtimer_init(&rt_b->rt_period_timer,
 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+	rt_b->rt_period_timer.irqsafe = 1;
 	rt_b->rt_period_timer.function = sched_rt_period_timer;
 }
 
@ kernel/sched.c:942 @ late_initcall(sched_init_debug);
  * Number of tasks to iterate in a single balance run.
  * Limited because this is done with IRQs disabled.
  */
+#ifndef CONFIG_PREEMPT_RT_FULL
 const_debug unsigned int sysctl_sched_nr_migrate = 32;
+#else
+const_debug unsigned int sysctl_sched_nr_migrate = 8;
+#endif
 
 /*
  * period over which we average the RT time consumption, measured
@ kernel/sched.c:1282 @ static void init_rq_hrtick(struct rq *rq)
 
 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 	rq->hrtick_timer.function = hrtick;
+	rq->hrtick_timer.irqsafe = 1;
 }
 #else	/* CONFIG_SCHED_HRTICK */
 static inline void hrtick_clear(struct rq *rq)
@ kernel/sched.c:2449 @ unsigned long wait_task_inactive(struct task_struct *p, long match_state)
 		 * is actually now running somewhere else!
 		 */
 		while (task_running(rq, p)) {
-			if (match_state && unlikely(p->state != match_state))
+			if (match_state && unlikely(p->state != match_state)
+			    && unlikely(p->saved_state != match_state))
 				return 0;
 			cpu_relax();
 		}
@ kernel/sched.c:2465 @ unsigned long wait_task_inactive(struct task_struct *p, long match_state)
 		running = task_running(rq, p);
 		on_rq = p->on_rq;
 		ncsw = 0;
-		if (!match_state || p->state == match_state)
+		if (!match_state || p->state == match_state
+		    || p->saved_state == match_state)
 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
 		task_rq_unlock(rq, p, &flags);
 
@ kernel/sched.c:2571 @ static int select_fallback_rq(int cpu, struct task_struct *p)
 		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
 				task_pid_nr(p), p->comm, cpu);
 	}
-
+	/*
+	 * Clear PF_THREAD_BOUND, otherwise we wreckage
+	 * migrate_disable/enable. See optimization for
+	 * PF_THREAD_BOUND tasks there.
+	 */
+	p->flags &= ~PF_THREAD_BOUND;
 	return dest_cpu;
 }
 
@ kernel/sched.c:2656 @ static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
 {
 	activate_task(rq, p, en_flags);
 	p->on_rq = 1;
-
-	/* if a worker is waking up, notify workqueue */
-	if (p->flags & PF_WQ_WORKER)
-		wq_worker_waking_up(p, cpu_of(rq));
 }
 
 /*
@ kernel/sched.c:2833 @ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
 
 	smp_wmb();
 	raw_spin_lock_irqsave(&p->pi_lock, flags);
-	if (!(p->state & state))
+	if (!(p->state & state)) {
+		/*
+		 * The task might be running due to a spinlock sleeper
+		 * wakeup. Check the saved state and set it to running
+		 * if the wakeup condition is true.
+		 */
+		if (!(wake_flags & WF_LOCK_SLEEPER)) {
+			if (p->saved_state & state) {
+				p->saved_state = TASK_RUNNING;
+				success = 1;
+			}
+		}
 		goto out;
+	}
+
+	/*
+	 * If this is a regular wakeup, then we can unconditionally
+	 * clear the saved state of a "lock sleeper".
+	 */
+	if (!(wake_flags & WF_LOCK_SLEEPER))
+		p->saved_state = TASK_RUNNING;
 
 	success = 1; /* we're going to change ->state */
 	cpu = task_cpu(p);
@ kernel/sched.c:2909 @ out:
 }
 
 /**
- * try_to_wake_up_local - try to wake up a local task with rq lock held
- * @p: the thread to be awakened
- *
- * Put @p on the run-queue if it's not already there. The caller must
- * ensure that this_rq() is locked, @p is bound to this_rq() and not
- * the current task.
- */
-static void try_to_wake_up_local(struct task_struct *p)
-{
-	struct rq *rq = task_rq(p);
-
-	BUG_ON(rq != this_rq());
-	BUG_ON(p == current);
-	lockdep_assert_held(&rq->lock);
-
-	if (!raw_spin_trylock(&p->pi_lock)) {
-		raw_spin_unlock(&rq->lock);
-		raw_spin_lock(&p->pi_lock);
-		raw_spin_lock(&rq->lock);
-	}
-
-	if (!(p->state & TASK_NORMAL))
-		goto out;
-
-	if (!p->on_rq)
-		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
-
-	ttwu_do_wakeup(rq, p, 0);
-	ttwu_stat(p, smp_processor_id(), 0);
-out:
-	raw_spin_unlock(&p->pi_lock);
-}
-
-/**
  * wake_up_process - Wake up a specific process
  * @p: The process to be woken up.
  *
@ kernel/sched.c:2926 @ int wake_up_process(struct task_struct *p)
 }
 EXPORT_SYMBOL(wake_up_process);
 
+/**
+ * wake_up_lock_sleeper - Wake up a specific process blocked on a "sleeping lock"
+ * @p: The process to be woken up.
+ *
+ * Same as wake_up_process() above, but wake_flags=WF_LOCK_SLEEPER to indicate
+ * the nature of the wakeup.
+ */
+int wake_up_lock_sleeper(struct task_struct *p)
+{
+	return try_to_wake_up(p, TASK_ALL, WF_LOCK_SLEEPER);
+}
+
 int wake_up_state(struct task_struct *p, unsigned int state)
 {
 	return try_to_wake_up(p, state, 0);
@ kernel/sched.c:3212 @ static void finish_task_switch(struct rq *rq, struct task_struct *prev)
 	finish_lock_switch(rq, prev);
 
 	fire_sched_in_preempt_notifiers(current);
+	/*
+	 * We use mmdrop_delayed() here so we don't have to do the
+	 * full __mmdrop() when we are the last user.
+	 */
 	if (mm)
-		mmdrop(mm);
+		mmdrop_delayed(mm);
 	if (unlikely(prev_state == TASK_DEAD)) {
 		/*
 		 * Remove function-return probe instances associated with this
@ kernel/sched.c:4491 @ void __kprobes add_preempt_count(int val)
 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
 				PREEMPT_MASK - 10);
 #endif
-	if (preempt_count() == val)
-		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
+	if (preempt_count() == val) {
+		unsigned long ip = get_parent_ip(CALLER_ADDR1);
+#ifdef CONFIG_DEBUG_PREEMPT
+		current->preempt_disable_ip = ip;
+#endif
+		trace_preempt_off(CALLER_ADDR0, ip);
+	}
 }
 EXPORT_SYMBOL(add_preempt_count);
 
@ kernel/sched.c:4539 @ static noinline void __schedule_bug(struct task_struct *prev)
 	print_modules();
 	if (irqs_disabled())
 		print_irqtrace_events(prev);
+#ifdef DEBUG_PREEMPT
+	if (in_atomic_preempt_off()) {
+		pr_err("Preemption disabled at:");
+		print_ip_sym(current->preempt_disable_ip);
+		pr_cont("\n");
+	}
+#endif
 
 	if (regs)
 		show_regs(regs);
@ kernel/sched.c:4572 @ static inline void schedule_debug(struct task_struct *prev)
 	schedstat_inc(this_rq(), sched_count);
 }
 
+#if defined(CONFIG_PREEMPT_RT_FULL) && defined(CONFIG_SMP)
+#define MIGRATE_DISABLE_SET_AFFIN	(1<<30) /* Can't make a negative */
+#define migrate_disabled_updated(p)	((p)->migrate_disable & MIGRATE_DISABLE_SET_AFFIN)
+#define migrate_disable_count(p)	((p)->migrate_disable & ~MIGRATE_DISABLE_SET_AFFIN)
+
+static inline void update_migrate_disable(struct task_struct *p)
+{
+	const struct cpumask *mask;
+
+	if (likely(!p->migrate_disable))
+		return;
+
+	/* Did we already update affinity? */
+	if (unlikely(migrate_disabled_updated(p)))
+		return;
+
+	/*
+	 * Since this is always current we can get away with only locking
+	 * rq->lock, the ->cpus_allowed value can normally only be changed
+	 * while holding both p->pi_lock and rq->lock, but seeing that this
+	 * is current, we cannot actually be waking up, so all code that
+	 * relies on serialization against p->pi_lock is out of scope.
+	 *
+	 * Having rq->lock serializes us against things like
+	 * set_cpus_allowed_ptr() that can still happen concurrently.
+	 */
+	mask = tsk_cpus_allowed(p);
+
+	if (p->sched_class->set_cpus_allowed)
+		p->sched_class->set_cpus_allowed(p, mask);
+	p->rt.nr_cpus_allowed = cpumask_weight(mask);
+
+	/* Let migrate_enable know to fix things back up */
+	p->migrate_disable |= MIGRATE_DISABLE_SET_AFFIN;
+}
+
+void migrate_disable(void)
+{
+	struct task_struct *p = current;
+
+	if (in_atomic()) {
+#ifdef CONFIG_SCHED_DEBUG
+		p->migrate_disable_atomic++;
+#endif
+		return;
+	}
+
+#ifdef CONFIG_SCHED_DEBUG
+	WARN_ON_ONCE(p->migrate_disable_atomic);
+#endif
+
+	preempt_disable();
+	if (p->migrate_disable) {
+		p->migrate_disable++;
+		preempt_enable();
+		return;
+	}
+
+	pin_current_cpu();
+	p->migrate_disable = 1;
+	preempt_enable();
+}
+EXPORT_SYMBOL(migrate_disable);
+
+void migrate_enable(void)
+{
+	struct task_struct *p = current;
+	const struct cpumask *mask;
+	unsigned long flags;
+	struct rq *rq;
+
+	if (in_atomic()) {
+#ifdef CONFIG_SCHED_DEBUG
+		p->migrate_disable_atomic--;
+#endif
+		return;
+	}
+
+#ifdef CONFIG_SCHED_DEBUG
+	WARN_ON_ONCE(p->migrate_disable_atomic);
+#endif
+	WARN_ON_ONCE(p->migrate_disable <= 0);
+
+	preempt_disable();
+	if (migrate_disable_count(p) > 1) {
+		p->migrate_disable--;
+		preempt_enable();
+		return;
+	}
+
+	if (unlikely(migrate_disabled_updated(p))) {
+		/*
+		 * Undo whatever update_migrate_disable() did, also see there
+		 * about locking.
+		 */
+		rq = this_rq();
+		raw_spin_lock_irqsave(&rq->lock, flags);
+
+		/*
+		 * Clearing migrate_disable causes tsk_cpus_allowed to
+		 * show the tasks original cpu affinity.
+		 */
+		p->migrate_disable = 0;
+		mask = tsk_cpus_allowed(p);
+		if (p->sched_class->set_cpus_allowed)
+			p->sched_class->set_cpus_allowed(p, mask);
+		p->rt.nr_cpus_allowed = cpumask_weight(mask);
+		raw_spin_unlock_irqrestore(&rq->lock, flags);
+	} else
+		p->migrate_disable = 0;
+
+	unpin_current_cpu();
+	preempt_enable();
+}
+EXPORT_SYMBOL(migrate_enable);
+#else
+static inline void update_migrate_disable(struct task_struct *p) { }
+#define migrate_disabled_updated(p)		0
+#endif
+
 static void put_prev_task(struct rq *rq, struct task_struct *prev)
 {
 	if (prev->on_rq || rq->skip_clock_update < 0)
@ kernel/sched.c:4751 @ need_resched:
 
 	raw_spin_lock_irq(&rq->lock);
 
+	update_migrate_disable(prev);
+
 	switch_count = &prev->nivcsw;
 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
 		if (unlikely(signal_pending_state(prev->state, prev))) {
@ kernel/sched.c:4760 @ need_resched:
 		} else {
 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
 			prev->on_rq = 0;
-
-			/*
-			 * If a worker went to sleep, notify and ask workqueue
-			 * whether it wants to wake up a task to maintain
-			 * concurrency.
-			 */
-			if (prev->flags & PF_WQ_WORKER) {
-				struct task_struct *to_wakeup;
-
-				to_wakeup = wq_worker_sleeping(prev, cpu);
-				if (to_wakeup)
-					try_to_wake_up_local(to_wakeup);
-			}
 		}
 		switch_count = &prev->nvcsw;
 	}
@ kernel/sched.c:4793 @ need_resched:
 
 	post_schedule(rq);
 
-	preempt_enable_no_resched();
+	__preempt_enable_no_resched();
 	if (need_resched())
 		goto need_resched;
 }
 
 static inline void sched_submit_work(struct task_struct *tsk)
 {
-	if (!tsk->state)
+	if (!tsk->state || tsk_is_pi_blocked(tsk))
 		return;
+
+	/*
+	 * If a worker went to sleep, notify and ask workqueue whether
+	 * it wants to wake up a task to maintain concurrency.
+	 */
+	if (tsk->flags & PF_WQ_WORKER)
+		wq_worker_sleeping(tsk);
+
 	/*
 	 * If we are going to sleep and we have plugged IO queued,
 	 * make sure to submit it to avoid deadlocks.
@ kernel/sched.c:4818 @ static inline void sched_submit_work(struct task_struct *tsk)
 		blk_schedule_flush_plug(tsk);
 }
 
+static inline void sched_update_worker(struct task_struct *tsk)
+{
+	if (tsk_is_pi_blocked(tsk))
+		return;
+
+	if (tsk->flags & PF_WQ_WORKER)
+		wq_worker_running(tsk);
+}
+
 asmlinkage void __sched schedule(void)
 {
 	struct task_struct *tsk = current;
 
 	sched_submit_work(tsk);
 	__schedule();
+	sched_update_worker(tsk);
 }
 EXPORT_SYMBOL(schedule);
 
+/**
+ * schedule_preempt_disabled - called with preemption disabled
+ *
+ * Returns with preemption disabled. Note: preempt_count must be 1
+ */
+void __sched schedule_preempt_disabled(void)
+{
+	__preempt_enable_no_resched();
+	schedule();
+	preempt_disable();
+}
+
 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
 
 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
@ kernel/sched.c:4913 @ asmlinkage void __sched notrace preempt_schedule(void)
 
 	do {
 		add_preempt_count_notrace(PREEMPT_ACTIVE);
+		/*
+		 * The add/subtract must not be traced by the function
+		 * tracer. But we still want to account for the
+		 * preempt off latency tracer. Since the _notrace versions
+		 * of add/subtract skip the accounting for latency tracer
+		 * we must force it manually.
+		 */
+		start_critical_timings();
 		__schedule();
+		stop_critical_timings();
 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
 
 		/*
@ kernel/sched.c:5018 @ EXPORT_SYMBOL(__wake_up);
 /*
  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  */
-void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
+void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
 {
-	__wake_up_common(q, mode, 1, 0, NULL);
+	__wake_up_common(q, mode, nr, 0, NULL);
 }
 EXPORT_SYMBOL_GPL(__wake_up_locked);
 
@ kernel/sched.c:5367 @ EXPORT_SYMBOL(sleep_on_timeout);
  * This function changes the 'effective' priority of a task. It does
  * not touch ->normal_prio like __setscheduler().
  *
- * Used by the rt_mutex code to implement priority inheritance logic.
+ * Used by the rt_mutex code to implement priority inheritance
+ * logic. Call site only calls if the priority of the task changed.
  */
 void rt_mutex_setprio(struct task_struct *p, int prio)
 {
@ kernel/sched.c:5380 @ void rt_mutex_setprio(struct task_struct *p, int prio)
 
 	rq = __task_rq_lock(p);
 
+	/*
+	 * Idle task boosting is a nono in general. There is one
+	 * exception, when PREEMPT_RT and NOHZ is active:
+	 *
+	 * The idle task calls get_next_timer_interrupt() and holds
+	 * the timer wheel base->lock on the CPU and another CPU wants
+	 * to access the timer (probably to cancel it). We can safely
+	 * ignore the boosting request, as the idle CPU runs this code
+	 * with interrupts disabled and will complete the lock
+	 * protected section without being interrupted. So there is no
+	 * real need to boost.
+	 */
+	if (unlikely(p == rq->idle)) {
+		WARN_ON(p != rq->curr);
+		WARN_ON(p->pi_blocked_on);
+		goto out_unlock;
+	}
+
 	trace_sched_pi_setprio(p, prio);
 	oldprio = p->prio;
 	prev_class = p->sched_class;
@ kernel/sched.c:5421 @ void rt_mutex_setprio(struct task_struct *p, int prio)
 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
 
 	check_class_changed(rq, p, prev_class, oldprio);
+out_unlock:
 	__task_rq_unlock(rq);
 }
-
 #endif
-
 void set_user_nice(struct task_struct *p, long nice)
 {
 	int old_prio, delta, on_rq;
@ kernel/sched.c:5591 @ static struct task_struct *find_process_by_pid(pid_t pid)
 	return pid ? find_task_by_vpid(pid) : current;
 }
 
-/* Actually do priority change: must hold rq lock. */
-static void
-__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
+static void __setscheduler_params(struct task_struct *p, int policy, int prio)
 {
 	p->policy = policy;
 	p->rt_priority = prio;
 	p->normal_prio = normal_prio(p);
+	set_load_weight(p);
+}
+
+/* Actually do priority change: must hold rq lock. */
+static void
+__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
+{
+	__setscheduler_params(p, policy, prio);
 	/* we are holding p->pi_lock already */
 	p->prio = rt_mutex_getprio(p);
 	if (rt_prio(p->prio))
 		p->sched_class = &rt_sched_class;
 	else
 		p->sched_class = &fair_sched_class;
-	set_load_weight(p);
 }
 
 /*
@ kernel/sched.c:5634 @ static bool check_same_owner(struct task_struct *p)
 static int __sched_setscheduler(struct task_struct *p, int policy,
 				const struct sched_param *param, bool user)
 {
+	int newprio = MAX_RT_PRIO - 1 - param->sched_priority;
 	int retval, oldprio, oldpolicy = -1, on_rq, running;
 	unsigned long flags;
 	const struct sched_class *prev_class;
@ kernel/sched.c:5730 @ recheck:
 	}
 
 	/*
-	 * If not changing anything there's no need to proceed further:
+	 * If not changing anything there's no need to proceed
+	 * further, but store a possible modification of
+	 * reset_on_fork.
 	 */
 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
 			param->sched_priority == p->rt_priority))) {
-
+		p->sched_reset_on_fork = reset_on_fork;
 		__task_rq_unlock(rq);
 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 		return 0;
@ kernel/sched.c:5763 @ recheck:
 		task_rq_unlock(rq, p, &flags);
 		goto recheck;
 	}
+
+	p->sched_reset_on_fork = reset_on_fork;
+	oldprio = p->prio;
+
+	/*
+	 * Special case for priority boosted tasks.
+	 *
+	 * If the new priority is lower or equal (user space view)
+	 * than the current (boosted) priority, we just store the new
+	 * normal parameters and do not touch the scheduler class and
+	 * the runqueue. This will be done when the task deboost
+	 * itself.
+	 */
+	if (rt_mutex_check_prio(p, newprio)) {
+		__setscheduler_params(p, policy, param->sched_priority);
+		task_rq_unlock(rq, p, &flags);
+		return 0;
+	}
+
 	on_rq = p->on_rq;
 	running = task_current(rq, p);
 	if (on_rq)
@ kernel/sched.c:5789 @ recheck:
 	if (running)
 		p->sched_class->put_prev_task(rq, p);
 
-	p->sched_reset_on_fork = reset_on_fork;
-
-	oldprio = p->prio;
 	prev_class = p->sched_class;
 	__setscheduler(rq, p, policy, param->sched_priority);
 
 	if (running)
 		p->sched_class->set_curr_task(rq);
-	if (on_rq)
-		activate_task(rq, p, 0);
+	if (on_rq) {
+		/*
+		 * We enqueue to tail when the priority of a task is
+		 * increased (user space view).
+		 */
+		activate_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
+	}
 
 	check_class_changed(rq, p, prev_class, oldprio);
 	task_rq_unlock(rq, p, &flags);
@ kernel/sched.c:6133 @ SYSCALL_DEFINE0(sched_yield)
 	__release(rq->lock);
 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
 	do_raw_spin_unlock(&rq->lock);
-	preempt_enable_no_resched();
+	__preempt_enable_no_resched();
 
 	schedule();
 
@ kernel/sched.c:6147 @ static inline int should_resched(void)
 
 static void __cond_resched(void)
 {
-	add_preempt_count(PREEMPT_ACTIVE);
-	__schedule();
-	sub_preempt_count(PREEMPT_ACTIVE);
+	do {
+		add_preempt_count(PREEMPT_ACTIVE);
+		__schedule();
+		sub_preempt_count(PREEMPT_ACTIVE);
+		/*
+		 * Check again in case we missed a preemption
+		 * opportunity between schedule and now.
+		 */
+		barrier();
+
+	} while (need_resched());
 }
 
 int __sched _cond_resched(void)
@ kernel/sched.c:6198 @ int __cond_resched_lock(spinlock_t *lock)
 }
 EXPORT_SYMBOL(__cond_resched_lock);
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 int __sched __cond_resched_softirq(void)
 {
 	BUG_ON(!in_softirq());
@ kernel/sched.c:6212 @ int __sched __cond_resched_softirq(void)
 	return 0;
 }
 EXPORT_SYMBOL(__cond_resched_softirq);
+#endif
 
 /**
  * yield - yield the current processor to other threads.
@ kernel/sched.c:6523 @ void __cpuinit init_idle(struct task_struct *idle, int cpu)
 	rcu_read_unlock();
 
 	rq->curr = rq->idle = idle;
+	idle->on_rq = 1;
 #if defined(CONFIG_SMP)
 	idle->on_cpu = 1;
 #endif
@ kernel/sched.c:6592 @ static inline void sched_init_granularity(void)
 #ifdef CONFIG_SMP
 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
 {
-	if (p->sched_class && p->sched_class->set_cpus_allowed)
-		p->sched_class->set_cpus_allowed(p, new_mask);
-
+	if (!migrate_disabled_updated(p)) {
+		if (p->sched_class && p->sched_class->set_cpus_allowed)
+			p->sched_class->set_cpus_allowed(p, new_mask);
+		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
+	}
 	cpumask_copy(&p->cpus_allowed, new_mask);
-	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
+}
+
+static DEFINE_PER_CPU(struct cpumask, sched_cpumasks);
+static DEFINE_MUTEX(sched_down_mutex);
+static cpumask_t sched_down_cpumask;
+
+void tell_sched_cpu_down_begin(int cpu)
+{
+	mutex_lock(&sched_down_mutex);
+	cpumask_set_cpu(cpu, &sched_down_cpumask);
+	mutex_unlock(&sched_down_mutex);
+}
+
+void tell_sched_cpu_down_done(int cpu)
+{
+	mutex_lock(&sched_down_mutex);
+	cpumask_clear_cpu(cpu, &sched_down_cpumask);
+	mutex_unlock(&sched_down_mutex);
+}
+
+/**
+ * migrate_me - try to move the current task off this cpu
+ *
+ * Used by the pin_current_cpu() code to try to get tasks
+ * to move off the current CPU as it is going down.
+ * It will only move the task if the task isn't pinned to
+ * the CPU (with migrate_disable, affinity or THREAD_BOUND)
+ * and the task has to be in a RUNNING state. Otherwise the
+ * movement of the task will wake it up (change its state
+ * to running) when the task did not expect it.
+ *
+ * Returns 1 if it succeeded in moving the current task
+ *         0 otherwise.
+ */
+int migrate_me(void)
+{
+	struct task_struct *p = current;
+	struct migration_arg arg;
+	struct cpumask *cpumask;
+	struct cpumask *mask;
+	unsigned long flags;
+	unsigned int dest_cpu;
+	struct rq *rq;
+
+	/*
+	 * We can not migrate tasks bounded to a CPU or tasks not
+	 * running. The movement of the task will wake it up.
+	 */
+	if (p->flags & PF_THREAD_BOUND || p->state)
+		return 0;
+
+	mutex_lock(&sched_down_mutex);
+	rq = task_rq_lock(p, &flags);
+
+	cpumask = &__get_cpu_var(sched_cpumasks);
+	mask = &p->cpus_allowed;
+
+	cpumask_andnot(cpumask, mask, &sched_down_cpumask);
+
+	if (!cpumask_weight(cpumask)) {
+		/* It's only on this CPU? */
+		task_rq_unlock(rq, p, &flags);
+		mutex_unlock(&sched_down_mutex);
+		return 0;
+	}
+
+	dest_cpu = cpumask_any_and(cpu_active_mask, cpumask);
+
+	arg.task = p;
+	arg.dest_cpu = dest_cpu;
+
+	task_rq_unlock(rq, p, &flags);
+
+	stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
+	tlb_migrate_finish(p->mm);
+	mutex_unlock(&sched_down_mutex);
+
+	return 1;
 }
 
 /*
@ kernel/sched.c:6726 @ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
 	do_set_cpus_allowed(p, new_mask);
 
 	/* Can the task run on the task's current CPU? If so, we're done */
-	if (cpumask_test_cpu(task_cpu(p), new_mask))
+	if (cpumask_test_cpu(task_cpu(p), new_mask) || __migrate_disabled(p))
 		goto out;
 
 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
@ kernel/sched.c:6815 @ static int migration_cpu_stop(void *data)
 
 #ifdef CONFIG_HOTPLUG_CPU
 
+static DEFINE_PER_CPU(struct mm_struct *, idle_last_mm);
+
 /*
  * Ensures that the idle task is using init_mm right before its cpu goes
  * offline.
@ kernel/sched.c:6829 @ void idle_task_exit(void)
 
 	if (mm != &init_mm)
 		switch_mm(mm, &init_mm, current);
-	mmdrop(mm);
+
+	/*
+	 * Defer the cleanup to an alive cpu. On RT we can neither
+	 * call mmdrop() nor mmdrop_delayed() from here.
+	 */
+	per_cpu(idle_last_mm, smp_processor_id()) = mm;
 }
 
 /*
@ kernel/sched.c:7179 @ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
 		migrate_nr_uninterruptible(rq);
 		calc_global_load_remove(rq);
 		break;
+	case CPU_DEAD:
+		if (per_cpu(idle_last_mm, cpu)) {
+			mmdrop(per_cpu(idle_last_mm, cpu));
+			per_cpu(idle_last_mm, cpu) = NULL;
+		}
+		break;
 #endif
 	}
 
@ kernel/sched.c:8930 @ void __init sched_init(void)
 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 static inline int preempt_count_equals(int preempt_offset)
 {
-	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
+	int nested = (preempt_count() & ~PREEMPT_ACTIVE) +
+		sched_rcu_preempt_depth();
 
 	return (nested == preempt_offset);
 }
@ kernel/sched.c:8941 @ void __might_sleep(const char *file, int line, int preempt_offset)
 	static unsigned long prev_jiffy;	/* ratelimiting */
 
 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
-	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
+	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
+	     !is_idle_task(current)) ||
 	    system_state != SYSTEM_RUNNING || oops_in_progress)
 		return;
 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
@ kernel/sched.c:8960 @ void __might_sleep(const char *file, int line, int preempt_offset)
 	debug_show_held_locks(current);
 	if (irqs_disabled())
 		print_irqtrace_events(current);
+#ifdef DEBUG_PREEMPT
+	if (!preempt_count_equals(preempt_offset)) {
+		pr_err("Preemption disabled at:");
+		print_ip_sym(current->preempt_disable_ip);
+		pr_cont("\n");
+	}
+#endif
 	dump_stack();
 }
 EXPORT_SYMBOL(__might_sleep);
@ kernel/sched_debug.c:238 @ void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
 	P(rt_throttled);
 	PN(rt_time);
 	PN(rt_runtime);
+#ifdef CONFIG_SMP
+	P(rt_nr_migratory);
+#endif
 
 #undef PN
 #undef P
@ kernel/sched_debug.c:490 @ void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
 	P(se.load.weight);
 	P(policy);
 	P(prio);
+#ifdef CONFIG_PREEMPT_RT_FULL
+	P(migrate_disable);
+#endif
+	P(rt.nr_cpus_allowed);
 #undef PN
 #undef __PN
 #undef P
@ kernel/sched_fair.c:2902 @ balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
 		 */
 		if (idle == CPU_NEWLY_IDLE)
 			break;
+
+		if (raw_spin_is_contended(&this_rq->lock) ||
+		    raw_spin_is_contended(&busiest->lock))
+			break;
 #endif
 
 		/*
@ kernel/sched_fair.c:3046 @ load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
 		rem_load_move -= moved_load;
 		if (rem_load_move < 0)
 			break;
+
+#ifdef CONFIG_PREEMPT
+		/*
+		 * NEWIDLE balancing is a source of latency, so preemptible
+		 * kernels will stop after the first task is pulled to minimize
+		 * the critical section.
+		 */
+		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
+			break;
+
+		if (raw_spin_is_contended(&this_rq->lock) ||
+		    raw_spin_is_contended(&busiest->lock))
+			break;
+#endif
 	}
 	rcu_read_unlock();
 
@ kernel/sched_features.h:63 @ SCHED_FEAT(OWNER_SPIN, 1)
  */
 SCHED_FEAT(NONTASK_POWER, 1)
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 /*
  * Queue remote wakeups on the target CPU and process them
  * using the scheduler IPI. Reduces rq->lock contention/bounces.
  */
 SCHED_FEAT(TTWU_QUEUE, 1)
+#else
+SCHED_FEAT(TTWU_QUEUE, 0)
+#endif
 
 SCHED_FEAT(FORCE_SD_OVERLAP, 0)
 SCHED_FEAT(RT_RUNTIME_SHARE, 1)
@ kernel/sched_rt.c:583 @ static inline int balance_runtime(struct rt_rq *rt_rq)
 
 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 {
-	int i, idle = 1;
+	int i, idle = 1, throttled = 0;
 	const struct cpumask *span;
 
-	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
-		return 1;
-
 	span = sched_rt_period_mask();
 	for_each_cpu(i, span) {
 		int enqueue = 0;
@ kernel/sched_rt.c:620 @ static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 			if (!rt_rq_throttled(rt_rq))
 				enqueue = 1;
 		}
+		if (rt_rq->rt_throttled)
+			throttled = 1;
 
 		if (enqueue)
 			sched_rt_rq_enqueue(rt_rq);
 		raw_spin_unlock(&rq->lock);
 	}
 
+	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
+		return 1;
+
 	return idle;
 }
 
@ kernel/sched_rt.c:662 @ static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 		return 0;
 
 	if (rt_rq->rt_time > runtime) {
-		rt_rq->rt_throttled = 1;
-		printk_once(KERN_WARNING "sched: RT throttling activated\n");
+		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+
+		/*
+		 * Don't actually throttle groups that have no runtime assigned
+		 * but accrue some time due to boosting.
+		 */
+		if (likely(rt_b->rt_runtime)) {
+			rt_rq->rt_throttled = 1;
+			printk_once(KERN_WARNING "sched: RT throttling activated\n");
+		} else {
+			/*
+			 * In case we did anyway, make it go away,
+			 * replenishment is a joke, since it will replenish us
+			 * with exactly 0 ns.
+			 */
+			rt_rq->rt_time = 0;
+		}
+
 		if (rt_rq_throttled(rt_rq)) {
 			sched_rt_rq_dequeue(rt_rq);
 			return 1;
@ kernel/sched_rt.c:707 @ static void update_curr_rt(struct rq *rq)
 	if (unlikely((s64)delta_exec < 0))
 		delta_exec = 0;
 
-	schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
+	schedstat_set(curr->se.statistics.exec_max,
+		      max(curr->se.statistics.exec_max, delta_exec));
 
 	curr->se.sum_exec_runtime += delta_exec;
 	account_group_exec_runtime(curr, delta_exec);
@ kernel/signal.c:347 @ static bool task_participate_group_stop(struct task_struct *task)
 	return false;
 }
 
+#ifdef __HAVE_ARCH_CMPXCHG
+static inline struct sigqueue *get_task_cache(struct task_struct *t)
+{
+	struct sigqueue *q = t->sigqueue_cache;
+
+	if (cmpxchg(&t->sigqueue_cache, q, NULL) != q)
+		return NULL;
+	return q;
+}
+
+static inline int put_task_cache(struct task_struct *t, struct sigqueue *q)
+{
+	if (cmpxchg(&t->sigqueue_cache, NULL, q) == NULL)
+		return 0;
+	return 1;
+}
+
+#else
+
+static inline struct sigqueue *get_task_cache(struct task_struct *t)
+{
+	return NULL;
+}
+
+static inline int put_task_cache(struct task_struct *t, struct sigqueue *q)
+{
+	return 1;
+}
+
+#endif
+
 /*
  * allocate a new signal queue record
  * - this may be called without locks if and only if t == current, otherwise an
  *   appropriate lock must be held to stop the target task from exiting
  */
 static struct sigqueue *
-__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
+__sigqueue_do_alloc(int sig, struct task_struct *t, gfp_t flags,
+		    int override_rlimit, int fromslab)
 {
 	struct sigqueue *q = NULL;
 	struct user_struct *user;
@ kernel/signal.c:402 @ __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimi
 	if (override_rlimit ||
 	    atomic_read(&user->sigpending) <=
 			task_rlimit(t, RLIMIT_SIGPENDING)) {
-		q = kmem_cache_alloc(sigqueue_cachep, flags);
+		if (!fromslab)
+			q = get_task_cache(t);
+		if (!q)
+			q = kmem_cache_alloc(sigqueue_cachep, flags);
 	} else {
 		print_dropped_signal(sig);
 	}
@ kernel/signal.c:422 @ __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimi
 	return q;
 }
 
+static struct sigqueue *
+__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags,
+		 int override_rlimit)
+{
+	return __sigqueue_do_alloc(sig, t, flags, override_rlimit, 0);
+}
+
 static void __sigqueue_free(struct sigqueue *q)
 {
 	if (q->flags & SIGQUEUE_PREALLOC)
@ kernel/signal.c:438 @ static void __sigqueue_free(struct sigqueue *q)
 	kmem_cache_free(sigqueue_cachep, q);
 }
 
+static void sigqueue_free_current(struct sigqueue *q)
+{
+	struct user_struct *up;
+
+	if (q->flags & SIGQUEUE_PREALLOC)
+		return;
+
+	up = q->user;
+	if (rt_prio(current->normal_prio) && !put_task_cache(current, q)) {
+		atomic_dec(&up->sigpending);
+		free_uid(up);
+	} else
+		  __sigqueue_free(q);
+}
+
 void flush_sigqueue(struct sigpending *queue)
 {
 	struct sigqueue *q;
@ kernel/signal.c:466 @ void flush_sigqueue(struct sigpending *queue)
 }
 
 /*
+ * Called from __exit_signal. Flush tsk->pending and
+ * tsk->sigqueue_cache
+ */
+void flush_task_sigqueue(struct task_struct *tsk)
+{
+	struct sigqueue *q;
+
+	flush_sigqueue(&tsk->pending);
+
+	q = get_task_cache(tsk);
+	if (q)
+		kmem_cache_free(sigqueue_cachep, q);
+}
+
+/*
  * Flush all pending signals for a task.
  */
 void __flush_signals(struct task_struct *t)
@ kernel/signal.c:629 @ static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 still_pending:
 		list_del_init(&first->list);
 		copy_siginfo(info, &first->info);
-		__sigqueue_free(first);
+		sigqueue_free_current(first);
 	} else {
 		/*
 		 * Ok, it wasn't in the queue.  This must be
@ kernel/signal.c:675 @ int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 {
 	int signr;
 
+	WARN_ON_ONCE(tsk != current);
+
 	/* We only dequeue private signals from ourselves, we don't let
 	 * signalfd steal them
 	 */
@ kernel/signal.c:756 @ int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 void signal_wake_up_state(struct task_struct *t, unsigned int state)
 {
 	set_tsk_thread_flag(t, TIF_SIGPENDING);
+
+	if (unlikely(t == current))
+		return;
+
 	/*
 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 	 * case. We don't check t->state here because there is a race with it
@ kernel/signal.c:1271 @ int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
  * We don't want to have recursive SIGSEGV's etc, for example,
  * that is why we also clear SIGNAL_UNKILLABLE.
  */
-int
-force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
+static int
+do_force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
 {
 	unsigned long int flags;
 	int ret, blocked, ignored;
@ kernel/signal.c:1297 @ force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
 	return ret;
 }
 
+int force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
+{
+/*
+ * On some archs, PREEMPT_RT has to delay sending a signal from a trap
+ * since it can not enable preemption, and the signal code's spin_locks
+ * turn into mutexes. Instead, it must set TIF_NOTIFY_RESUME which will
+ * send the signal on exit of the trap.
+ */
+#ifdef ARCH_RT_DELAYS_SIGNAL_SEND
+	if (in_atomic()) {
+		if (WARN_ON_ONCE(t != current))
+			return 0;
+		if (WARN_ON_ONCE(t->forced_info.si_signo))
+			return 0;
+
+		if (is_si_special(info)) {
+			WARN_ON_ONCE(info != SEND_SIG_PRIV);
+			t->forced_info.si_signo = sig;
+			t->forced_info.si_errno = 0;
+			t->forced_info.si_code = SI_KERNEL;
+			t->forced_info.si_pid = 0;
+			t->forced_info.si_uid = 0;
+		} else {
+			t->forced_info = *info;
+		}
+
+		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
+		return 0;
+	}
+#endif
+	return do_force_sig_info(sig, info, t);
+}
+
 /*
  * Nuke all other threads in the group.
  */
@ kernel/signal.c:1360 @ struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
 	struct sighand_struct *sighand;
 
 	for (;;) {
-		local_irq_save(*flags);
+		local_irq_save_nort(*flags);
 		rcu_read_lock();
 		sighand = rcu_dereference(tsk->sighand);
 		if (unlikely(sighand == NULL)) {
 			rcu_read_unlock();
-			local_irq_restore(*flags);
+			local_irq_restore_nort(*flags);
 			break;
 		}
 
@ kernel/signal.c:1376 @ struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
 		}
 		spin_unlock(&sighand->siglock);
 		rcu_read_unlock();
-		local_irq_restore(*flags);
+		local_irq_restore_nort(*flags);
 	}
 
 	return sighand;
@ kernel/signal.c:1623 @ EXPORT_SYMBOL(kill_pid);
  */
 struct sigqueue *sigqueue_alloc(void)
 {
-	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
+	/* Preallocated sigqueue objects always from the slabcache ! */
+	struct sigqueue *q = __sigqueue_do_alloc(-1, current, GFP_KERNEL, 0, 1);
 
 	if (q)
 		q->flags |= SIGQUEUE_PREALLOC;
@ kernel/signal.c:1979 @ static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
 		if (gstop_done && ptrace_reparented(current))
 			do_notify_parent_cldstop(current, false, why);
 
-		/*
-		 * Don't want to allow preemption here, because
-		 * sys_ptrace() needs this task to be inactive.
-		 *
-		 * XXX: implement read_unlock_no_resched().
-		 */
-		preempt_disable();
 		read_unlock(&tasklist_lock);
-		preempt_enable_no_resched();
 		schedule();
 	} else {
 		/*
@ kernel/softirq.c:24 @
 #include <linux/freezer.h>
 #include <linux/kthread.h>
 #include <linux/rcupdate.h>
+#include <linux/delay.h>
 #include <linux/ftrace.h>
 #include <linux/smp.h>
 #include <linux/tick.h>
+#include <linux/locallock.h>
 
 #define CREATE_TRACE_POINTS
 #include <trace/events/irq.h>
@ kernel/softirq.c:66 @ char *softirq_to_name[NR_SOFTIRQS] = {
 	"TASKLET", "SCHED", "HRTIMER", "RCU"
 };
 
+#ifdef CONFIG_NO_HZ
+# ifdef CONFIG_PREEMPT_RT_FULL
+/*
+ * On preempt-rt a softirq might be blocked on a lock. There might be
+ * no other runnable task on this CPU because the lock owner runs on
+ * some other CPU. So we have to go into idle with the pending bit
+ * set. Therefor we need to check this otherwise we warn about false
+ * positives which confuses users and defeats the whole purpose of
+ * this test.
+ *
+ * This code is called with interrupts disabled.
+ */
+void softirq_check_pending_idle(void)
+{
+	static int rate_limit;
+	u32 warnpending = 0, pending = local_softirq_pending();
+
+	if (rate_limit >= 10)
+		return;
+
+	if (pending) {
+		struct task_struct *tsk;
+
+		tsk = __get_cpu_var(ksoftirqd);
+		/*
+		 * The wakeup code in rtmutex.c wakes up the task
+		 * _before_ it sets pi_blocked_on to NULL under
+		 * tsk->pi_lock. So we need to check for both: state
+		 * and pi_blocked_on.
+		 */
+		raw_spin_lock(&tsk->pi_lock);
+
+		if (!tsk->pi_blocked_on && !(tsk->state == TASK_RUNNING))
+			warnpending = 1;
+
+		raw_spin_unlock(&tsk->pi_lock);
+	}
+
+	if (warnpending) {
+		printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
+		       pending);
+		rate_limit++;
+	}
+}
+# else
+/*
+ * On !PREEMPT_RT we just printk rate limited:
+ */
+void softirq_check_pending_idle(void)
+{
+	static int rate_limit;
+
+	if (rate_limit < 10) {
+		printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
+		       local_softirq_pending());
+		rate_limit++;
+	}
+}
+# endif
+#endif
+
 /*
  * we cannot loop indefinitely here to avoid userspace starvation,
  * but we also don't want to introduce a worst case 1/HZ latency
@ kernel/softirq.c:142 @ static void wakeup_softirqd(void)
 		wake_up_process(tsk);
 }
 
+static void handle_pending_softirqs(u32 pending, int cpu, int need_rcu_bh_qs)
+{
+	struct softirq_action *h = softirq_vec;
+	unsigned int prev_count = preempt_count();
+
+	local_irq_enable();
+	for ( ; pending; h++, pending >>= 1) {
+		unsigned int vec_nr = h - softirq_vec;
+
+		if (!(pending & 1))
+			continue;
+
+		kstat_incr_softirqs_this_cpu(vec_nr);
+		trace_softirq_entry(vec_nr);
+		h->action(h);
+		trace_softirq_exit(vec_nr);
+		if (unlikely(prev_count != preempt_count())) {
+			printk(KERN_ERR
+ "huh, entered softirq %u %s %p with preempt_count %08x exited with %08x?\n",
+			       vec_nr, softirq_to_name[vec_nr], h->action,
+			       prev_count, (unsigned int) preempt_count());
+			preempt_count() = prev_count;
+		}
+		if (need_rcu_bh_qs)
+			rcu_bh_qs(cpu);
+	}
+	local_irq_disable();
+}
+
+#ifndef CONFIG_PREEMPT_RT_FULL
 /*
  * preempt_count and SOFTIRQ_OFFSET usage:
  * - preempt_count is changed by SOFTIRQ_OFFSET on entering or leaving
@ kernel/softirq.c:302 @ EXPORT_SYMBOL(local_bh_enable_ip);
 
 asmlinkage void __do_softirq(void)
 {
-	struct softirq_action *h;
 	__u32 pending;
 	int max_restart = MAX_SOFTIRQ_RESTART;
 	int cpu;
@ kernel/softirq.c:310 @ asmlinkage void __do_softirq(void)
 	account_system_vtime(current);
 
 	__local_bh_disable((unsigned long)__builtin_return_address(0),
-				SOFTIRQ_OFFSET);
+			   SOFTIRQ_OFFSET);
 	lockdep_softirq_enter();
 
 	cpu = smp_processor_id();
@ kernel/softirq.c:318 @ restart:
 	/* Reset the pending bitmask before enabling irqs */
 	set_softirq_pending(0);
 
-	local_irq_enable();
-
-	h = softirq_vec;
-
-	do {
-		if (pending & 1) {
-			unsigned int vec_nr = h - softirq_vec;
-			int prev_count = preempt_count();
-
-			kstat_incr_softirqs_this_cpu(vec_nr);
-
-			trace_softirq_entry(vec_nr);
-			h->action(h);
-			trace_softirq_exit(vec_nr);
-			if (unlikely(prev_count != preempt_count())) {
-				printk(KERN_ERR "huh, entered softirq %u %s %p"
-				       "with preempt_count %08x,"
-				       " exited with %08x?\n", vec_nr,
-				       softirq_to_name[vec_nr], h->action,
-				       prev_count, preempt_count());
-				preempt_count() = prev_count;
-			}
-
-			rcu_bh_qs(cpu);
-		}
-		h++;
-		pending >>= 1;
-	} while (pending);
-
-	local_irq_disable();
+	handle_pending_softirqs(pending, cpu, 1);
 
 	pending = local_softirq_pending();
 	if (pending && --max_restart)
@ kernel/softirq.c:333 @ restart:
 	__local_bh_enable(SOFTIRQ_OFFSET);
 }
 
+/*
+ * Called with preemption disabled from run_ksoftirqd()
+ */
+static int ksoftirqd_do_softirq(int cpu)
+{
+	/*
+	 * Preempt disable stops cpu going offline.
+	 * If already offline, we'll be on wrong CPU:
+	 * don't process.
+	 */
+	if (cpu_is_offline(cpu))
+		return -1;
+
+	local_irq_disable();
+	if (local_softirq_pending())
+		__do_softirq();
+	local_irq_enable();
+	return 0;
+}
+
 #ifndef __ARCH_HAS_DO_SOFTIRQ
 
 asmlinkage void do_softirq(void)
@ kernel/softirq.c:375 @ asmlinkage void do_softirq(void)
 
 #endif
 
+static inline void local_bh_disable_nort(void) { local_bh_disable(); }
+static inline void _local_bh_enable_nort(void) { _local_bh_enable(); }
+static inline void ksoftirqd_set_sched_params(void) { }
+static inline void ksoftirqd_clr_sched_params(void) { }
+
+#else /* !PREEMPT_RT_FULL */
+
+/*
+ * On RT we serialize softirq execution with a cpu local lock
+ */
+static DEFINE_LOCAL_IRQ_LOCK(local_softirq_lock);
+static DEFINE_PER_CPU(struct task_struct *, local_softirq_runner);
+
+static void __do_softirq_common(int need_rcu_bh_qs);
+
+void __do_softirq(void)
+{
+	__do_softirq_common(0);
+}
+
+void __init softirq_early_init(void)
+{
+	local_irq_lock_init(local_softirq_lock);
+}
+
+void local_bh_disable(void)
+{
+	migrate_disable();
+	current->softirq_nestcnt++;
+}
+EXPORT_SYMBOL(local_bh_disable);
+
+void local_bh_enable(void)
+{
+	if (WARN_ON(current->softirq_nestcnt == 0))
+		return;
+
+	if ((current->softirq_nestcnt == 1) &&
+	    local_softirq_pending() &&
+	    local_trylock(local_softirq_lock)) {
+
+		local_irq_disable();
+		if (local_softirq_pending())
+			__do_softirq();
+		local_irq_enable();
+		local_unlock(local_softirq_lock);
+		WARN_ON(current->softirq_nestcnt != 1);
+	}
+	current->softirq_nestcnt--;
+	migrate_enable();
+}
+EXPORT_SYMBOL(local_bh_enable);
+
+void local_bh_enable_ip(unsigned long ip)
+{
+	local_bh_enable();
+}
+EXPORT_SYMBOL(local_bh_enable_ip);
+
+void _local_bh_enable(void)
+{
+	current->softirq_nestcnt--;
+	migrate_enable();
+}
+EXPORT_SYMBOL(_local_bh_enable);
+
+/* For tracing */
+int notrace __in_softirq(void)
+{
+	if (__get_cpu_var(local_softirq_lock).owner == current)
+		return __get_cpu_var(local_softirq_lock).nestcnt;
+	return 0;
+}
+
+int in_serving_softirq(void)
+{
+	int res;
+
+	preempt_disable();
+	res = __get_cpu_var(local_softirq_runner) == current;
+	preempt_enable();
+	return res;
+}
+EXPORT_SYMBOL(in_serving_softirq);
+
+/*
+ * Called with bh and local interrupts disabled. For full RT cpu must
+ * be pinned.
+ */
+static void __do_softirq_common(int need_rcu_bh_qs)
+{
+	u32 pending = local_softirq_pending();
+	int cpu = smp_processor_id();
+
+	current->softirq_nestcnt++;
+
+	/* Reset the pending bitmask before enabling irqs */
+	set_softirq_pending(0);
+
+	__get_cpu_var(local_softirq_runner) = current;
+
+	lockdep_softirq_enter();
+
+	handle_pending_softirqs(pending, cpu, need_rcu_bh_qs);
+
+	pending = local_softirq_pending();
+	if (pending)
+		wakeup_softirqd();
+
+	lockdep_softirq_exit();
+	__get_cpu_var(local_softirq_runner) = NULL;
+
+	current->softirq_nestcnt--;
+}
+
+static int __thread_do_softirq(int cpu)
+{
+	/*
+	 * Prevent the current cpu from going offline.
+	 * pin_current_cpu() can reenable preemption and block on the
+	 * hotplug mutex. When it returns, the current cpu is
+	 * pinned. It might be the wrong one, but the offline check
+	 * below catches that.
+	 */
+	pin_current_cpu();
+	/*
+	 * If called from ksoftirqd (cpu >= 0) we need to check
+	 * whether we are on the wrong cpu due to cpu offlining. If
+	 * called via thread_do_softirq() no action required.
+	 */
+	if (cpu >= 0 && cpu_is_offline(cpu)) {
+		unpin_current_cpu();
+		return -1;
+	}
+	preempt_enable();
+	local_lock(local_softirq_lock);
+	local_irq_disable();
+	/*
+	 * We cannot switch stacks on RT as we want to be able to
+	 * schedule!
+	 */
+	if (local_softirq_pending())
+		__do_softirq_common(cpu >= 0);
+	local_unlock(local_softirq_lock);
+	unpin_current_cpu();
+	preempt_disable();
+	local_irq_enable();
+	return 0;
+}
+
+/*
+ * Called from netif_rx_ni(). Preemption enabled.
+ */
+void thread_do_softirq(void)
+{
+	if (!in_serving_softirq()) {
+		preempt_disable();
+		__thread_do_softirq(-1);
+		preempt_enable();
+	}
+}
+
+static int ksoftirqd_do_softirq(int cpu)
+{
+	return __thread_do_softirq(cpu);
+}
+
+static inline void local_bh_disable_nort(void) { }
+static inline void _local_bh_enable_nort(void) { }
+
+static inline void ksoftirqd_set_sched_params(void)
+{
+	struct sched_param param = { .sched_priority = 1 };
+
+	sched_setscheduler(current, SCHED_FIFO, &param);
+}
+
+static inline void ksoftirqd_clr_sched_params(void)
+{
+	struct sched_param param = { .sched_priority = 0 };
+
+	sched_setscheduler(current, SCHED_NORMAL, &param);
+}
+
+#endif /* PREEMPT_RT_FULL */
 /*
  * Enter an interrupt context.
  */
@ kernel/softirq.c:573 @ void irq_enter(void)
 		 * Prevent raise_softirq from needlessly waking up ksoftirqd
 		 * here, as softirq will be serviced on return from interrupt.
 		 */
-		local_bh_disable();
+		local_bh_disable_nort();
 		tick_check_idle(cpu);
-		_local_bh_enable();
+		_local_bh_enable_nort();
 	}
 
 	__irq_enter();
@ kernel/softirq.c:584 @ void irq_enter(void)
 #ifdef __ARCH_IRQ_EXIT_IRQS_DISABLED
 static inline void invoke_softirq(void)
 {
+#ifndef CONFIG_PREEMPT_RT_FULL
 	if (!force_irqthreads)
 		__do_softirq();
 	else {
@ kernel/softirq.c:593 @ static inline void invoke_softirq(void)
 		wakeup_softirqd();
 		__local_bh_enable(SOFTIRQ_OFFSET);
 	}
+#else
+	wakeup_softirqd();
+#endif
 }
 #else
 static inline void invoke_softirq(void)
 {
+#ifndef CONFIG_PREEMPT_RT_FULL
 	if (!force_irqthreads)
 		do_softirq();
 	else {
@ kernel/softirq.c:609 @ static inline void invoke_softirq(void)
 		wakeup_softirqd();
 		__local_bh_enable(SOFTIRQ_OFFSET);
 	}
+#else
+	wakeup_softirqd();
+#endif
 }
 #endif
 
@ kernel/softirq.c:632 @ void irq_exit(void)
 	if (idle_cpu(smp_processor_id()) && !in_interrupt() && !need_resched())
 		tick_nohz_stop_sched_tick(0);
 #endif
-	preempt_enable_no_resched();
+	__preempt_enable_no_resched();
 }
 
 /*
@ kernel/softirq.c:681 @ struct tasklet_head
 static DEFINE_PER_CPU(struct tasklet_head, tasklet_vec);
 static DEFINE_PER_CPU(struct tasklet_head, tasklet_hi_vec);
 
+static void inline
+__tasklet_common_schedule(struct tasklet_struct *t, struct tasklet_head *head, unsigned int nr)
+{
+	if (tasklet_trylock(t)) {
+again:
+		/* We may have been preempted before tasklet_trylock
+		 * and __tasklet_action may have already run.
+		 * So double check the sched bit while the takslet
+		 * is locked before adding it to the list.
+		 */
+		if (test_bit(TASKLET_STATE_SCHED, &t->state)) {
+			t->next = NULL;
+			*head->tail = t;
+			head->tail = &(t->next);
+			raise_softirq_irqoff(nr);
+			tasklet_unlock(t);
+		} else {
+			/* This is subtle. If we hit the corner case above
+			 * It is possible that we get preempted right here,
+			 * and another task has successfully called
+			 * tasklet_schedule(), then this function, and
+			 * failed on the trylock. Thus we must be sure
+			 * before releasing the tasklet lock, that the
+			 * SCHED_BIT is clear. Otherwise the tasklet
+			 * may get its SCHED_BIT set, but not added to the
+			 * list
+			 */
+			if (!tasklet_tryunlock(t))
+				goto again;
+		}
+	}
+}
+
 void __tasklet_schedule(struct tasklet_struct *t)
 {
 	unsigned long flags;
 
 	local_irq_save(flags);
-	t->next = NULL;
-	*__this_cpu_read(tasklet_vec.tail) = t;
-	__this_cpu_write(tasklet_vec.tail, &(t->next));
-	raise_softirq_irqoff(TASKLET_SOFTIRQ);
+	__tasklet_common_schedule(t, &__get_cpu_var(tasklet_vec), TASKLET_SOFTIRQ);
 	local_irq_restore(flags);
 }
 
@ kernel/softirq.c:730 @ void __tasklet_hi_schedule(struct tasklet_struct *t)
 	unsigned long flags;
 
 	local_irq_save(flags);
-	t->next = NULL;
-	*__this_cpu_read(tasklet_hi_vec.tail) = t;
-	__this_cpu_write(tasklet_hi_vec.tail,  &(t->next));
-	raise_softirq_irqoff(HI_SOFTIRQ);
+	__tasklet_common_schedule(t, &__get_cpu_var(tasklet_hi_vec), HI_SOFTIRQ);
 	local_irq_restore(flags);
 }
 
@ kernel/softirq.c:738 @ EXPORT_SYMBOL(__tasklet_hi_schedule);
 
 void __tasklet_hi_schedule_first(struct tasklet_struct *t)
 {
-	BUG_ON(!irqs_disabled());
-
-	t->next = __this_cpu_read(tasklet_hi_vec.head);
-	__this_cpu_write(tasklet_hi_vec.head, t);
-	__raise_softirq_irqoff(HI_SOFTIRQ);
+	__tasklet_hi_schedule(t);
 }
 
 EXPORT_SYMBOL(__tasklet_hi_schedule_first);
 
-static void tasklet_action(struct softirq_action *a)
+void  tasklet_enable(struct tasklet_struct *t)
 {
-	struct tasklet_struct *list;
+	if (!atomic_dec_and_test(&t->count))
+		return;
+	if (test_and_clear_bit(TASKLET_STATE_PENDING, &t->state))
+		tasklet_schedule(t);
+}
 
-	local_irq_disable();
-	list = __this_cpu_read(tasklet_vec.head);
-	__this_cpu_write(tasklet_vec.head, NULL);
-	__this_cpu_write(tasklet_vec.tail, &__get_cpu_var(tasklet_vec).head);
-	local_irq_enable();
+EXPORT_SYMBOL(tasklet_enable);
+
+void  tasklet_hi_enable(struct tasklet_struct *t)
+{
+	if (!atomic_dec_and_test(&t->count))
+		return;
+	if (test_and_clear_bit(TASKLET_STATE_PENDING, &t->state))
+		tasklet_hi_schedule(t);
+}
+
+EXPORT_SYMBOL(tasklet_hi_enable);
+
+static void
+__tasklet_action(struct softirq_action *a, struct tasklet_struct *list)
+{
+	int loops = 1000000;
 
 	while (list) {
 		struct tasklet_struct *t = list;
 
 		list = list->next;
 
-		if (tasklet_trylock(t)) {
-			if (!atomic_read(&t->count)) {
-				if (!test_and_clear_bit(TASKLET_STATE_SCHED, &t->state))
-					BUG();
-				t->func(t->data);
-				tasklet_unlock(t);
-				continue;
-			}
-			tasklet_unlock(t);
+		/*
+		 * Should always succeed - after a tasklist got on the
+		 * list (after getting the SCHED bit set from 0 to 1),
+		 * nothing but the tasklet softirq it got queued to can
+		 * lock it:
+		 */
+		if (!tasklet_trylock(t)) {
+			WARN_ON(1);
+			continue;
 		}
 
-		local_irq_disable();
 		t->next = NULL;
-		*__this_cpu_read(tasklet_vec.tail) = t;
-		__this_cpu_write(tasklet_vec.tail, &(t->next));
-		__raise_softirq_irqoff(TASKLET_SOFTIRQ);
-		local_irq_enable();
+
+		/*
+		 * If we cannot handle the tasklet because it's disabled,
+		 * mark it as pending. tasklet_enable() will later
+		 * re-schedule the tasklet.
+		 */
+		if (unlikely(atomic_read(&t->count))) {
+out_disabled:
+			/* implicit unlock: */
+			wmb();
+			t->state = TASKLET_STATEF_PENDING;
+			continue;
+		}
+
+		/*
+		 * After this point on the tasklet might be rescheduled
+		 * on another CPU, but it can only be added to another
+		 * CPU's tasklet list if we unlock the tasklet (which we
+		 * dont do yet).
+		 */
+		if (!test_and_clear_bit(TASKLET_STATE_SCHED, &t->state))
+			WARN_ON(1);
+
+again:
+		t->func(t->data);
+
+		/*
+		 * Try to unlock the tasklet. We must use cmpxchg, because
+		 * another CPU might have scheduled or disabled the tasklet.
+		 * We only allow the STATE_RUN -> 0 transition here.
+		 */
+		while (!tasklet_tryunlock(t)) {
+			/*
+			 * If it got disabled meanwhile, bail out:
+			 */
+			if (atomic_read(&t->count))
+				goto out_disabled;
+			/*
+			 * If it got scheduled meanwhile, re-execute
+			 * the tasklet function:
+			 */
+			if (test_and_clear_bit(TASKLET_STATE_SCHED, &t->state))
+				goto again;
+			if (!--loops) {
+				printk("hm, tasklet state: %08lx\n", t->state);
+				WARN_ON(1);
+				tasklet_unlock(t);
+				break;
+			}
+		}
 	}
 }
 
+static void tasklet_action(struct softirq_action *a)
+{
+	struct tasklet_struct *list;
+
+	local_irq_disable();
+	list = __get_cpu_var(tasklet_vec).head;
+	__get_cpu_var(tasklet_vec).head = NULL;
+	__get_cpu_var(tasklet_vec).tail = &__get_cpu_var(tasklet_vec).head;
+	local_irq_enable();
+
+	__tasklet_action(a, list);
+}
+
 static void tasklet_hi_action(struct softirq_action *a)
 {
 	struct tasklet_struct *list;
@ kernel/softirq.c:861 @ static void tasklet_hi_action(struct softirq_action *a)
 	__this_cpu_write(tasklet_hi_vec.tail, &__get_cpu_var(tasklet_hi_vec).head);
 	local_irq_enable();
 
-	while (list) {
-		struct tasklet_struct *t = list;
-
-		list = list->next;
-
-		if (tasklet_trylock(t)) {
-			if (!atomic_read(&t->count)) {
-				if (!test_and_clear_bit(TASKLET_STATE_SCHED, &t->state))
-					BUG();
-				t->func(t->data);
-				tasklet_unlock(t);
-				continue;
-			}
-			tasklet_unlock(t);
-		}
-
-		local_irq_disable();
-		t->next = NULL;
-		*__this_cpu_read(tasklet_hi_vec.tail) = t;
-		__this_cpu_write(tasklet_hi_vec.tail, &(t->next));
-		__raise_softirq_irqoff(HI_SOFTIRQ);
-		local_irq_enable();
-	}
+	__tasklet_action(a, list);
 }
 
 
@ kernel/softirq.c:884 @ void tasklet_kill(struct tasklet_struct *t)
 
 	while (test_and_set_bit(TASKLET_STATE_SCHED, &t->state)) {
 		do {
-			yield();
+			msleep(1);
 		} while (test_bit(TASKLET_STATE_SCHED, &t->state));
 	}
 	tasklet_unlock_wait(t);
@ kernel/softirq.c:1090 @ void __init softirq_init(void)
 	open_softirq(HI_SOFTIRQ, tasklet_hi_action);
 }
 
+#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT_FULL)
+void tasklet_unlock_wait(struct tasklet_struct *t)
+{
+	while (test_bit(TASKLET_STATE_RUN, &(t)->state)) {
+		/*
+		 * Hack for now to avoid this busy-loop:
+		 */
+#ifdef CONFIG_PREEMPT_RT_FULL
+		msleep(1);
+#else
+		barrier();
+#endif
+	}
+}
+EXPORT_SYMBOL(tasklet_unlock_wait);
+#endif
+
 static int run_ksoftirqd(void * __bind_cpu)
 {
+	ksoftirqd_set_sched_params();
+
 	set_current_state(TASK_INTERRUPTIBLE);
 
 	while (!kthread_should_stop()) {
 		preempt_disable();
-		if (!local_softirq_pending()) {
-			preempt_enable_no_resched();
-			schedule();
-			preempt_disable();
-		}
+		if (!local_softirq_pending())
+			schedule_preempt_disabled();
 
 		__set_current_state(TASK_RUNNING);
 
 		while (local_softirq_pending()) {
-			/* Preempt disable stops cpu going offline.
-			   If already offline, we'll be on wrong CPU:
-			   don't process */
-			if (cpu_is_offline((long)__bind_cpu))
+			if (ksoftirqd_do_softirq((long) __bind_cpu))
 				goto wait_to_die;
-			local_irq_disable();
-			if (local_softirq_pending())
-				__do_softirq();
-			local_irq_enable();
-			preempt_enable_no_resched();
+			__preempt_enable_no_resched();
 			cond_resched();
 			preempt_disable();
 			rcu_note_context_switch((long)__bind_cpu);
@ kernel/softirq.c:1136 @ static int run_ksoftirqd(void * __bind_cpu)
 
 wait_to_die:
 	preempt_enable();
+	ksoftirqd_clr_sched_params();
 	/* Wait for kthread_stop */
 	set_current_state(TASK_INTERRUPTIBLE);
 	while (!kthread_should_stop()) {
@ kernel/softirq.c:1213 @ static int __cpuinit cpu_callback(struct notifier_block *nfb,
 	int hotcpu = (unsigned long)hcpu;
 	struct task_struct *p;
 
-	switch (action) {
+	switch (action & ~CPU_TASKS_FROZEN) {
 	case CPU_UP_PREPARE:
-	case CPU_UP_PREPARE_FROZEN:
 		p = kthread_create_on_node(run_ksoftirqd,
 					   hcpu,
 					   cpu_to_node(hotcpu),
@ kernel/softirq.c:1227 @ static int __cpuinit cpu_callback(struct notifier_block *nfb,
   		per_cpu(ksoftirqd, hotcpu) = p;
  		break;
 	case CPU_ONLINE:
-	case CPU_ONLINE_FROZEN:
 		wake_up_process(per_cpu(ksoftirqd, hotcpu));
 		break;
 #ifdef CONFIG_HOTPLUG_CPU
 	case CPU_UP_CANCELED:
-	case CPU_UP_CANCELED_FROZEN:
 		if (!per_cpu(ksoftirqd, hotcpu))
 			break;
 		/* Unbind so it can run.  Fall thru. */
 		kthread_bind(per_cpu(ksoftirqd, hotcpu),
 			     cpumask_any(cpu_online_mask));
-	case CPU_DEAD:
-	case CPU_DEAD_FROZEN: {
+	case CPU_POST_DEAD: {
 		static const struct sched_param param = {
 			.sched_priority = MAX_RT_PRIO-1
 		};
@ kernel/spinlock.c:113 @ void __lockfunc __raw_##op##_lock_bh(locktype##_t *lock)		\
  *         __[spin|read|write]_lock_bh()
  */
 BUILD_LOCK_OPS(spin, raw_spinlock);
+
+#ifndef CONFIG_PREEMPT_RT_FULL
 BUILD_LOCK_OPS(read, rwlock);
 BUILD_LOCK_OPS(write, rwlock);
+#endif
 
 #endif
 
@ kernel/spinlock.c:201 @ void __lockfunc _raw_spin_unlock_bh(raw_spinlock_t *lock)
 EXPORT_SYMBOL(_raw_spin_unlock_bh);
 #endif
 
+#ifndef CONFIG_PREEMPT_RT_FULL
+
 #ifndef CONFIG_INLINE_READ_TRYLOCK
 int __lockfunc _raw_read_trylock(rwlock_t *lock)
 {
@ kernel/spinlock.c:347 @ void __lockfunc _raw_write_unlock_bh(rwlock_t *lock)
 EXPORT_SYMBOL(_raw_write_unlock_bh);
 #endif
 
+#endif /* !PREEMPT_RT_FULL */
+
 #ifdef CONFIG_DEBUG_LOCK_ALLOC
 
 void __lockfunc _raw_spin_lock_nested(raw_spinlock_t *lock, int subclass)
@ kernel/stop_machine.c:32 @ struct cpu_stop_done {
 	atomic_t		nr_todo;	/* nr left to execute */
 	bool			executed;	/* actually executed? */
 	int			ret;		/* collected return value */
-	struct completion	completion;	/* fired if nr_todo reaches 0 */
+	struct task_struct	*waiter;	/* woken when nr_todo reaches 0 */
 };
 
 /* the actual stopper, one per every possible cpu, enabled on online cpus */
 struct cpu_stopper {
-	spinlock_t		lock;
+	raw_spinlock_t		lock;
 	bool			enabled;	/* is this stopper enabled? */
 	struct list_head	works;		/* list of pending works */
 	struct task_struct	*thread;	/* stopper thread */
@ kernel/stop_machine.c:50 @ static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 {
 	memset(done, 0, sizeof(*done));
 	atomic_set(&done->nr_todo, nr_todo);
-	init_completion(&done->completion);
+	done->waiter = current;
 }
 
 /* signal completion unless @done is NULL */
@ kernel/stop_machine.c:59 @ static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
 	if (done) {
 		if (executed)
 			done->executed = true;
-		if (atomic_dec_and_test(&done->nr_todo))
-			complete(&done->completion);
+		if (atomic_dec_and_test(&done->nr_todo)) {
+			wake_up_process(done->waiter);
+			done->waiter = NULL;
+		}
 	}
 }
 
@ kernel/stop_machine.c:72 @ static void cpu_stop_queue_work(struct cpu_stopper *stopper,
 {
 	unsigned long flags;
 
-	spin_lock_irqsave(&stopper->lock, flags);
+	raw_spin_lock_irqsave(&stopper->lock, flags);
 
 	if (stopper->enabled) {
 		list_add_tail(&work->list, &stopper->works);
@ kernel/stop_machine.c:80 @ static void cpu_stop_queue_work(struct cpu_stopper *stopper,
 	} else
 		cpu_stop_signal_done(work->done, false);
 
-	spin_unlock_irqrestore(&stopper->lock, flags);
+	raw_spin_unlock_irqrestore(&stopper->lock, flags);
+}
+
+static void wait_for_stop_done(struct cpu_stop_done *done)
+{
+	set_current_state(TASK_UNINTERRUPTIBLE);
+	while (atomic_read(&done->nr_todo)) {
+		schedule();
+		set_current_state(TASK_UNINTERRUPTIBLE);
+	}
+	/*
+	 * We need to wait until cpu_stop_signal_done() has cleared
+	 * done->waiter.
+	 */
+	while (done->waiter)
+		cpu_relax();
+	set_current_state(TASK_RUNNING);
 }
 
 /**
@ kernel/stop_machine.c:130 @ int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
 
 	cpu_stop_init_done(&done, 1);
 	cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), &work);
-	wait_for_completion(&done.completion);
+	wait_for_stop_done(&done);
 	return done.executed ? done.ret : -ENOENT;
 }
 
@ kernel/stop_machine.c:156 @ void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
 
 /* static data for stop_cpus */
 static DEFINE_MUTEX(stop_cpus_mutex);
+static DEFINE_MUTEX(stopper_lock);
 static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
 
 static void queue_stop_cpus_work(const struct cpumask *cpumask,
 				 cpu_stop_fn_t fn, void *arg,
-				 struct cpu_stop_done *done)
+				 struct cpu_stop_done *done, bool inactive)
 {
 	struct cpu_stop_work *work;
 	unsigned int cpu;
@ kernel/stop_machine.c:175 @ static void queue_stop_cpus_work(const struct cpumask *cpumask,
 	}
 
 	/*
-	 * Disable preemption while queueing to avoid getting
-	 * preempted by a stopper which might wait for other stoppers
-	 * to enter @fn which can lead to deadlock.
+	 * Make sure that all work is queued on all cpus before we
+	 * any of the cpus can execute it.
 	 */
-	preempt_disable();
+	if (!inactive) {
+		mutex_lock(&stopper_lock);
+	} else {
+		while (!mutex_trylock(&stopper_lock))
+			cpu_relax();
+	}
 	for_each_cpu(cpu, cpumask)
 		cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu),
 				    &per_cpu(stop_cpus_work, cpu));
-	preempt_enable();
+	mutex_unlock(&stopper_lock);
 }
 
 static int __stop_cpus(const struct cpumask *cpumask,
@ kernel/stop_machine.c:196 @ static int __stop_cpus(const struct cpumask *cpumask,
 	struct cpu_stop_done done;
 
 	cpu_stop_init_done(&done, cpumask_weight(cpumask));
-	queue_stop_cpus_work(cpumask, fn, arg, &done);
-	wait_for_completion(&done.completion);
+	queue_stop_cpus_work(cpumask, fn, arg, &done, false);
+	wait_for_stop_done(&done);
 	return done.executed ? done.ret : -ENOENT;
 }
 
@ kernel/stop_machine.c:285 @ repeat:
 	}
 
 	work = NULL;
-	spin_lock_irq(&stopper->lock);
+	raw_spin_lock_irq(&stopper->lock);
 	if (!list_empty(&stopper->works)) {
 		work = list_first_entry(&stopper->works,
 					struct cpu_stop_work, list);
 		list_del_init(&work->list);
 	}
-	spin_unlock_irq(&stopper->lock);
+	raw_spin_unlock_irq(&stopper->lock);
 
 	if (work) {
 		cpu_stop_fn_t fn = work->fn;
@ kernel/stop_machine.c:301 @ repeat:
 
 		__set_current_state(TASK_RUNNING);
 
+		/*
+		 * Wait until the stopper finished scheduling on all
+		 * cpus
+		 */
+		mutex_lock(&stopper_lock);
+		/*
+		 * Let other cpu threads continue as well
+		 */
+		mutex_unlock(&stopper_lock);
+
 		/* cpu stop callbacks are not allowed to sleep */
 		preempt_disable();
 
@ kernel/stop_machine.c:325 @ repeat:
 			  kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
 					  ksym_buf), arg);
 
+		/*
+		 * Make sure that the wakeup and setting done->waiter
+		 * to NULL is atomic.
+		 */
+		local_irq_disable();
 		cpu_stop_signal_done(done, true);
+		local_irq_enable();
 	} else
 		schedule();
 
@ kernel/stop_machine.c:359 @ static int __cpuinit cpu_stop_cpu_callback(struct notifier_block *nfb,
 		if (IS_ERR(p))
 			return notifier_from_errno(PTR_ERR(p));
 		get_task_struct(p);
+		p->flags |= PF_STOMPER;
 		kthread_bind(p, cpu);
 		sched_set_stop_task(cpu, p);
 		stopper->thread = p;
@ kernel/stop_machine.c:369 @ static int __cpuinit cpu_stop_cpu_callback(struct notifier_block *nfb,
 		/* strictly unnecessary, as first user will wake it */
 		wake_up_process(stopper->thread);
 		/* mark enabled */
-		spin_lock_irq(&stopper->lock);
+		raw_spin_lock_irq(&stopper->lock);
 		stopper->enabled = true;
-		spin_unlock_irq(&stopper->lock);
+		raw_spin_unlock_irq(&stopper->lock);
 		break;
 
 #ifdef CONFIG_HOTPLUG_CPU
@ kernel/stop_machine.c:384 @ static int __cpuinit cpu_stop_cpu_callback(struct notifier_block *nfb,
 		/* kill the stopper */
 		kthread_stop(stopper->thread);
 		/* drain remaining works */
-		spin_lock_irq(&stopper->lock);
+		raw_spin_lock_irq(&stopper->lock);
 		list_for_each_entry(work, &stopper->works, list)
 			cpu_stop_signal_done(work->done, false);
 		stopper->enabled = false;
-		spin_unlock_irq(&stopper->lock);
+		raw_spin_unlock_irq(&stopper->lock);
 		/* release the stopper */
 		put_task_struct(stopper->thread);
 		stopper->thread = NULL;
@ kernel/stop_machine.c:419 @ static int __init cpu_stop_init(void)
 	for_each_possible_cpu(cpu) {
 		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 
-		spin_lock_init(&stopper->lock);
+		raw_spin_lock_init(&stopper->lock);
 		INIT_LIST_HEAD(&stopper->works);
 	}
 
@ kernel/stop_machine.c:609 @ int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
 	set_state(&smdata, STOPMACHINE_PREPARE);
 	cpu_stop_init_done(&done, num_active_cpus());
 	queue_stop_cpus_work(cpu_active_mask, stop_machine_cpu_stop, &smdata,
-			     &done);
+			     &done, true);
 	ret = stop_machine_cpu_stop(&smdata);
 
 	/* Busy wait for completion. */
-	while (!completion_done(&done.completion))
+	while (atomic_read(&done.nr_todo))
 		cpu_relax();
 
 	mutex_unlock(&stop_cpus_mutex);
@ kernel/time.c:166 @ int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
 		return error;
 
 	if (tz) {
-		/* SMP safe, global irq locking makes it work. */
 		sys_tz = *tz;
 		update_vsyscall_tz();
 		if (firsttime) {
@ kernel/time.c:175 @ int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
 		}
 	}
 	if (tv)
-	{
-		/* SMP safe, again the code in arch/foo/time.c should
-		 * globally block out interrupts when it runs.
-		 */
 		return do_settimeofday(tv);
-	}
 	return 0;
 }
 
@ kernel/time/jiffies.c:77 @ u64 get_jiffies_64(void)
 	u64 ret;
 
 	do {
-		seq = read_seqbegin(&xtime_lock);
+		seq = read_seqcount_begin(&xtime_seq);
 		ret = jiffies_64;
-	} while (read_seqretry(&xtime_lock, seq));
+	} while (read_seqcount_retry(&xtime_seq, seq));
 	return ret;
 }
 EXPORT_SYMBOL(get_jiffies_64);
@ kernel/time/ntp.c:405 @ int second_overflow(unsigned long secs)
 		break;
 	}
 
-
 	/* Bump the maxerror field */
 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
 	if (time_maxerror > NTP_PHASE_LIMIT) {
@ kernel/time/ntp.c:625 @ int do_adjtimex(struct timex *txc)
 
 	getnstimeofday(&ts);
 
-	write_seqlock_irq(&xtime_lock);
+	raw_spin_lock_irq(&xtime_lock);
+	write_seqcount_begin(&xtime_seq);
 
 	if (txc->modes & ADJ_ADJTIME) {
 		long save_adjust = time_adjust;
@ kernel/time/ntp.c:668 @ int do_adjtimex(struct timex *txc)
 	/* fill PPS status fields */
 	pps_fill_timex(txc);
 
-	write_sequnlock_irq(&xtime_lock);
+	write_seqcount_end(&xtime_seq);
+	raw_spin_unlock_irq(&xtime_lock);
 
 	txc->time.tv_sec = ts.tv_sec;
 	txc->time.tv_usec = ts.tv_nsec;
@ kernel/time/ntp.c:867 @ void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
 
 	pts_norm = pps_normalize_ts(*phase_ts);
 
-	write_seqlock_irqsave(&xtime_lock, flags);
+	raw_spin_lock_irqsave(&xtime_lock, flags);
+	write_seqcount_begin(&xtime_seq);
 
 	/* clear the error bits, they will be set again if needed */
 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
@ kernel/time/ntp.c:881 @ void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
 	 * just start the frequency interval */
 	if (unlikely(pps_fbase.tv_sec == 0)) {
 		pps_fbase = *raw_ts;
-		write_sequnlock_irqrestore(&xtime_lock, flags);
+		write_seqcount_end(&xtime_seq);
+		raw_spin_unlock_irqrestore(&xtime_lock, flags);
 		return;
 	}
 
@ kernel/time/ntp.c:897 @ void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
 		time_status |= STA_PPSJITTER;
 		/* restart the frequency calibration interval */
 		pps_fbase = *raw_ts;
-		write_sequnlock_irqrestore(&xtime_lock, flags);
+		write_seqcount_end(&xtime_seq);
+		raw_spin_unlock_irqrestore(&xtime_lock, flags);
 		pr_err("hardpps: PPSJITTER: bad pulse\n");
 		return;
 	}
@ kernel/time/ntp.c:915 @ void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
 
 	hardpps_update_phase(pts_norm.nsec);
 
-	write_sequnlock_irqrestore(&xtime_lock, flags);
+	write_seqcount_end(&xtime_seq);
+	raw_spin_unlock_irqrestore(&xtime_lock, flags);
 }
 EXPORT_SYMBOL(hardpps);
 
@ kernel/time/tick-common.c:66 @ int tick_is_oneshot_available(void)
 static void tick_periodic(int cpu)
 {
 	if (tick_do_timer_cpu == cpu) {
-		write_seqlock(&xtime_lock);
+		raw_spin_lock(&xtime_lock);
+		write_seqcount_begin(&xtime_seq);
 
 		/* Keep track of the next tick event */
 		tick_next_period = ktime_add(tick_next_period, tick_period);
 
 		do_timer(1);
-		write_sequnlock(&xtime_lock);
+		write_seqcount_end(&xtime_seq);
+		raw_spin_unlock(&xtime_lock);
 	}
 
 	update_process_times(user_mode(get_irq_regs()));
@ kernel/time/tick-common.c:135 @ void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
 		ktime_t next;
 
 		do {
-			seq = read_seqbegin(&xtime_lock);
+			seq = read_seqcount_begin(&xtime_seq);
 			next = tick_next_period;
-		} while (read_seqretry(&xtime_lock, seq));
+		} while (read_seqcount_retry(&xtime_seq, seq));
 
 		clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
 
@ kernel/time/tick-internal.h:144 @ static inline int tick_device_is_functional(struct clock_event_device *dev)
 #endif
 
 extern void do_timer(unsigned long ticks);
-extern seqlock_t xtime_lock;
+extern raw_spinlock_t xtime_lock;
+extern seqcount_t xtime_seq;
@ kernel/time/tick-sched.c:59 @ static void tick_do_update_jiffies64(ktime_t now)
 		return;
 
 	/* Reevalute with xtime_lock held */
-	write_seqlock(&xtime_lock);
+	raw_spin_lock(&xtime_lock);
+	write_seqcount_begin(&xtime_seq);
 
 	delta = ktime_sub(now, last_jiffies_update);
 	if (delta.tv64 >= tick_period.tv64) {
@ kernel/time/tick-sched.c:83 @ static void tick_do_update_jiffies64(ktime_t now)
 		/* Keep the tick_next_period variable up to date */
 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
 	}
-	write_sequnlock(&xtime_lock);
+	write_seqcount_end(&xtime_seq);
+	raw_spin_unlock(&xtime_lock);
 }
 
 /*
@ kernel/time/tick-sched.c:94 @ static ktime_t tick_init_jiffy_update(void)
 {
 	ktime_t period;
 
-	write_seqlock(&xtime_lock);
+	raw_spin_lock(&xtime_lock);
+	write_seqcount_begin(&xtime_seq);
 	/* Did we start the jiffies update yet ? */
 	if (last_jiffies_update.tv64 == 0)
 		last_jiffies_update = tick_next_period;
 	period = last_jiffies_update;
-	write_sequnlock(&xtime_lock);
+	write_seqcount_end(&xtime_seq);
+	raw_spin_unlock(&xtime_lock);
 	return period;
 }
 
@ kernel/time/tick-sched.c:339 @ void tick_nohz_stop_sched_tick(int inidle)
 		goto end;
 
 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
-		static int ratelimit;
-
-		if (ratelimit < 10) {
-			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
-			       (unsigned int) local_softirq_pending());
-			ratelimit++;
-		}
+		softirq_check_pending_idle();
 		goto end;
 	}
 
 	ts->idle_calls++;
 	/* Read jiffies and the time when jiffies were updated last */
 	do {
-		seq = read_seqbegin(&xtime_lock);
+		seq = read_seqcount_begin(&xtime_seq);
 		last_update = last_jiffies_update;
 		last_jiffies = jiffies;
 		time_delta = timekeeping_max_deferment();
-	} while (read_seqretry(&xtime_lock, seq));
+	} while (read_seqcount_retry(&xtime_seq, seq));
 
 	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
 	    arch_needs_cpu(cpu)) {
@ kernel/time/tick-sched.c:802 @ void tick_setup_sched_timer(void)
 	 * Emulate tick processing via per-CPU hrtimers:
 	 */
 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
+	ts->sched_timer.irqsafe = 1;
 	ts->sched_timer.function = tick_sched_timer;
 
 	/* Get the next period (per cpu) */
@ kernel/time/timekeeping.c:142 @ static inline s64 timekeeping_get_ns_raw(void)
  * This read-write spinlock protects us from races in SMP while
  * playing with xtime.
  */
-__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
-
+__cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(xtime_lock);
+seqcount_t xtime_seq;
 
 /*
  * The current time
@ kernel/time/timekeeping.c:245 @ void getnstimeofday(struct timespec *ts)
 	WARN_ON(timekeeping_suspended);
 
 	do {
-		seq = read_seqbegin(&xtime_lock);
+		seq = read_seqcount_begin(&xtime_seq);
 
 		*ts = xtime;
 		nsecs = timekeeping_get_ns();
@ kernel/time/timekeeping.c:253 @ void getnstimeofday(struct timespec *ts)
 		/* If arch requires, add in gettimeoffset() */
 		nsecs += arch_gettimeoffset();
 
-	} while (read_seqretry(&xtime_lock, seq));
+	} while (read_seqcount_retry(&xtime_seq, seq));
 
 	timespec_add_ns(ts, nsecs);
 }
@ kernel/time/timekeeping.c:268 @ ktime_t ktime_get(void)
 	WARN_ON(timekeeping_suspended);
 
 	do {
-		seq = read_seqbegin(&xtime_lock);
+		seq = read_seqcount_begin(&xtime_seq);
 		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
 		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
 		nsecs += timekeeping_get_ns();
 		/* If arch requires, add in gettimeoffset() */
 		nsecs += arch_gettimeoffset();
 
-	} while (read_seqretry(&xtime_lock, seq));
+	} while (read_seqcount_retry(&xtime_seq, seq));
 	/*
 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
@ kernel/time/timekeeping.c:301 @ void ktime_get_ts(struct timespec *ts)
 	WARN_ON(timekeeping_suspended);
 
 	do {
-		seq = read_seqbegin(&xtime_lock);
+		seq = read_seqcount_begin(&xtime_seq);
 		*ts = xtime;
 		tomono = wall_to_monotonic;
 		nsecs = timekeeping_get_ns();
 		/* If arch requires, add in gettimeoffset() */
 		nsecs += arch_gettimeoffset();
 
-	} while (read_seqretry(&xtime_lock, seq));
+	} while (read_seqcount_retry(&xtime_seq, seq));
 
 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
 				ts->tv_nsec + tomono.tv_nsec + nsecs);
@ kernel/time/timekeeping.c:336 @ void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
 	do {
 		u32 arch_offset;
 
-		seq = read_seqbegin(&xtime_lock);
+		seq = read_seqcount_begin(&xtime_seq);
 
 		*ts_raw = raw_time;
 		*ts_real = xtime;
@ kernel/time/timekeeping.c:349 @ void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
 		nsecs_raw += arch_offset;
 		nsecs_real += arch_offset;
 
-	} while (read_seqretry(&xtime_lock, seq));
+	} while (read_seqcount_retry(&xtime_seq, seq));
 
 	timespec_add_ns(ts_raw, nsecs_raw);
 	timespec_add_ns(ts_real, nsecs_real);
@ kernel/time/timekeeping.c:388 @ int do_settimeofday(const struct timespec *tv)
 	if (!timespec_valid_strict(tv))
 		return -EINVAL;
 
-	write_seqlock_irqsave(&xtime_lock, flags);
+	raw_spin_lock_irqsave(&xtime_lock, flags);
+	write_seqcount_begin(&xtime_seq);
 
 	timekeeping_forward_now();
 
@ kernel/time/timekeeping.c:401 @ int do_settimeofday(const struct timespec *tv)
 
 	timekeeping_update(true);
 
-	write_sequnlock_irqrestore(&xtime_lock, flags);
+	write_seqcount_end(&xtime_seq);
+	raw_spin_unlock_irqrestore(&xtime_lock, flags);
 
 	/* signal hrtimers about time change */
 	clock_was_set();
@ kernel/time/timekeeping.c:428 @ int timekeeping_inject_offset(struct timespec *ts)
 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
 		return -EINVAL;
 
-	write_seqlock_irqsave(&xtime_lock, flags);
+	raw_spin_lock_irqsave(&xtime_lock, flags);
+	write_seqcount_begin(&xtime_seq);
 
 	timekeeping_forward_now();
 
@ kernel/time/timekeeping.c:445 @ int timekeeping_inject_offset(struct timespec *ts)
 error: /* even if we error out, we forwarded the time, so call update */
 	timekeeping_update(true);
 
-	write_sequnlock_irqrestore(&xtime_lock, flags);
+	write_seqcount_end(&xtime_seq);
+	raw_spin_unlock_irqrestore(&xtime_lock, flags);
 
 	/* signal hrtimers about time change */
 	clock_was_set();
@ kernel/time/timekeeping.c:518 @ void getrawmonotonic(struct timespec *ts)
 	s64 nsecs;
 
 	do {
-		seq = read_seqbegin(&xtime_lock);
+		seq = read_seqcount_begin(&xtime_seq);
 		nsecs = timekeeping_get_ns_raw();
 		*ts = raw_time;
 
-	} while (read_seqretry(&xtime_lock, seq));
+	} while (read_seqcount_retry(&xtime_seq, seq));
 
 	timespec_add_ns(ts, nsecs);
 }
@ kernel/time/timekeeping.c:538 @ int timekeeping_valid_for_hres(void)
 	int ret;
 
 	do {
-		seq = read_seqbegin(&xtime_lock);
+		seq = read_seqcount_begin(&xtime_seq);
 
 		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
 
-	} while (read_seqretry(&xtime_lock, seq));
+	} while (read_seqcount_retry(&xtime_seq, seq));
 
 	return ret;
 }
@ kernel/time/timekeeping.c:613 @ void __init timekeeping_init(void)
 		boot.tv_nsec = 0;
 	}
 
-	write_seqlock_irqsave(&xtime_lock, flags);
+	raw_spin_lock_irqsave(&xtime_lock, flags);
+	write_seqcount_begin(&xtime_seq);
 
 	ntp_init();
 
@ kernel/time/timekeeping.c:636 @ void __init timekeeping_init(void)
 	update_rt_offset();
 	total_sleep_time.tv_sec = 0;
 	total_sleep_time.tv_nsec = 0;
-	write_sequnlock_irqrestore(&xtime_lock, flags);
+	write_seqcount_end(&xtime_seq);
+	raw_spin_unlock_irqrestore(&xtime_lock, flags);
 }
 
 /* time in seconds when suspend began */
@ kernel/time/timekeeping.c:690 @ void timekeeping_inject_sleeptime(struct timespec *delta)
 	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
 		return;
 
-	write_seqlock_irqsave(&xtime_lock, flags);
+	raw_spin_lock_irqsave(&xtime_lock, flags);
+	write_seqcount_begin(&xtime_seq);
 	timekeeping_forward_now();
 
 	__timekeeping_inject_sleeptime(delta);
 
 	timekeeping_update(true);
 
-	write_sequnlock_irqrestore(&xtime_lock, flags);
+	write_seqcount_end(&xtime_seq);
+	raw_spin_unlock_irqrestore(&xtime_lock, flags);
 
 	/* signal hrtimers about time change */
 	clock_was_set();
@ kernel/time/timekeeping.c:722 @ static void timekeeping_resume(void)
 
 	clocksource_resume();
 
-	write_seqlock_irqsave(&xtime_lock, flags);
+	raw_spin_lock_irqsave(&xtime_lock, flags);
+	write_seqcount_begin(&xtime_seq);
 
 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
 		ts = timespec_sub(ts, timekeeping_suspend_time);
@ kernel/time/timekeeping.c:734 @ static void timekeeping_resume(void)
 	timekeeper.ntp_error = 0;
 	timekeeping_suspended = 0;
 	timekeeping_update(false);
-	write_sequnlock_irqrestore(&xtime_lock, flags);
+	write_seqcount_end(&xtime_seq);
+	raw_spin_unlock_irqrestore(&xtime_lock, flags);
 
 	touch_softlockup_watchdog();
 
@ kernel/time/timekeeping.c:753 @ static int timekeeping_suspend(void)
 
 	read_persistent_clock(&timekeeping_suspend_time);
 
-	write_seqlock_irqsave(&xtime_lock, flags);
+	raw_spin_lock_irqsave(&xtime_lock, flags);
+	write_seqcount_begin(&xtime_seq);
 	timekeeping_forward_now();
 	timekeeping_suspended = 1;
 
@ kernel/time/timekeeping.c:777 @ static int timekeeping_suspend(void)
 		timekeeping_suspend_time =
 			timespec_add(timekeeping_suspend_time, delta_delta);
 	}
-	write_sequnlock_irqrestore(&xtime_lock, flags);
+	write_seqcount_end(&xtime_seq);
+	raw_spin_unlock_irqrestore(&xtime_lock, flags);
 
 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
 	clocksource_suspend();
@ kernel/time/timekeeping.c:1167 @ void get_monotonic_boottime(struct timespec *ts)
 	WARN_ON(timekeeping_suspended);
 
 	do {
-		seq = read_seqbegin(&xtime_lock);
+		seq = read_seqcount_begin(&xtime_seq);
 		*ts = xtime;
 		tomono = wall_to_monotonic;
 		sleep = total_sleep_time;
 		nsecs = timekeeping_get_ns();
 
-	} while (read_seqretry(&xtime_lock, seq));
+	} while (read_seqcount_retry(&xtime_seq, seq));
 
 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
 			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
@ kernel/time/timekeeping.c:1224 @ struct timespec current_kernel_time(void)
 	unsigned long seq;
 
 	do {
-		seq = read_seqbegin(&xtime_lock);
+		seq = read_seqcount_begin(&xtime_seq);
 
 		now = xtime;
-	} while (read_seqretry(&xtime_lock, seq));
+	} while (read_seqcount_retry(&xtime_seq, seq));
 
 	return now;
 }
@ kernel/time/timekeeping.c:1239 @ struct timespec get_monotonic_coarse(void)
 	unsigned long seq;
 
 	do {
-		seq = read_seqbegin(&xtime_lock);
+		seq = read_seqcount_begin(&xtime_seq);
 
 		now = xtime;
 		mono = wall_to_monotonic;
-	} while (read_seqretry(&xtime_lock, seq));
+	} while (read_seqcount_retry(&xtime_seq, seq));
 
 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
 				now.tv_nsec + mono.tv_nsec);
@ kernel/time/timekeeping.c:1275 @ void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
 	unsigned long seq;
 
 	do {
-		seq = read_seqbegin(&xtime_lock);
+		seq = read_seqcount_begin(&xtime_seq);
 		*xtim = xtime;
 		*wtom = wall_to_monotonic;
 		*sleep = total_sleep_time;
-	} while (read_seqretry(&xtime_lock, seq));
+	} while (read_seqcount_retry(&xtime_seq, seq));
 }
 
 #ifdef CONFIG_HIGH_RES_TIMERS
@ kernel/time/timekeeping.c:1298 @ ktime_t ktime_get_update_offsets(ktime_t *real, ktime_t *boot)
 	u64 secs, nsecs;
 
 	do {
-		seq = read_seqbegin(&xtime_lock);
+		seq = read_seqcount_begin(&xtime_seq);
 
 		secs = xtime.tv_sec;
 		nsecs = xtime.tv_nsec;
@ kernel/time/timekeeping.c:1308 @ ktime_t ktime_get_update_offsets(ktime_t *real, ktime_t *boot)
 
 		*real = offs_real;
 		*boot = offs_boot;
-	} while (read_seqretry(&xtime_lock, seq));
+	} while (read_seqcount_retry(&xtime_seq, seq));
 
 	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
 	now = ktime_sub(now, *real);
@ kernel/time/timekeeping.c:1325 @ ktime_t ktime_get_monotonic_offset(void)
 	struct timespec wtom;
 
 	do {
-		seq = read_seqbegin(&xtime_lock);
+		seq = read_seqcount_begin(&xtime_seq);
 		wtom = wall_to_monotonic;
-	} while (read_seqretry(&xtime_lock, seq));
+	} while (read_seqcount_retry(&xtime_seq, seq));
 	return timespec_to_ktime(wtom);
 }
 
@ kernel/time/timekeeping.c:1339 @ ktime_t ktime_get_monotonic_offset(void)
  */
 void xtime_update(unsigned long ticks)
 {
-	write_seqlock(&xtime_lock);
+	raw_spin_lock(&xtime_lock);
+	write_seqcount_begin(&xtime_seq);
 	do_timer(ticks);
-	write_sequnlock(&xtime_lock);
+	write_seqcount_end(&xtime_seq);
+	raw_spin_unlock(&xtime_lock);
 }
@ kernel/timer.c:79 @ struct tvec_root {
 struct tvec_base {
 	spinlock_t lock;
 	struct timer_list *running_timer;
+	wait_queue_head_t wait_for_running_timer;
 	unsigned long timer_jiffies;
 	unsigned long next_timer;
 	struct tvec_root tv1;
@ kernel/timer.c:659 @ static struct tvec_base *lock_timer_base(struct timer_list *timer,
 	}
 }
 
+#ifndef CONFIG_PREEMPT_RT_FULL
+static inline struct tvec_base *switch_timer_base(struct timer_list *timer,
+						  struct tvec_base *old,
+						  struct tvec_base *new)
+{
+	/* See the comment in lock_timer_base() */
+	timer_set_base(timer, NULL);
+	spin_unlock(&old->lock);
+	spin_lock(&new->lock);
+	timer_set_base(timer, new);
+	return new;
+}
+#else
+static inline struct tvec_base *switch_timer_base(struct timer_list *timer,
+						  struct tvec_base *old,
+						  struct tvec_base *new)
+{
+	/*
+	 * We cannot do the above because we might be preempted and
+	 * then the preempter would see NULL and loop forever.
+	 */
+	if (spin_trylock(&new->lock)) {
+		timer_set_base(timer, new);
+		spin_unlock(&old->lock);
+		return new;
+	}
+	return old;
+}
+#endif
+
 static inline int
 __mod_timer(struct timer_list *timer, unsigned long expires,
 						bool pending_only, int pinned)
@ kernel/timer.c:715 @ __mod_timer(struct timer_list *timer, unsigned long expires,
 
 	debug_activate(timer, expires);
 
+	preempt_disable_rt();
 	cpu = smp_processor_id();
 
 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
 	if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
 		cpu = get_nohz_timer_target();
 #endif
+	preempt_enable_rt();
+
 	new_base = per_cpu(tvec_bases, cpu);
 
 	if (base != new_base) {
@ kernel/timer.c:734 @ __mod_timer(struct timer_list *timer, unsigned long expires,
 		 * handler yet has not finished. This also guarantees that
 		 * the timer is serialized wrt itself.
 		 */
-		if (likely(base->running_timer != timer)) {
-			/* See the comment in lock_timer_base() */
-			timer_set_base(timer, NULL);
-			spin_unlock(&base->lock);
-			base = new_base;
-			spin_lock(&base->lock);
-			timer_set_base(timer, base);
-		}
+		if (likely(base->running_timer != timer))
+			base = switch_timer_base(timer, base, new_base);
 	}
 
 	timer->expires = expires;
@ kernel/timer.c:918 @ void add_timer_on(struct timer_list *timer, int cpu)
 }
 EXPORT_SYMBOL_GPL(add_timer_on);
 
+#ifdef CONFIG_PREEMPT_RT_FULL
+/*
+ * Wait for a running timer
+ */
+static void wait_for_running_timer(struct timer_list *timer)
+{
+	struct tvec_base *base = timer->base;
+
+	if (base->running_timer == timer)
+		wait_event(base->wait_for_running_timer,
+			   base->running_timer != timer);
+}
+
+# define wakeup_timer_waiters(b)	wake_up(&(b)->wait_for_tunning_timer)
+#else
+static inline void wait_for_running_timer(struct timer_list *timer)
+{
+	cpu_relax();
+}
+
+# define wakeup_timer_waiters(b)	do { } while (0)
+#endif
+
 /**
  * del_timer - deactive a timer.
  * @timer: the timer to be deactivated
@ kernel/timer.c:1009 @ out:
 }
 EXPORT_SYMBOL(try_to_del_timer_sync);
 
-#ifdef CONFIG_SMP
+#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT_FULL)
 /**
  * del_timer_sync - deactivate a timer and wait for the handler to finish.
  * @timer: the timer to be deactivated
@ kernel/timer.c:1069 @ int del_timer_sync(struct timer_list *timer)
 		int ret = try_to_del_timer_sync(timer);
 		if (ret >= 0)
 			return ret;
-		cpu_relax();
+		wait_for_running_timer(timer);
 	}
 }
 EXPORT_SYMBOL(del_timer_sync);
@ kernel/timer.c:1180 @ static inline void __run_timers(struct tvec_base *base)
 
 			spin_unlock_irq(&base->lock);
 			call_timer_fn(timer, fn, data);
+			base->running_timer = NULL;
 			spin_lock_irq(&base->lock);
 		}
 	}
-	base->running_timer = NULL;
+	wake_up(&base->wait_for_running_timer);
 	spin_unlock_irq(&base->lock);
 }
 
@ kernel/timer.c:1323 @ unsigned long get_next_timer_interrupt(unsigned long now)
 	 */
 	if (cpu_is_offline(smp_processor_id()))
 		return now + NEXT_TIMER_MAX_DELTA;
+
+#ifdef CONFIG_PREEMPT_RT_FULL
+	/*
+	 * On PREEMPT_RT we cannot sleep here. If the trylock does not
+	 * succeed then we return the worst-case 'expires in 1 tick'
+	 * value. We use the rt functions here directly to avoid a
+	 * migrate_disable() call.
+	 */
+	if (spin_do_trylock(&base->lock)) {
+		if (time_before_eq(base->next_timer, base->timer_jiffies))
+			base->next_timer = __next_timer_interrupt(base);
+		expires = base->next_timer;
+		rt_spin_unlock(&base->lock);
+	} else {
+		expires = now + 1;
+	}
+#else
 	spin_lock(&base->lock);
 	if (time_before_eq(base->next_timer, base->timer_jiffies))
 		base->next_timer = __next_timer_interrupt(base);
@ kernel/timer.c:1348 @ unsigned long get_next_timer_interrupt(unsigned long now)
 
 	if (time_before_eq(expires, now))
 		return now;
-
+#endif
 	return cmp_next_hrtimer_event(now, expires);
 }
 #endif
@ kernel/timer.c:1364 @ void update_process_times(int user_tick)
 
 	/* Note: this timer irq context must be accounted for as well. */
 	account_process_tick(p, user_tick);
+	scheduler_tick();
 	run_local_timers();
 	rcu_check_callbacks(cpu, user_tick);
-	printk_tick();
-#ifdef CONFIG_IRQ_WORK
+#if defined(CONFIG_IRQ_WORK) && !defined(CONFIG_PREEMPT_RT_FULL)
 	if (in_irq())
 		irq_work_run();
 #endif
-	scheduler_tick();
 	run_posix_cpu_timers(p);
 }
 
@ kernel/timer.c:1381 @ static void run_timer_softirq(struct softirq_action *h)
 {
 	struct tvec_base *base = __this_cpu_read(tvec_bases);
 
+#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_PREEMPT_RT_FULL)
+	irq_work_run();
+#endif
+
+	printk_tick();
 	hrtimer_run_pending();
 
 	if (time_after_eq(jiffies, base->timer_jiffies))
@ kernel/timer.c:1712 @ static int __cpuinit init_timers_cpu(int cpu)
 	}
 
 	spin_lock_init(&base->lock);
+	init_waitqueue_head(&base->wait_for_running_timer);
 
 	for (j = 0; j < TVN_SIZE; j++) {
 		INIT_LIST_HEAD(base->tv5.vec + j);
@ kernel/timer.c:1752 @ static void __cpuinit migrate_timers(int cpu)
 
 	BUG_ON(cpu_online(cpu));
 	old_base = per_cpu(tvec_bases, cpu);
-	new_base = get_cpu_var(tvec_bases);
+	new_base = get_local_var(tvec_bases);
 	/*
 	 * The caller is globally serialized and nobody else
 	 * takes two locks at once, deadlock is not possible.
@ kernel/timer.c:1773 @ static void __cpuinit migrate_timers(int cpu)
 
 	spin_unlock(&old_base->lock);
 	spin_unlock_irq(&new_base->lock);
-	put_cpu_var(tvec_bases);
+	put_local_var(tvec_bases);
 }
 #endif /* CONFIG_HOTPLUG_CPU */
 
@ kernel/trace/Kconfig:195 @ config IRQSOFF_TRACER
 	  enabled. This option and the preempt-off timing option can be
 	  used together or separately.)
 
+config INTERRUPT_OFF_HIST
+	bool "Interrupts-off Latency Histogram"
+	depends on IRQSOFF_TRACER
+	help
+	  This option generates continuously updated histograms (one per cpu)
+	  of the duration of time periods with interrupts disabled. The
+	  histograms are disabled by default. To enable them, write a non-zero
+	  number to
+
+	      /sys/kernel/debug/tracing/latency_hist/enable/preemptirqsoff
+
+	  If PREEMPT_OFF_HIST is also selected, additional histograms (one
+	  per cpu) are generated that accumulate the duration of time periods
+	  when both interrupts and preemption are disabled. The histogram data
+	  will be located in the debug file system at
+
+	      /sys/kernel/debug/tracing/latency_hist/irqsoff
+
 config PREEMPT_TRACER
 	bool "Preemption-off Latency Tracer"
 	default n
@ kernel/trace/Kconfig:235 @ config PREEMPT_TRACER
 	  enabled. This option and the irqs-off timing option can be
 	  used together or separately.)
 
+config PREEMPT_OFF_HIST
+	bool "Preemption-off Latency Histogram"
+	depends on PREEMPT_TRACER
+	help
+	  This option generates continuously updated histograms (one per cpu)
+	  of the duration of time periods with preemption disabled. The
+	  histograms are disabled by default. To enable them, write a non-zero
+	  number to
+
+	      /sys/kernel/debug/tracing/latency_hist/enable/preemptirqsoff
+
+	  If INTERRUPT_OFF_HIST is also selected, additional histograms (one
+	  per cpu) are generated that accumulate the duration of time periods
+	  when both interrupts and preemption are disabled. The histogram data
+	  will be located in the debug file system at
+
+	      /sys/kernel/debug/tracing/latency_hist/preemptoff
+
 config SCHED_TRACER
 	bool "Scheduling Latency Tracer"
 	select GENERIC_TRACER
@ kernel/trace/Kconfig:262 @ config SCHED_TRACER
 	  This tracer tracks the latency of the highest priority task
 	  to be scheduled in, starting from the point it has woken up.
 
+config WAKEUP_LATENCY_HIST
+	bool "Scheduling Latency Histogram"
+	depends on SCHED_TRACER
+	help
+	  This option generates continuously updated histograms (one per cpu)
+	  of the scheduling latency of the highest priority task.
+	  The histograms are disabled by default. To enable them, write a
+	  non-zero number to
+
+	      /sys/kernel/debug/tracing/latency_hist/enable/wakeup
+
+	  Two different algorithms are used, one to determine the latency of
+	  processes that exclusively use the highest priority of the system and
+	  another one to determine the latency of processes that share the
+	  highest system priority with other processes. The former is used to
+	  improve hardware and system software, the latter to optimize the
+	  priority design of a given system. The histogram data will be
+	  located in the debug file system at
+
+	      /sys/kernel/debug/tracing/latency_hist/wakeup
+
+	  and
+
+	      /sys/kernel/debug/tracing/latency_hist/wakeup/sharedprio
+
+	  If both Scheduling Latency Histogram and Missed Timer Offsets
+	  Histogram are selected, additional histogram data will be collected
+	  that contain, in addition to the wakeup latency, the timer latency, in
+	  case the wakeup was triggered by an expired timer. These histograms
+	  are available in the
+
+	      /sys/kernel/debug/tracing/latency_hist/timerandwakeup
+
+	  directory. They reflect the apparent interrupt and scheduling latency
+	  and are best suitable to determine the worst-case latency of a given
+	  system. To enable these histograms, write a non-zero number to
+
+	      /sys/kernel/debug/tracing/latency_hist/enable/timerandwakeup
+
+config MISSED_TIMER_OFFSETS_HIST
+	depends on HIGH_RES_TIMERS
+	select GENERIC_TRACER
+	bool "Missed Timer Offsets Histogram"
+	help
+	  Generate a histogram of missed timer offsets in microseconds. The
+	  histograms are disabled by default. To enable them, write a non-zero
+	  number to
+
+	      /sys/kernel/debug/tracing/latency_hist/enable/missed_timer_offsets
+
+	  The histogram data will be located in the debug file system at
+
+	      /sys/kernel/debug/tracing/latency_hist/missed_timer_offsets
+
+	  If both Scheduling Latency Histogram and Missed Timer Offsets
+	  Histogram are selected, additional histogram data will be collected
+	  that contain, in addition to the wakeup latency, the timer latency, in
+	  case the wakeup was triggered by an expired timer. These histograms
+	  are available in the
+
+	      /sys/kernel/debug/tracing/latency_hist/timerandwakeup
+
+	  directory. They reflect the apparent interrupt and scheduling latency
+	  and are best suitable to determine the worst-case latency of a given
+	  system. To enable these histograms, write a non-zero number to
+
+	      /sys/kernel/debug/tracing/latency_hist/enable/timerandwakeup
+
 config ENABLE_DEFAULT_TRACERS
 	bool "Trace process context switches and events"
 	depends on !GENERIC_TRACER
@ kernel/trace/Makefile:39 @ obj-$(CONFIG_FUNCTION_TRACER) += trace_functions.o
 obj-$(CONFIG_IRQSOFF_TRACER) += trace_irqsoff.o
 obj-$(CONFIG_PREEMPT_TRACER) += trace_irqsoff.o
 obj-$(CONFIG_SCHED_TRACER) += trace_sched_wakeup.o
+obj-$(CONFIG_INTERRUPT_OFF_HIST) += latency_hist.o
+obj-$(CONFIG_PREEMPT_OFF_HIST) += latency_hist.o
+obj-$(CONFIG_WAKEUP_LATENCY_HIST) += latency_hist.o
+obj-$(CONFIG_MISSED_TIMER_OFFSETS_HIST) += latency_hist.o
 obj-$(CONFIG_NOP_TRACER) += trace_nop.o
 obj-$(CONFIG_STACK_TRACER) += trace_stack.o
 obj-$(CONFIG_MMIOTRACE) += trace_mmiotrace.o
@ kernel/trace/latency_hist.c:4 @
+/*
+ * kernel/trace/latency_hist.c
+ *
+ * Add support for histograms of preemption-off latency and
+ * interrupt-off latency and wakeup latency, it depends on
+ * Real-Time Preemption Support.
+ *
+ *  Copyright (C) 2005 MontaVista Software, Inc.
+ *  Yi Yang <yyang@ch.mvista.com>
+ *
+ *  Converted to work with the new latency tracer.
+ *  Copyright (C) 2008 Red Hat, Inc.
+ *    Steven Rostedt <srostedt@redhat.com>
+ *
+ */
+#include <linux/module.h>
+#include <linux/debugfs.h>
+#include <linux/seq_file.h>
+#include <linux/percpu.h>
+#include <linux/kallsyms.h>
+#include <linux/uaccess.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <asm/atomic.h>
+#include <asm/div64.h>
+
+#include "trace.h"
+#include <trace/events/sched.h>
+
+#define NSECS_PER_USECS 1000L
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/hist.h>
+
+enum {
+	IRQSOFF_LATENCY = 0,
+	PREEMPTOFF_LATENCY,
+	PREEMPTIRQSOFF_LATENCY,
+	WAKEUP_LATENCY,
+	WAKEUP_LATENCY_SHAREDPRIO,
+	MISSED_TIMER_OFFSETS,
+	TIMERANDWAKEUP_LATENCY,
+	MAX_LATENCY_TYPE,
+};
+
+#define MAX_ENTRY_NUM 10240
+
+struct hist_data {
+	atomic_t hist_mode; /* 0 log, 1 don't log */
+	long offset; /* set it to MAX_ENTRY_NUM/2 for a bipolar scale */
+	long min_lat;
+	long max_lat;
+	unsigned long long below_hist_bound_samples;
+	unsigned long long above_hist_bound_samples;
+	long long accumulate_lat;
+	unsigned long long total_samples;
+	unsigned long long hist_array[MAX_ENTRY_NUM];
+};
+
+struct enable_data {
+	int latency_type;
+	int enabled;
+};
+
+static char *latency_hist_dir_root = "latency_hist";
+
+#ifdef CONFIG_INTERRUPT_OFF_HIST
+static DEFINE_PER_CPU(struct hist_data, irqsoff_hist);
+static char *irqsoff_hist_dir = "irqsoff";
+static DEFINE_PER_CPU(cycles_t, hist_irqsoff_start);
+static DEFINE_PER_CPU(int, hist_irqsoff_counting);
+#endif
+
+#ifdef CONFIG_PREEMPT_OFF_HIST
+static DEFINE_PER_CPU(struct hist_data, preemptoff_hist);
+static char *preemptoff_hist_dir = "preemptoff";
+static DEFINE_PER_CPU(cycles_t, hist_preemptoff_start);
+static DEFINE_PER_CPU(int, hist_preemptoff_counting);
+#endif
+
+#if defined(CONFIG_PREEMPT_OFF_HIST) && defined(CONFIG_INTERRUPT_OFF_HIST)
+static DEFINE_PER_CPU(struct hist_data, preemptirqsoff_hist);
+static char *preemptirqsoff_hist_dir = "preemptirqsoff";
+static DEFINE_PER_CPU(cycles_t, hist_preemptirqsoff_start);
+static DEFINE_PER_CPU(int, hist_preemptirqsoff_counting);
+#endif
+
+#if defined(CONFIG_PREEMPT_OFF_HIST) || defined(CONFIG_INTERRUPT_OFF_HIST)
+static notrace void probe_preemptirqsoff_hist(void *v, int reason, int start);
+static struct enable_data preemptirqsoff_enabled_data = {
+	.latency_type = PREEMPTIRQSOFF_LATENCY,
+	.enabled = 0,
+};
+#endif
+
+#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \
+    defined(CONFIG_MISSED_TIMER_OFFSETS_HIST)
+struct maxlatproc_data {
+	char comm[FIELD_SIZEOF(struct task_struct, comm)];
+	char current_comm[FIELD_SIZEOF(struct task_struct, comm)];
+	int pid;
+	int current_pid;
+	int prio;
+	int current_prio;
+	long latency;
+	long timeroffset;
+	cycle_t timestamp;
+};
+#endif
+
+#ifdef CONFIG_WAKEUP_LATENCY_HIST
+static DEFINE_PER_CPU(struct hist_data, wakeup_latency_hist);
+static DEFINE_PER_CPU(struct hist_data, wakeup_latency_hist_sharedprio);
+static char *wakeup_latency_hist_dir = "wakeup";
+static char *wakeup_latency_hist_dir_sharedprio = "sharedprio";
+static notrace void probe_wakeup_latency_hist_start(void *v,
+    struct task_struct *p, int success);
+static notrace void probe_wakeup_latency_hist_stop(void *v,
+    struct task_struct *prev, struct task_struct *next);
+static notrace void probe_sched_migrate_task(void *,
+    struct task_struct *task, int cpu);
+static struct enable_data wakeup_latency_enabled_data = {
+	.latency_type = WAKEUP_LATENCY,
+	.enabled = 0,
+};
+static DEFINE_PER_CPU(struct maxlatproc_data, wakeup_maxlatproc);
+static DEFINE_PER_CPU(struct maxlatproc_data, wakeup_maxlatproc_sharedprio);
+static DEFINE_PER_CPU(struct task_struct *, wakeup_task);
+static DEFINE_PER_CPU(int, wakeup_sharedprio);
+static unsigned long wakeup_pid;
+#endif
+
+#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST
+static DEFINE_PER_CPU(struct hist_data, missed_timer_offsets);
+static char *missed_timer_offsets_dir = "missed_timer_offsets";
+static notrace void probe_hrtimer_interrupt(void *v, int cpu,
+    long long offset, struct task_struct *curr, struct task_struct *task);
+static struct enable_data missed_timer_offsets_enabled_data = {
+	.latency_type = MISSED_TIMER_OFFSETS,
+	.enabled = 0,
+};
+static DEFINE_PER_CPU(struct maxlatproc_data, missed_timer_offsets_maxlatproc);
+static unsigned long missed_timer_offsets_pid;
+#endif
+
+#if defined(CONFIG_WAKEUP_LATENCY_HIST) && \
+    defined(CONFIG_MISSED_TIMER_OFFSETS_HIST)
+static DEFINE_PER_CPU(struct hist_data, timerandwakeup_latency_hist);
+static char *timerandwakeup_latency_hist_dir = "timerandwakeup";
+static struct enable_data timerandwakeup_enabled_data = {
+	.latency_type = TIMERANDWAKEUP_LATENCY,
+	.enabled = 0,
+};
+static DEFINE_PER_CPU(struct maxlatproc_data, timerandwakeup_maxlatproc);
+#endif
+
+void notrace latency_hist(int latency_type, int cpu, long latency,
+			  long timeroffset, cycle_t stop,
+			  struct task_struct *p)
+{
+	struct hist_data *my_hist;
+#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \
+    defined(CONFIG_MISSED_TIMER_OFFSETS_HIST)
+	struct maxlatproc_data *mp = NULL;
+#endif
+
+	if (cpu < 0 || cpu >= NR_CPUS || latency_type < 0 ||
+	    latency_type >= MAX_LATENCY_TYPE)
+		return;
+
+	switch (latency_type) {
+#ifdef CONFIG_INTERRUPT_OFF_HIST
+	case IRQSOFF_LATENCY:
+		my_hist = &per_cpu(irqsoff_hist, cpu);
+		break;
+#endif
+#ifdef CONFIG_PREEMPT_OFF_HIST
+	case PREEMPTOFF_LATENCY:
+		my_hist = &per_cpu(preemptoff_hist, cpu);
+		break;
+#endif
+#if defined(CONFIG_PREEMPT_OFF_HIST) && defined(CONFIG_INTERRUPT_OFF_HIST)
+	case PREEMPTIRQSOFF_LATENCY:
+		my_hist = &per_cpu(preemptirqsoff_hist, cpu);
+		break;
+#endif
+#ifdef CONFIG_WAKEUP_LATENCY_HIST
+	case WAKEUP_LATENCY:
+		my_hist = &per_cpu(wakeup_latency_hist, cpu);
+		mp = &per_cpu(wakeup_maxlatproc, cpu);
+		break;
+	case WAKEUP_LATENCY_SHAREDPRIO:
+		my_hist = &per_cpu(wakeup_latency_hist_sharedprio, cpu);
+		mp = &per_cpu(wakeup_maxlatproc_sharedprio, cpu);
+		break;
+#endif
+#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST
+	case MISSED_TIMER_OFFSETS:
+		my_hist = &per_cpu(missed_timer_offsets, cpu);
+		mp = &per_cpu(missed_timer_offsets_maxlatproc, cpu);
+		break;
+#endif
+#if defined(CONFIG_WAKEUP_LATENCY_HIST) && \
+    defined(CONFIG_MISSED_TIMER_OFFSETS_HIST)
+	case TIMERANDWAKEUP_LATENCY:
+		my_hist = &per_cpu(timerandwakeup_latency_hist, cpu);
+		mp = &per_cpu(timerandwakeup_maxlatproc, cpu);
+		break;
+#endif
+
+	default:
+		return;
+	}
+
+	latency += my_hist->offset;
+
+	if (atomic_read(&my_hist->hist_mode) == 0)
+		return;
+
+	if (latency < 0 || latency >= MAX_ENTRY_NUM) {
+		if (latency < 0)
+			my_hist->below_hist_bound_samples++;
+		else
+			my_hist->above_hist_bound_samples++;
+	} else
+		my_hist->hist_array[latency]++;
+
+	if (unlikely(latency > my_hist->max_lat ||
+	    my_hist->min_lat == LONG_MAX)) {
+#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \
+    defined(CONFIG_MISSED_TIMER_OFFSETS_HIST)
+		if (latency_type == WAKEUP_LATENCY ||
+		    latency_type == WAKEUP_LATENCY_SHAREDPRIO ||
+		    latency_type == MISSED_TIMER_OFFSETS ||
+		    latency_type == TIMERANDWAKEUP_LATENCY) {
+			strncpy(mp->comm, p->comm, sizeof(mp->comm));
+			strncpy(mp->current_comm, current->comm,
+			    sizeof(mp->current_comm));
+			mp->pid = task_pid_nr(p);
+			mp->current_pid = task_pid_nr(current);
+			mp->prio = p->prio;
+			mp->current_prio = current->prio;
+			mp->latency = latency;
+			mp->timeroffset = timeroffset;
+			mp->timestamp = stop;
+		}
+#endif
+		my_hist->max_lat = latency;
+	}
+	if (unlikely(latency < my_hist->min_lat))
+		my_hist->min_lat = latency;
+	my_hist->total_samples++;
+	my_hist->accumulate_lat += latency;
+}
+
+static void *l_start(struct seq_file *m, loff_t *pos)
+{
+	loff_t *index_ptr = NULL;
+	loff_t index = *pos;
+	struct hist_data *my_hist = m->private;
+
+	if (index == 0) {
+		char minstr[32], avgstr[32], maxstr[32];
+
+		atomic_dec(&my_hist->hist_mode);
+
+		if (likely(my_hist->total_samples)) {
+			long avg = (long) div64_s64(my_hist->accumulate_lat,
+			    my_hist->total_samples);
+			snprintf(minstr, sizeof(minstr), "%ld",
+			    my_hist->min_lat - my_hist->offset);
+			snprintf(avgstr, sizeof(avgstr), "%ld",
+			    avg - my_hist->offset);
+			snprintf(maxstr, sizeof(maxstr), "%ld",
+			    my_hist->max_lat - my_hist->offset);
+		} else {
+			strcpy(minstr, "<undef>");
+			strcpy(avgstr, minstr);
+			strcpy(maxstr, minstr);
+		}
+
+		seq_printf(m, "#Minimum latency: %s microseconds\n"
+			   "#Average latency: %s microseconds\n"
+			   "#Maximum latency: %s microseconds\n"
+			   "#Total samples: %llu\n"
+			   "#There are %llu samples lower than %ld"
+			   " microseconds.\n"
+			   "#There are %llu samples greater or equal"
+			   " than %ld microseconds.\n"
+			   "#usecs\t%16s\n",
+			   minstr, avgstr, maxstr,
+			   my_hist->total_samples,
+			   my_hist->below_hist_bound_samples,
+			   -my_hist->offset,
+			   my_hist->above_hist_bound_samples,
+			   MAX_ENTRY_NUM - my_hist->offset,
+			   "samples");
+	}
+	if (index < MAX_ENTRY_NUM) {
+		index_ptr = kmalloc(sizeof(loff_t), GFP_KERNEL);
+		if (index_ptr)
+			*index_ptr = index;
+	}
+
+	return index_ptr;
+}
+
+static void *l_next(struct seq_file *m, void *p, loff_t *pos)
+{
+	loff_t *index_ptr = p;
+	struct hist_data *my_hist = m->private;
+
+	if (++*pos >= MAX_ENTRY_NUM) {
+		atomic_inc(&my_hist->hist_mode);
+		return NULL;
+	}
+	*index_ptr = *pos;
+	return index_ptr;
+}
+
+static void l_stop(struct seq_file *m, void *p)
+{
+	kfree(p);
+}
+
+static int l_show(struct seq_file *m, void *p)
+{
+	int index = *(loff_t *) p;
+	struct hist_data *my_hist = m->private;
+
+	seq_printf(m, "%6ld\t%16llu\n", index - my_hist->offset,
+	    my_hist->hist_array[index]);
+	return 0;
+}
+
+static struct seq_operations latency_hist_seq_op = {
+	.start = l_start,
+	.next  = l_next,
+	.stop  = l_stop,
+	.show  = l_show
+};
+
+static int latency_hist_open(struct inode *inode, struct file *file)
+{
+	int ret;
+
+	ret = seq_open(file, &latency_hist_seq_op);
+	if (!ret) {
+		struct seq_file *seq = file->private_data;
+		seq->private = inode->i_private;
+	}
+	return ret;
+}
+
+static struct file_operations latency_hist_fops = {
+	.open = latency_hist_open,
+	.read = seq_read,
+	.llseek = seq_lseek,
+	.release = seq_release,
+};
+
+#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \
+    defined(CONFIG_MISSED_TIMER_OFFSETS_HIST)
+static void clear_maxlatprocdata(struct maxlatproc_data *mp)
+{
+	mp->comm[0] = mp->current_comm[0] = '\0';
+	mp->prio = mp->current_prio = mp->pid = mp->current_pid =
+	    mp->latency = mp->timeroffset = -1;
+	mp->timestamp = 0;
+}
+#endif
+
+static void hist_reset(struct hist_data *hist)
+{
+	atomic_dec(&hist->hist_mode);
+
+	memset(hist->hist_array, 0, sizeof(hist->hist_array));
+	hist->below_hist_bound_samples = 0ULL;
+	hist->above_hist_bound_samples = 0ULL;
+	hist->min_lat = LONG_MAX;
+	hist->max_lat = LONG_MIN;
+	hist->total_samples = 0ULL;
+	hist->accumulate_lat = 0LL;
+
+	atomic_inc(&hist->hist_mode);
+}
+
+static ssize_t
+latency_hist_reset(struct file *file, const char __user *a,
+		   size_t size, loff_t *off)
+{
+	int cpu;
+	struct hist_data *hist = NULL;
+#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \
+    defined(CONFIG_MISSED_TIMER_OFFSETS_HIST)
+	struct maxlatproc_data *mp = NULL;
+#endif
+	off_t latency_type = (off_t) file->private_data;
+
+	for_each_online_cpu(cpu) {
+
+		switch (latency_type) {
+#ifdef CONFIG_PREEMPT_OFF_HIST
+		case PREEMPTOFF_LATENCY:
+			hist = &per_cpu(preemptoff_hist, cpu);
+			break;
+#endif
+#ifdef CONFIG_INTERRUPT_OFF_HIST
+		case IRQSOFF_LATENCY:
+			hist = &per_cpu(irqsoff_hist, cpu);
+			break;
+#endif
+#if defined(CONFIG_INTERRUPT_OFF_HIST) && defined(CONFIG_PREEMPT_OFF_HIST)
+		case PREEMPTIRQSOFF_LATENCY:
+			hist = &per_cpu(preemptirqsoff_hist, cpu);
+			break;
+#endif
+#ifdef CONFIG_WAKEUP_LATENCY_HIST
+		case WAKEUP_LATENCY:
+			hist = &per_cpu(wakeup_latency_hist, cpu);
+			mp = &per_cpu(wakeup_maxlatproc, cpu);
+			break;
+		case WAKEUP_LATENCY_SHAREDPRIO:
+			hist = &per_cpu(wakeup_latency_hist_sharedprio, cpu);
+			mp = &per_cpu(wakeup_maxlatproc_sharedprio, cpu);
+			break;
+#endif
+#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST
+		case MISSED_TIMER_OFFSETS:
+			hist = &per_cpu(missed_timer_offsets, cpu);
+			mp = &per_cpu(missed_timer_offsets_maxlatproc, cpu);
+			break;
+#endif
+#if defined(CONFIG_WAKEUP_LATENCY_HIST) && \
+    defined(CONFIG_MISSED_TIMER_OFFSETS_HIST)
+		case TIMERANDWAKEUP_LATENCY:
+			hist = &per_cpu(timerandwakeup_latency_hist, cpu);
+			mp = &per_cpu(timerandwakeup_maxlatproc, cpu);
+			break;
+#endif
+		}
+
+		hist_reset(hist);
+#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \
+    defined(CONFIG_MISSED_TIMER_OFFSETS_HIST)
+		if (latency_type == WAKEUP_LATENCY ||
+		    latency_type == WAKEUP_LATENCY_SHAREDPRIO ||
+		    latency_type == MISSED_TIMER_OFFSETS ||
+		    latency_type == TIMERANDWAKEUP_LATENCY)
+			clear_maxlatprocdata(mp);
+#endif
+	}
+
+	return size;
+}
+
+#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \
+    defined(CONFIG_MISSED_TIMER_OFFSETS_HIST)
+static ssize_t
+show_pid(struct file *file, char __user *ubuf, size_t cnt, loff_t *ppos)
+{
+	char buf[64];
+	int r;
+	unsigned long *this_pid = file->private_data;
+
+	r = snprintf(buf, sizeof(buf), "%lu\n", *this_pid);
+	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
+}
+
+static ssize_t do_pid(struct file *file, const char __user *ubuf,
+		      size_t cnt, loff_t *ppos)
+{
+	char buf[64];
+	unsigned long pid;
+	unsigned long *this_pid = file->private_data;
+
+	if (cnt >= sizeof(buf))
+		return -EINVAL;
+
+	if (copy_from_user(&buf, ubuf, cnt))
+		return -EFAULT;
+
+	buf[cnt] = '\0';
+
+	if (strict_strtoul(buf, 10, &pid))
+		return(-EINVAL);
+
+	*this_pid = pid;
+
+	return cnt;
+}
+#endif
+
+#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \
+    defined(CONFIG_MISSED_TIMER_OFFSETS_HIST)
+static ssize_t
+show_maxlatproc(struct file *file, char __user *ubuf, size_t cnt, loff_t *ppos)
+{
+	int r;
+	struct maxlatproc_data *mp = file->private_data;
+	int strmaxlen = (TASK_COMM_LEN * 2) + (8 * 8);
+	unsigned long long t;
+	unsigned long usecs, secs;
+	char *buf;
+
+	if (mp->pid == -1 || mp->current_pid == -1) {
+		buf = "(none)\n";
+		return simple_read_from_buffer(ubuf, cnt, ppos, buf,
+		    strlen(buf));
+	}
+
+	buf = kmalloc(strmaxlen, GFP_KERNEL);
+	if (buf == NULL)
+		return -ENOMEM;
+
+	t = ns2usecs(mp->timestamp);
+	usecs = do_div(t, USEC_PER_SEC);
+	secs = (unsigned long) t;
+	r = snprintf(buf, strmaxlen,
+	    "%d %d %ld (%ld) %s <- %d %d %s %lu.%06lu\n", mp->pid,
+	    MAX_RT_PRIO-1 - mp->prio, mp->latency, mp->timeroffset, mp->comm,
+	    mp->current_pid, MAX_RT_PRIO-1 - mp->current_prio, mp->current_comm,
+	    secs, usecs);
+	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
+	kfree(buf);
+	return r;
+}
+#endif
+
+static ssize_t
+show_enable(struct file *file, char __user *ubuf, size_t cnt, loff_t *ppos)
+{
+	char buf[64];
+	struct enable_data *ed = file->private_data;
+	int r;
+
+	r = snprintf(buf, sizeof(buf), "%d\n", ed->enabled);
+	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
+}
+
+static ssize_t
+do_enable(struct file *file, const char __user *ubuf, size_t cnt, loff_t *ppos)
+{
+	char buf[64];
+	long enable;
+	struct enable_data *ed = file->private_data;
+
+	if (cnt >= sizeof(buf))
+		return -EINVAL;
+
+	if (copy_from_user(&buf, ubuf, cnt))
+		return -EFAULT;
+
+	buf[cnt] = 0;
+
+	if (strict_strtol(buf, 10, &enable))
+		return(-EINVAL);
+
+	if ((enable && ed->enabled) || (!enable && !ed->enabled))
+		return cnt;
+
+	if (enable) {
+		int ret;
+
+		switch (ed->latency_type) {
+#if defined(CONFIG_INTERRUPT_OFF_HIST) || defined(CONFIG_PREEMPT_OFF_HIST)
+		case PREEMPTIRQSOFF_LATENCY:
+			ret = register_trace_preemptirqsoff_hist(
+			    probe_preemptirqsoff_hist, NULL);
+			if (ret) {
+				pr_info("wakeup trace: Couldn't assign "
+				    "probe_preemptirqsoff_hist "
+				    "to trace_preemptirqsoff_hist\n");
+				return ret;
+			}
+			break;
+#endif
+#ifdef CONFIG_WAKEUP_LATENCY_HIST
+		case WAKEUP_LATENCY:
+			ret = register_trace_sched_wakeup(
+			    probe_wakeup_latency_hist_start, NULL);
+			if (ret) {
+				pr_info("wakeup trace: Couldn't assign "
+				    "probe_wakeup_latency_hist_start "
+				    "to trace_sched_wakeup\n");
+				return ret;
+			}
+			ret = register_trace_sched_wakeup_new(
+			    probe_wakeup_latency_hist_start, NULL);
+			if (ret) {
+				pr_info("wakeup trace: Couldn't assign "
+				    "probe_wakeup_latency_hist_start "
+				    "to trace_sched_wakeup_new\n");
+				unregister_trace_sched_wakeup(
+				    probe_wakeup_latency_hist_start, NULL);
+				return ret;
+			}
+			ret = register_trace_sched_switch(
+			    probe_wakeup_latency_hist_stop, NULL);
+			if (ret) {
+				pr_info("wakeup trace: Couldn't assign "
+				    "probe_wakeup_latency_hist_stop "
+				    "to trace_sched_switch\n");
+				unregister_trace_sched_wakeup(
+				    probe_wakeup_latency_hist_start, NULL);
+				unregister_trace_sched_wakeup_new(
+				    probe_wakeup_latency_hist_start, NULL);
+				return ret;
+			}
+			ret = register_trace_sched_migrate_task(
+			    probe_sched_migrate_task, NULL);
+			if (ret) {
+				pr_info("wakeup trace: Couldn't assign "
+				    "probe_sched_migrate_task "
+				    "to trace_sched_migrate_task\n");
+				unregister_trace_sched_wakeup(
+				    probe_wakeup_latency_hist_start, NULL);
+				unregister_trace_sched_wakeup_new(
+				    probe_wakeup_latency_hist_start, NULL);
+				unregister_trace_sched_switch(
+				    probe_wakeup_latency_hist_stop, NULL);
+				return ret;
+			}
+			break;
+#endif
+#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST
+		case MISSED_TIMER_OFFSETS:
+			ret = register_trace_hrtimer_interrupt(
+			    probe_hrtimer_interrupt, NULL);
+			if (ret) {
+				pr_info("wakeup trace: Couldn't assign "
+				    "probe_hrtimer_interrupt "
+				    "to trace_hrtimer_interrupt\n");
+				return ret;
+			}
+			break;
+#endif
+#if defined(CONFIG_WAKEUP_LATENCY_HIST) && \
+    defined(CONFIG_MISSED_TIMER_OFFSETS_HIST)
+		case TIMERANDWAKEUP_LATENCY:
+			if (!wakeup_latency_enabled_data.enabled ||
+			    !missed_timer_offsets_enabled_data.enabled)
+				return -EINVAL;
+			break;
+#endif
+		default:
+			break;
+		}
+	} else {
+		switch (ed->latency_type) {
+#if defined(CONFIG_INTERRUPT_OFF_HIST) || defined(CONFIG_PREEMPT_OFF_HIST)
+		case PREEMPTIRQSOFF_LATENCY:
+			{
+				int cpu;
+
+				unregister_trace_preemptirqsoff_hist(
+				    probe_preemptirqsoff_hist, NULL);
+				for_each_online_cpu(cpu) {
+#ifdef CONFIG_INTERRUPT_OFF_HIST
+					per_cpu(hist_irqsoff_counting,
+					    cpu) = 0;
+#endif
+#ifdef CONFIG_PREEMPT_OFF_HIST
+					per_cpu(hist_preemptoff_counting,
+					    cpu) = 0;
+#endif
+#if defined(CONFIG_INTERRUPT_OFF_HIST) && defined(CONFIG_PREEMPT_OFF_HIST)
+					per_cpu(hist_preemptirqsoff_counting,
+					    cpu) = 0;
+#endif
+				}
+			}
+			break;
+#endif
+#ifdef CONFIG_WAKEUP_LATENCY_HIST
+		case WAKEUP_LATENCY:
+			{
+				int cpu;
+
+				unregister_trace_sched_wakeup(
+				    probe_wakeup_latency_hist_start, NULL);
+				unregister_trace_sched_wakeup_new(
+				    probe_wakeup_latency_hist_start, NULL);
+				unregister_trace_sched_switch(
+				    probe_wakeup_latency_hist_stop, NULL);
+				unregister_trace_sched_migrate_task(
+				    probe_sched_migrate_task, NULL);
+
+				for_each_online_cpu(cpu) {
+					per_cpu(wakeup_task, cpu) = NULL;
+					per_cpu(wakeup_sharedprio, cpu) = 0;
+				}
+			}
+#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST
+			timerandwakeup_enabled_data.enabled = 0;
+#endif
+			break;
+#endif
+#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST
+		case MISSED_TIMER_OFFSETS:
+			unregister_trace_hrtimer_interrupt(
+			    probe_hrtimer_interrupt, NULL);
+#ifdef CONFIG_WAKEUP_LATENCY_HIST
+			timerandwakeup_enabled_data.enabled = 0;
+#endif
+			break;
+#endif
+		default:
+			break;
+		}
+	}
+	ed->enabled = enable;
+	return cnt;
+}
+
+static const struct file_operations latency_hist_reset_fops = {
+	.open = tracing_open_generic,
+	.write = latency_hist_reset,
+};
+
+static const struct file_operations enable_fops = {
+	.open = tracing_open_generic,
+	.read = show_enable,
+	.write = do_enable,
+};
+
+#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \
+    defined(CONFIG_MISSED_TIMER_OFFSETS_HIST)
+static const struct file_operations pid_fops = {
+	.open = tracing_open_generic,
+	.read = show_pid,
+	.write = do_pid,
+};
+
+static const struct file_operations maxlatproc_fops = {
+	.open = tracing_open_generic,
+	.read = show_maxlatproc,
+};
+#endif
+
+#if defined(CONFIG_INTERRUPT_OFF_HIST) || defined(CONFIG_PREEMPT_OFF_HIST)
+static notrace void probe_preemptirqsoff_hist(void *v, int reason,
+    int starthist)
+{
+	int cpu = raw_smp_processor_id();
+	int time_set = 0;
+
+	if (starthist) {
+		cycle_t uninitialized_var(start);
+
+		if (!preempt_count() && !irqs_disabled())
+			return;
+
+#ifdef CONFIG_INTERRUPT_OFF_HIST
+		if ((reason == IRQS_OFF || reason == TRACE_START) &&
+		    !per_cpu(hist_irqsoff_counting, cpu)) {
+			per_cpu(hist_irqsoff_counting, cpu) = 1;
+			start = ftrace_now(cpu);
+			time_set++;
+			per_cpu(hist_irqsoff_start, cpu) = start;
+		}
+#endif
+
+#ifdef CONFIG_PREEMPT_OFF_HIST
+		if ((reason == PREEMPT_OFF || reason == TRACE_START) &&
+		    !per_cpu(hist_preemptoff_counting, cpu)) {
+			per_cpu(hist_preemptoff_counting, cpu) = 1;
+			if (!(time_set++))
+				start = ftrace_now(cpu);
+			per_cpu(hist_preemptoff_start, cpu) = start;
+		}
+#endif
+
+#if defined(CONFIG_INTERRUPT_OFF_HIST) && defined(CONFIG_PREEMPT_OFF_HIST)
+		if (per_cpu(hist_irqsoff_counting, cpu) &&
+		    per_cpu(hist_preemptoff_counting, cpu) &&
+		    !per_cpu(hist_preemptirqsoff_counting, cpu)) {
+			per_cpu(hist_preemptirqsoff_counting, cpu) = 1;
+			if (!time_set)
+				start = ftrace_now(cpu);
+			per_cpu(hist_preemptirqsoff_start, cpu) = start;
+		}
+#endif
+	} else {
+		cycle_t uninitialized_var(stop);
+
+#ifdef CONFIG_INTERRUPT_OFF_HIST
+		if ((reason == IRQS_ON || reason == TRACE_STOP) &&
+		    per_cpu(hist_irqsoff_counting, cpu)) {
+			cycle_t start = per_cpu(hist_irqsoff_start, cpu);
+
+			stop = ftrace_now(cpu);
+			time_set++;
+			if (start) {
+				long latency = ((long) (stop - start)) /
+				    NSECS_PER_USECS;
+
+				latency_hist(IRQSOFF_LATENCY, cpu, latency, 0,
+				    stop, NULL);
+			}
+			per_cpu(hist_irqsoff_counting, cpu) = 0;
+		}
+#endif
+
+#ifdef CONFIG_PREEMPT_OFF_HIST
+		if ((reason == PREEMPT_ON || reason == TRACE_STOP) &&
+		    per_cpu(hist_preemptoff_counting, cpu)) {
+			cycle_t start = per_cpu(hist_preemptoff_start, cpu);
+
+			if (!(time_set++))
+				stop = ftrace_now(cpu);
+			if (start) {
+				long latency = ((long) (stop - start)) /
+				    NSECS_PER_USECS;
+
+				latency_hist(PREEMPTOFF_LATENCY, cpu, latency,
+				    0, stop, NULL);
+			}
+			per_cpu(hist_preemptoff_counting, cpu) = 0;
+		}
+#endif
+
+#if defined(CONFIG_INTERRUPT_OFF_HIST) && defined(CONFIG_PREEMPT_OFF_HIST)
+		if ((!per_cpu(hist_irqsoff_counting, cpu) ||
+		     !per_cpu(hist_preemptoff_counting, cpu)) &&
+		   per_cpu(hist_preemptirqsoff_counting, cpu)) {
+			cycle_t start = per_cpu(hist_preemptirqsoff_start, cpu);
+
+			if (!time_set)
+				stop = ftrace_now(cpu);
+			if (start) {
+				long latency = ((long) (stop - start)) /
+				    NSECS_PER_USECS;
+
+				latency_hist(PREEMPTIRQSOFF_LATENCY, cpu,
+				    latency, 0, stop, NULL);
+			}
+			per_cpu(hist_preemptirqsoff_counting, cpu) = 0;
+		}
+#endif
+	}
+}
+#endif
+
+#ifdef CONFIG_WAKEUP_LATENCY_HIST
+static DEFINE_RAW_SPINLOCK(wakeup_lock);
+static notrace void probe_sched_migrate_task(void *v, struct task_struct *task,
+    int cpu)
+{
+	int old_cpu = task_cpu(task);
+
+	if (cpu != old_cpu) {
+		unsigned long flags;
+		struct task_struct *cpu_wakeup_task;
+
+		raw_spin_lock_irqsave(&wakeup_lock, flags);
+
+		cpu_wakeup_task = per_cpu(wakeup_task, old_cpu);
+		if (task == cpu_wakeup_task) {
+			put_task_struct(cpu_wakeup_task);
+			per_cpu(wakeup_task, old_cpu) = NULL;
+			cpu_wakeup_task = per_cpu(wakeup_task, cpu) = task;
+			get_task_struct(cpu_wakeup_task);
+		}
+
+		raw_spin_unlock_irqrestore(&wakeup_lock, flags);
+	}
+}
+
+static notrace void probe_wakeup_latency_hist_start(void *v,
+    struct task_struct *p, int success)
+{
+	unsigned long flags;
+	struct task_struct *curr = current;
+	int cpu = task_cpu(p);
+	struct task_struct *cpu_wakeup_task;
+
+	raw_spin_lock_irqsave(&wakeup_lock, flags);
+
+	cpu_wakeup_task = per_cpu(wakeup_task, cpu);
+
+	if (wakeup_pid) {
+		if ((cpu_wakeup_task && p->prio == cpu_wakeup_task->prio) ||
+		    p->prio == curr->prio)
+			per_cpu(wakeup_sharedprio, cpu) = 1;
+		if (likely(wakeup_pid != task_pid_nr(p)))
+			goto out;
+	} else {
+		if (likely(!rt_task(p)) ||
+		    (cpu_wakeup_task && p->prio > cpu_wakeup_task->prio) ||
+		    p->prio > curr->prio)
+			goto out;
+		if ((cpu_wakeup_task && p->prio == cpu_wakeup_task->prio) ||
+		    p->prio == curr->prio)
+			per_cpu(wakeup_sharedprio, cpu) = 1;
+	}
+
+	if (cpu_wakeup_task)
+		put_task_struct(cpu_wakeup_task);
+	cpu_wakeup_task = per_cpu(wakeup_task, cpu) = p;
+	get_task_struct(cpu_wakeup_task);
+	cpu_wakeup_task->preempt_timestamp_hist =
+		ftrace_now(raw_smp_processor_id());
+out:
+	raw_spin_unlock_irqrestore(&wakeup_lock, flags);
+}
+
+static notrace void probe_wakeup_latency_hist_stop(void *v,
+    struct task_struct *prev, struct task_struct *next)
+{
+	unsigned long flags;
+	int cpu = task_cpu(next);
+	long latency;
+	cycle_t stop;
+	struct task_struct *cpu_wakeup_task;
+
+	raw_spin_lock_irqsave(&wakeup_lock, flags);
+
+	cpu_wakeup_task = per_cpu(wakeup_task, cpu);
+
+	if (cpu_wakeup_task == NULL)
+		goto out;
+
+	/* Already running? */
+	if (unlikely(current == cpu_wakeup_task))
+		goto out_reset;
+
+	if (next != cpu_wakeup_task) {
+		if (next->prio < cpu_wakeup_task->prio)
+			goto out_reset;
+
+		if (next->prio == cpu_wakeup_task->prio)
+			per_cpu(wakeup_sharedprio, cpu) = 1;
+
+		goto out;
+	}
+
+	if (current->prio == cpu_wakeup_task->prio)
+		per_cpu(wakeup_sharedprio, cpu) = 1;
+
+	/*
+	 * The task we are waiting for is about to be switched to.
+	 * Calculate latency and store it in histogram.
+	 */
+	stop = ftrace_now(raw_smp_processor_id());
+
+	latency = ((long) (stop - next->preempt_timestamp_hist)) /
+	    NSECS_PER_USECS;
+
+	if (per_cpu(wakeup_sharedprio, cpu)) {
+		latency_hist(WAKEUP_LATENCY_SHAREDPRIO, cpu, latency, 0, stop,
+		    next);
+		per_cpu(wakeup_sharedprio, cpu) = 0;
+	} else {
+		latency_hist(WAKEUP_LATENCY, cpu, latency, 0, stop, next);
+#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST
+		if (timerandwakeup_enabled_data.enabled) {
+			latency_hist(TIMERANDWAKEUP_LATENCY, cpu,
+			    next->timer_offset + latency, next->timer_offset,
+			    stop, next);
+		}
+#endif
+	}
+
+out_reset:
+#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST
+	next->timer_offset = 0;
+#endif
+	put_task_struct(cpu_wakeup_task);
+	per_cpu(wakeup_task, cpu) = NULL;
+out:
+	raw_spin_unlock_irqrestore(&wakeup_lock, flags);
+}
+#endif
+
+#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST
+static notrace void probe_hrtimer_interrupt(void *v, int cpu,
+    long long latency_ns, struct task_struct *curr, struct task_struct *task)
+{
+	if (latency_ns <= 0 && task != NULL && rt_task(task) &&
+	    (task->prio < curr->prio ||
+	    (task->prio == curr->prio &&
+	    !cpumask_test_cpu(cpu, &task->cpus_allowed)))) {
+		long latency;
+		cycle_t now;
+
+		if (missed_timer_offsets_pid) {
+			if (likely(missed_timer_offsets_pid !=
+			    task_pid_nr(task)))
+				return;
+		}
+
+		now = ftrace_now(cpu);
+		latency = (long) div_s64(-latency_ns, NSECS_PER_USECS);
+		latency_hist(MISSED_TIMER_OFFSETS, cpu, latency, latency, now,
+		    task);
+#ifdef CONFIG_WAKEUP_LATENCY_HIST
+		task->timer_offset = latency;
+#endif
+	}
+}
+#endif
+
+static __init int latency_hist_init(void)
+{
+	struct dentry *latency_hist_root = NULL;
+	struct dentry *dentry;
+#ifdef CONFIG_WAKEUP_LATENCY_HIST
+	struct dentry *dentry_sharedprio;
+#endif
+	struct dentry *entry;
+	struct dentry *enable_root;
+	int i = 0;
+	struct hist_data *my_hist;
+	char name[64];
+	char *cpufmt = "CPU%d";
+#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \
+    defined(CONFIG_MISSED_TIMER_OFFSETS_HIST)
+	char *cpufmt_maxlatproc = "max_latency-CPU%d";
+	struct maxlatproc_data *mp = NULL;
+#endif
+
+	dentry = tracing_init_dentry();
+	latency_hist_root = debugfs_create_dir(latency_hist_dir_root, dentry);
+	enable_root = debugfs_create_dir("enable", latency_hist_root);
+
+#ifdef CONFIG_INTERRUPT_OFF_HIST
+	dentry = debugfs_create_dir(irqsoff_hist_dir, latency_hist_root);
+	for_each_possible_cpu(i) {
+		sprintf(name, cpufmt, i);
+		entry = debugfs_create_file(name, 0444, dentry,
+		    &per_cpu(irqsoff_hist, i), &latency_hist_fops);
+		my_hist = &per_cpu(irqsoff_hist, i);
+		atomic_set(&my_hist->hist_mode, 1);
+		my_hist->min_lat = LONG_MAX;
+	}
+	entry = debugfs_create_file("reset", 0644, dentry,
+	    (void *)IRQSOFF_LATENCY, &latency_hist_reset_fops);
+#endif
+
+#ifdef CONFIG_PREEMPT_OFF_HIST
+	dentry = debugfs_create_dir(preemptoff_hist_dir,
+	    latency_hist_root);
+	for_each_possible_cpu(i) {
+		sprintf(name, cpufmt, i);
+		entry = debugfs_create_file(name, 0444, dentry,
+		    &per_cpu(preemptoff_hist, i), &latency_hist_fops);
+		my_hist = &per_cpu(preemptoff_hist, i);
+		atomic_set(&my_hist->hist_mode, 1);
+		my_hist->min_lat = LONG_MAX;
+	}
+	entry = debugfs_create_file("reset", 0644, dentry,
+	    (void *)PREEMPTOFF_LATENCY, &latency_hist_reset_fops);
+#endif
+
+#if defined(CONFIG_INTERRUPT_OFF_HIST) && defined(CONFIG_PREEMPT_OFF_HIST)
+	dentry = debugfs_create_dir(preemptirqsoff_hist_dir,
+	    latency_hist_root);
+	for_each_possible_cpu(i) {
+		sprintf(name, cpufmt, i);
+		entry = debugfs_create_file(name, 0444, dentry,
+		    &per_cpu(preemptirqsoff_hist, i), &latency_hist_fops);
+		my_hist = &per_cpu(preemptirqsoff_hist, i);
+		atomic_set(&my_hist->hist_mode, 1);
+		my_hist->min_lat = LONG_MAX;
+	}
+	entry = debugfs_create_file("reset", 0644, dentry,
+	    (void *)PREEMPTIRQSOFF_LATENCY, &latency_hist_reset_fops);
+#endif
+
+#if defined(CONFIG_INTERRUPT_OFF_HIST) || defined(CONFIG_PREEMPT_OFF_HIST)
+	entry = debugfs_create_file("preemptirqsoff", 0644,
+	    enable_root, (void *)&preemptirqsoff_enabled_data,
+	    &enable_fops);
+#endif
+
+#ifdef CONFIG_WAKEUP_LATENCY_HIST
+	dentry = debugfs_create_dir(wakeup_latency_hist_dir,
+	    latency_hist_root);
+	dentry_sharedprio = debugfs_create_dir(
+	    wakeup_latency_hist_dir_sharedprio, dentry);
+	for_each_possible_cpu(i) {
+		sprintf(name, cpufmt, i);
+
+		entry = debugfs_create_file(name, 0444, dentry,
+		    &per_cpu(wakeup_latency_hist, i),
+		    &latency_hist_fops);
+		my_hist = &per_cpu(wakeup_latency_hist, i);
+		atomic_set(&my_hist->hist_mode, 1);
+		my_hist->min_lat = LONG_MAX;
+
+		entry = debugfs_create_file(name, 0444, dentry_sharedprio,
+		    &per_cpu(wakeup_latency_hist_sharedprio, i),
+		    &latency_hist_fops);
+		my_hist = &per_cpu(wakeup_latency_hist_sharedprio, i);
+		atomic_set(&my_hist->hist_mode, 1);
+		my_hist->min_lat = LONG_MAX;
+
+		sprintf(name, cpufmt_maxlatproc, i);
+
+		mp = &per_cpu(wakeup_maxlatproc, i);
+		entry = debugfs_create_file(name, 0444, dentry, mp,
+		    &maxlatproc_fops);
+		clear_maxlatprocdata(mp);
+
+		mp = &per_cpu(wakeup_maxlatproc_sharedprio, i);
+		entry = debugfs_create_file(name, 0444, dentry_sharedprio, mp,
+		    &maxlatproc_fops);
+		clear_maxlatprocdata(mp);
+	}
+	entry = debugfs_create_file("pid", 0644, dentry,
+	    (void *)&wakeup_pid, &pid_fops);
+	entry = debugfs_create_file("reset", 0644, dentry,
+	    (void *)WAKEUP_LATENCY, &latency_hist_reset_fops);
+	entry = debugfs_create_file("reset", 0644, dentry_sharedprio,
+	    (void *)WAKEUP_LATENCY_SHAREDPRIO, &latency_hist_reset_fops);
+	entry = debugfs_create_file("wakeup", 0644,
+	    enable_root, (void *)&wakeup_latency_enabled_data,
+	    &enable_fops);
+#endif
+
+#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST
+	dentry = debugfs_create_dir(missed_timer_offsets_dir,
+	    latency_hist_root);
+	for_each_possible_cpu(i) {
+		sprintf(name, cpufmt, i);
+		entry = debugfs_create_file(name, 0444, dentry,
+		    &per_cpu(missed_timer_offsets, i), &latency_hist_fops);
+		my_hist = &per_cpu(missed_timer_offsets, i);
+		atomic_set(&my_hist->hist_mode, 1);
+		my_hist->min_lat = LONG_MAX;
+
+		sprintf(name, cpufmt_maxlatproc, i);
+		mp = &per_cpu(missed_timer_offsets_maxlatproc, i);
+		entry = debugfs_create_file(name, 0444, dentry, mp,
+		    &maxlatproc_fops);
+		clear_maxlatprocdata(mp);
+	}
+	entry = debugfs_create_file("pid", 0644, dentry,
+	    (void *)&missed_timer_offsets_pid, &pid_fops);
+	entry = debugfs_create_file("reset", 0644, dentry,
+	    (void *)MISSED_TIMER_OFFSETS, &latency_hist_reset_fops);
+	entry = debugfs_create_file("missed_timer_offsets", 0644,
+	    enable_root, (void *)&missed_timer_offsets_enabled_data,
+	    &enable_fops);
+#endif
+
+#if defined(CONFIG_WAKEUP_LATENCY_HIST) && \
+    defined(CONFIG_MISSED_TIMER_OFFSETS_HIST)
+	dentry = debugfs_create_dir(timerandwakeup_latency_hist_dir,
+	    latency_hist_root);
+	for_each_possible_cpu(i) {
+		sprintf(name, cpufmt, i);
+		entry = debugfs_create_file(name, 0444, dentry,
+		    &per_cpu(timerandwakeup_latency_hist, i),
+		    &latency_hist_fops);
+		my_hist = &per_cpu(timerandwakeup_latency_hist, i);
+		atomic_set(&my_hist->hist_mode, 1);
+		my_hist->min_lat = LONG_MAX;
+
+		sprintf(name, cpufmt_maxlatproc, i);
+		mp = &per_cpu(timerandwakeup_maxlatproc, i);
+		entry = debugfs_create_file(name, 0444, dentry, mp,
+		    &maxlatproc_fops);
+		clear_maxlatprocdata(mp);
+	}
+	entry = debugfs_create_file("reset", 0644, dentry,
+	    (void *)TIMERANDWAKEUP_LATENCY, &latency_hist_reset_fops);
+	entry = debugfs_create_file("timerandwakeup", 0644,
+	    enable_root, (void *)&timerandwakeup_enabled_data,
+	    &enable_fops);
+#endif
+	return 0;
+}
+
+__initcall(latency_hist_init);
@ kernel/trace/ring_buffer.c:481 @ struct ring_buffer_per_cpu {
 	int				cpu;
 	atomic_t			record_disabled;
 	struct ring_buffer		*buffer;
-	raw_spinlock_t			reader_lock;	/* serialize readers */
+	spinlock_t			reader_lock;	/* serialize readers */
 	arch_spinlock_t			lock;
 	struct lock_class_key		lock_key;
 	struct list_head		*pages;
@ kernel/trace/ring_buffer.c:1052 @ static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
 	return -ENOMEM;
 }
 
+static inline int ok_to_lock(void)
+{
+	if (in_nmi())
+		return 0;
+#ifdef CONFIG_PREEMPT_RT_FULL
+	if (in_atomic() || irqs_disabled())
+		return 0;
+#endif
+	return 1;
+}
+
+static int
+read_buffer_lock(struct ring_buffer_per_cpu *cpu_buffer,
+		 unsigned long *flags)
+{
+	/*
+	 * If an NMI die dumps out the content of the ring buffer
+	 * do not grab locks. We also permanently disable the ring
+	 * buffer too. A one time deal is all you get from reading
+	 * the ring buffer from an NMI.
+	 */
+	if (!ok_to_lock()) {
+		if (spin_trylock_irqsave(&cpu_buffer->reader_lock, *flags))
+			return 1;
+		tracing_off_permanent();
+		return 0;
+	}
+	spin_lock_irqsave(&cpu_buffer->reader_lock, *flags);
+	return 1;
+}
+
+static void
+read_buffer_unlock(struct ring_buffer_per_cpu *cpu_buffer,
+		   unsigned long flags, int locked)
+{
+	if (locked)
+		spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+}
 static struct ring_buffer_per_cpu *
 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
 {
@ kernel/trace/ring_buffer.c:1105 @ rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
 
 	cpu_buffer->cpu = cpu;
 	cpu_buffer->buffer = buffer;
-	raw_spin_lock_init(&cpu_buffer->reader_lock);
+	spin_lock_init(&cpu_buffer->reader_lock);
 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
 
@ kernel/trace/ring_buffer.c:1300 @ rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
 {
 	struct buffer_page *bpage;
 	struct list_head *p;
+	unsigned long flags;
 	unsigned i;
+	int locked;
 
-	raw_spin_lock_irq(&cpu_buffer->reader_lock);
+	locked = read_buffer_lock(cpu_buffer, &flags);
 	rb_head_page_deactivate(cpu_buffer);
 
 	for (i = 0; i < nr_pages; i++) {
@ kernel/trace/ring_buffer.c:1322 @ rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
 	rb_check_pages(cpu_buffer);
 
 out:
-	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
+	read_buffer_unlock(cpu_buffer, flags, locked);
 }
 
 static void
@ kernel/trace/ring_buffer.c:1331 @ rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
 {
 	struct buffer_page *bpage;
 	struct list_head *p;
+	unsigned long flags;
 	unsigned i;
+	int locked;
 
-	raw_spin_lock_irq(&cpu_buffer->reader_lock);
+	locked = read_buffer_lock(cpu_buffer, &flags);
 	rb_head_page_deactivate(cpu_buffer);
 
 	for (i = 0; i < nr_pages; i++) {
@ kernel/trace/ring_buffer.c:1350 @ rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
 	rb_check_pages(cpu_buffer);
 
 out:
-	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
+	read_buffer_unlock(cpu_buffer, flags, locked);
 }
 
 /**
@ kernel/trace/ring_buffer.c:2734 @ unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
 		return 0;
 
 	cpu_buffer = buffer->buffers[cpu];
-	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 	/*
 	 * if the tail is on reader_page, oldest time stamp is on the reader
 	 * page
@ kernel/trace/ring_buffer.c:2745 @ unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
 		bpage = rb_set_head_page(cpu_buffer);
 	if (bpage)
 		ret = bpage->page->time_stamp;
-	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 
 	return ret;
 }
@ kernel/trace/ring_buffer.c:2909 @ void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
 {
 	struct ring_buffer_per_cpu *cpu_buffer;
 	unsigned long flags;
+	int locked;
 
 	if (!iter)
 		return;
 
 	cpu_buffer = iter->cpu_buffer;
 
-	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+	locked = read_buffer_lock(cpu_buffer, &flags);
 	rb_iter_reset(iter);
-	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+	read_buffer_unlock(cpu_buffer, flags, locked);
 }
 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
 
@ kernel/trace/ring_buffer.c:3338 @ rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
 }
 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
 
-static inline int rb_ok_to_lock(void)
-{
-	/*
-	 * If an NMI die dumps out the content of the ring buffer
-	 * do not grab locks. We also permanently disable the ring
-	 * buffer too. A one time deal is all you get from reading
-	 * the ring buffer from an NMI.
-	 */
-	if (likely(!in_nmi()))
-		return 1;
-
-	tracing_off_permanent();
-	return 0;
-}
-
 /**
  * ring_buffer_peek - peek at the next event to be read
  * @buffer: The ring buffer to read
@ kernel/trace/ring_buffer.c:3355 @ ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
 	struct ring_buffer_event *event;
 	unsigned long flags;
-	int dolock;
+	int locked;
 
 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
 		return NULL;
 
-	dolock = rb_ok_to_lock();
  again:
-	local_irq_save(flags);
-	if (dolock)
-		raw_spin_lock(&cpu_buffer->reader_lock);
+	locked = read_buffer_lock(cpu_buffer, &flags);
 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
 		rb_advance_reader(cpu_buffer);
-	if (dolock)
-		raw_spin_unlock(&cpu_buffer->reader_lock);
-	local_irq_restore(flags);
+	read_buffer_unlock(cpu_buffer, flags, locked);
 
 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
 		goto again;
@ kernel/trace/ring_buffer.c:3387 @ ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
 	struct ring_buffer_event *event;
 	unsigned long flags;
+	int locked;
 
  again:
-	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+	locked = read_buffer_lock(cpu_buffer, &flags);
 	event = rb_iter_peek(iter, ts);
-	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+	read_buffer_unlock(cpu_buffer, flags, locked);
 
 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
 		goto again;
@ kernel/trace/ring_buffer.c:3418 @ ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
 	struct ring_buffer_per_cpu *cpu_buffer;
 	struct ring_buffer_event *event = NULL;
 	unsigned long flags;
-	int dolock;
-
-	dolock = rb_ok_to_lock();
+	int locked;
 
  again:
 	/* might be called in atomic */
@ kernel/trace/ring_buffer.c:3428 @ ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
 		goto out;
 
 	cpu_buffer = buffer->buffers[cpu];
-	local_irq_save(flags);
-	if (dolock)
-		raw_spin_lock(&cpu_buffer->reader_lock);
+	locked = read_buffer_lock(cpu_buffer, &flags);
 
 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
 	if (event) {
@ kernel/trace/ring_buffer.c:3436 @ ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
 		rb_advance_reader(cpu_buffer);
 	}
 
-	if (dolock)
-		raw_spin_unlock(&cpu_buffer->reader_lock);
-	local_irq_restore(flags);
+	read_buffer_unlock(cpu_buffer, flags, locked);
+
 
  out:
 	preempt_enable();
@ kernel/trace/ring_buffer.c:3522 @ ring_buffer_read_start(struct ring_buffer_iter *iter)
 {
 	struct ring_buffer_per_cpu *cpu_buffer;
 	unsigned long flags;
+	int locked;
 
 	if (!iter)
 		return;
 
 	cpu_buffer = iter->cpu_buffer;
 
-	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+	locked = read_buffer_lock(cpu_buffer, &flags);
 	arch_spin_lock(&cpu_buffer->lock);
 	rb_iter_reset(iter);
 	arch_spin_unlock(&cpu_buffer->lock);
-	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+	read_buffer_unlock(cpu_buffer, flags, locked);
 }
 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
 
@ kernel/trace/ring_buffer.c:3567 @ ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
 	struct ring_buffer_event *event;
 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
 	unsigned long flags;
+	int locked;
 
-	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+	locked = read_buffer_lock(cpu_buffer, &flags);
  again:
 	event = rb_iter_peek(iter, ts);
 	if (!event)
@ kernel/trace/ring_buffer.c:3580 @ ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
 
 	rb_advance_iter(iter);
  out:
-	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+	read_buffer_unlock(cpu_buffer, flags, locked);
 
 	return event;
 }
@ kernel/trace/ring_buffer.c:3645 @ void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
 {
 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
 	unsigned long flags;
+	int locked;
 
 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
 		return;
 
 	atomic_inc(&cpu_buffer->record_disabled);
 
-	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+	locked = read_buffer_lock(cpu_buffer, &flags);
 
 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
 		goto out;
@ kernel/trace/ring_buffer.c:3664 @ void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
 	arch_spin_unlock(&cpu_buffer->lock);
 
  out:
-	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+	read_buffer_unlock(cpu_buffer, flags, locked);
 
 	atomic_dec(&cpu_buffer->record_disabled);
 }
@ kernel/trace/ring_buffer.c:3691 @ int ring_buffer_empty(struct ring_buffer *buffer)
 {
 	struct ring_buffer_per_cpu *cpu_buffer;
 	unsigned long flags;
-	int dolock;
+	int locked;
 	int cpu;
 	int ret;
 
-	dolock = rb_ok_to_lock();
-
 	/* yes this is racy, but if you don't like the race, lock the buffer */
 	for_each_buffer_cpu(buffer, cpu) {
 		cpu_buffer = buffer->buffers[cpu];
-		local_irq_save(flags);
-		if (dolock)
-			raw_spin_lock(&cpu_buffer->reader_lock);
+		locked = read_buffer_lock(cpu_buffer, &flags);
 		ret = rb_per_cpu_empty(cpu_buffer);
-		if (dolock)
-			raw_spin_unlock(&cpu_buffer->reader_lock);
-		local_irq_restore(flags);
+		read_buffer_unlock(cpu_buffer, flags, locked);
 
 		if (!ret)
 			return 0;
@ kernel/trace/ring_buffer.c:3719 @ int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
 {
 	struct ring_buffer_per_cpu *cpu_buffer;
 	unsigned long flags;
-	int dolock;
+	int locked;
 	int ret;
 
 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
 		return 1;
 
-	dolock = rb_ok_to_lock();
-
 	cpu_buffer = buffer->buffers[cpu];
-	local_irq_save(flags);
-	if (dolock)
-		raw_spin_lock(&cpu_buffer->reader_lock);
+	locked = read_buffer_lock(cpu_buffer, &flags);
 	ret = rb_per_cpu_empty(cpu_buffer);
-	if (dolock)
-		raw_spin_unlock(&cpu_buffer->reader_lock);
-	local_irq_restore(flags);
+	read_buffer_unlock(cpu_buffer, flags, locked);
 
 	return ret;
 }
@ kernel/trace/ring_buffer.c:3903 @ int ring_buffer_read_page(struct ring_buffer *buffer,
 	unsigned int commit;
 	unsigned int read;
 	u64 save_timestamp;
+	int locked;
 	int ret = -1;
 
 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
@ kernel/trace/ring_buffer.c:3925 @ int ring_buffer_read_page(struct ring_buffer *buffer,
 	if (!bpage)
 		goto out;
 
-	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+	locked = read_buffer_lock(cpu_buffer, &flags);
 
 	reader = rb_get_reader_page(cpu_buffer);
 	if (!reader)
@ kernel/trace/ring_buffer.c:4049 @ int ring_buffer_read_page(struct ring_buffer *buffer,
 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
 
  out_unlock:
-	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+	read_buffer_unlock(cpu_buffer, flags, locked);
 
  out:
 	return ret;
@ kernel/trace/trace.c:362 @ static DECLARE_DELAYED_WORK(wakeup_work, wakeup_work_handler);
  */
 void trace_wake_up(void)
 {
+#ifndef CONFIG_PREEMPT_RT_FULL
 	const unsigned long delay = msecs_to_jiffies(2);
 
 	if (trace_flags & TRACE_ITER_BLOCK)
 		return;
 	schedule_delayed_work(&wakeup_work, delay);
+#endif
 }
 
 static int __init set_buf_size(char *str)
@ kernel/trace/trace.c:724 @ update_max_tr_single(struct trace_array *tr, struct task_struct *tsk, int cpu)
 }
 #endif /* CONFIG_TRACER_MAX_TRACE */
 
+#ifndef CONFIG_PREEMPT_RT_FULL
+static void default_wait_pipe(struct trace_iterator *iter);
+#else
+#define default_wait_pipe	poll_wait_pipe
+#endif
+
 /**
  * register_tracer - register a tracer with the ftrace system.
  * @type - the plugin for the tracer
@ kernel/trace/trace.c:1134 @ tracing_generic_entry_update(struct trace_entry *entry, unsigned long flags,
 		((pc & HARDIRQ_MASK) ? TRACE_FLAG_HARDIRQ : 0) |
 		((pc & SOFTIRQ_MASK) ? TRACE_FLAG_SOFTIRQ : 0) |
 		(need_resched() ? TRACE_FLAG_NEED_RESCHED : 0);
+
+	entry->migrate_disable	= (tsk) ? __migrate_disabled(tsk) & 0xFF : 0;
 }
 EXPORT_SYMBOL_GPL(tracing_generic_entry_update);
 
@ kernel/trace/trace.c:1867 @ static void print_lat_help_header(struct seq_file *m)
 	seq_puts(m, "#                | / _----=> need-resched    \n");
 	seq_puts(m, "#                || / _---=> hardirq/softirq \n");
 	seq_puts(m, "#                ||| / _--=> preempt-depth   \n");
-	seq_puts(m, "#                |||| /     delay             \n");
-	seq_puts(m, "#  cmd     pid   ||||| time  |   caller      \n");
-	seq_puts(m, "#     \\   /      |||||  \\    |   /           \n");
+	seq_puts(m, "#                |||| / _--=> migrate-disable\n");
+	seq_puts(m, "#                ||||| /     delay           \n");
+	seq_puts(m, "#  cmd     pid   |||||| time  |   caller     \n");
+	seq_puts(m, "#     \\   /      |||||  \\   |   /          \n");
 }
 
 static void print_func_help_header(struct seq_file *m)
@ kernel/trace/trace.c:3209 @ static int tracing_release_pipe(struct inode *inode, struct file *file)
 	return 0;
 }
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 static unsigned int
 tracing_poll_pipe(struct file *filp, poll_table *poll_table)
 {
@ kernel/trace/trace.c:3231 @ tracing_poll_pipe(struct file *filp, poll_table *poll_table)
 	}
 }
 
-
-void default_wait_pipe(struct trace_iterator *iter)
+static void default_wait_pipe(struct trace_iterator *iter)
 {
 	DEFINE_WAIT(wait);
 
@ kernel/trace/trace.c:3242 @ void default_wait_pipe(struct trace_iterator *iter)
 
 	finish_wait(&trace_wait, &wait);
 }
+#else
+static unsigned int
+tracing_poll_pipe(struct file *filp, poll_table *poll_table)
+{
+	struct trace_iterator *iter = filp->private_data;
+
+	if ((trace_flags & TRACE_ITER_BLOCK) || !trace_empty(iter))
+		return POLLIN | POLLRDNORM;
+	poll_wait_pipe(iter);
+	if (!trace_empty(iter))
+		return POLLIN | POLLRDNORM;
+	return 0;
+}
+#endif
 
 /*
  * This is a make-shift waitqueue.
@ kernel/trace/trace.h:348 @ void trace_init_global_iter(struct trace_iterator *iter);
 
 void tracing_iter_reset(struct trace_iterator *iter, int cpu);
 
-void default_wait_pipe(struct trace_iterator *iter);
 void poll_wait_pipe(struct trace_iterator *iter);
 
 void ftrace(struct trace_array *tr,
@ kernel/trace/trace_events.c:119 @ static int trace_define_common_fields(void)
 	__common_field(unsigned char, flags);
 	__common_field(unsigned char, preempt_count);
 	__common_field(int, pid);
-	__common_field(int, padding);
+	__common_field(unsigned short, migrate_disable);
+	__common_field(unsigned short, padding);
 
 	return ret;
 }
@ kernel/trace/trace_irqsoff.c:20 @
 #include <linux/fs.h>
 
 #include "trace.h"
+#include <trace/events/hist.h>
 
 static struct trace_array		*irqsoff_trace __read_mostly;
 static int				tracer_enabled __read_mostly;
@ kernel/trace/trace_irqsoff.c:430 @ void start_critical_timings(void)
 {
 	if (preempt_trace() || irq_trace())
 		start_critical_timing(CALLER_ADDR0, CALLER_ADDR1);
+	trace_preemptirqsoff_hist(TRACE_START, 1);
 }
 EXPORT_SYMBOL_GPL(start_critical_timings);
 
 void stop_critical_timings(void)
 {
+	trace_preemptirqsoff_hist(TRACE_STOP, 0);
 	if (preempt_trace() || irq_trace())
 		stop_critical_timing(CALLER_ADDR0, CALLER_ADDR1);
 }
@ kernel/trace/trace_irqsoff.c:446 @ EXPORT_SYMBOL_GPL(stop_critical_timings);
 #ifdef CONFIG_PROVE_LOCKING
 void time_hardirqs_on(unsigned long a0, unsigned long a1)
 {
+	trace_preemptirqsoff_hist(IRQS_ON, 0);
 	if (!preempt_trace() && irq_trace())
 		stop_critical_timing(a0, a1);
 }
@ kernel/trace/trace_irqsoff.c:455 @ void time_hardirqs_off(unsigned long a0, unsigned long a1)
 {
 	if (!preempt_trace() && irq_trace())
 		start_critical_timing(a0, a1);
+	trace_preemptirqsoff_hist(IRQS_OFF, 1);
 }
 
 #else /* !CONFIG_PROVE_LOCKING */
@ kernel/trace/trace_irqsoff.c:481 @ inline void print_irqtrace_events(struct task_struct *curr)
  */
 void trace_hardirqs_on(void)
 {
+	trace_preemptirqsoff_hist(IRQS_ON, 0);
 	if (!preempt_trace() && irq_trace())
 		stop_critical_timing(CALLER_ADDR0, CALLER_ADDR1);
 }
@ kernel/trace/trace_irqsoff.c:491 @ void trace_hardirqs_off(void)
 {
 	if (!preempt_trace() && irq_trace())
 		start_critical_timing(CALLER_ADDR0, CALLER_ADDR1);
+	trace_preemptirqsoff_hist(IRQS_OFF, 1);
 }
 EXPORT_SYMBOL(trace_hardirqs_off);
 
 void trace_hardirqs_on_caller(unsigned long caller_addr)
 {
+	trace_preemptirqsoff_hist(IRQS_ON, 0);
 	if (!preempt_trace() && irq_trace())
 		stop_critical_timing(CALLER_ADDR0, caller_addr);
 }
@ kernel/trace/trace_irqsoff.c:507 @ void trace_hardirqs_off_caller(unsigned long caller_addr)
 {
 	if (!preempt_trace() && irq_trace())
 		start_critical_timing(CALLER_ADDR0, caller_addr);
+	trace_preemptirqsoff_hist(IRQS_OFF, 1);
 }
 EXPORT_SYMBOL(trace_hardirqs_off_caller);
 
@ kernel/trace/trace_irqsoff.c:517 @ EXPORT_SYMBOL(trace_hardirqs_off_caller);
 #ifdef CONFIG_PREEMPT_TRACER
 void trace_preempt_on(unsigned long a0, unsigned long a1)
 {
+	trace_preemptirqsoff_hist(PREEMPT_ON, 0);
 	if (preempt_trace() && !irq_trace())
 		stop_critical_timing(a0, a1);
 }
 
 void trace_preempt_off(unsigned long a0, unsigned long a1)
 {
+	trace_preemptirqsoff_hist(PREEMPT_ON, 1);
 	if (preempt_trace() && !irq_trace())
 		start_critical_timing(a0, a1);
 }
@ kernel/trace/trace_output.c:594 @ int trace_print_lat_fmt(struct trace_seq *s, struct trace_entry *entry)
 	else
 		ret = trace_seq_putc(s, '.');
 
+	if (entry->migrate_disable)
+		ret = trace_seq_printf(s, "%x", entry->migrate_disable);
+	else
+		ret = trace_seq_putc(s, '.');
+
 	return ret;
 }
 
@ kernel/user.c:132 @ void free_uid(struct user_struct *up)
 	if (!up)
 		return;
 
-	local_irq_save(flags);
+	local_irq_save_nort(flags);
 	if (atomic_dec_and_lock(&up->__count, &uidhash_lock))
 		free_user(up, flags);
 	else
-		local_irq_restore(flags);
+		local_irq_restore_nort(flags);
 }
 
 struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid)
@ kernel/wait-simple.c:4 @
+/*
+ * Simple waitqueues without fancy flags and callbacks
+ *
+ * (C) 2011 Thomas Gleixner <tglx@linutronix.de>
+ *
+ * Based on kernel/wait.c
+ *
+ * For licencing details see kernel-base/COPYING
+ */
+#include <linux/init.h>
+#include <linux/export.h>
+#include <linux/sched.h>
+#include <linux/wait-simple.h>
+
+/* Adds w to head->list. Must be called with head->lock locked. */
+static inline void __swait_enqueue(struct swait_head *head, struct swaiter *w)
+{
+	list_add(&w->node, &head->list);
+}
+
+/* Removes w from head->list. Must be called with head->lock locked. */
+static inline void __swait_dequeue(struct swaiter *w)
+{
+	list_del_init(&w->node);
+}
+
+/* Check whether a head has waiters enqueued */
+static inline bool swait_head_has_waiters(struct swait_head *h)
+{
+	return !list_empty(&h->list);
+}
+
+void __init_swait_head(struct swait_head *head, struct lock_class_key *key)
+{
+	raw_spin_lock_init(&head->lock);
+	lockdep_set_class(&head->lock, key);
+	INIT_LIST_HEAD(&head->list);
+}
+EXPORT_SYMBOL_GPL(__init_swait_head);
+
+void swait_prepare_locked(struct swait_head *head, struct swaiter *w)
+{
+	w->task = current;
+	if (list_empty(&w->node))
+		__swait_enqueue(head, w);
+}
+
+void swait_prepare(struct swait_head *head, struct swaiter *w, int state)
+{
+	unsigned long flags;
+
+	raw_spin_lock_irqsave(&head->lock, flags);
+	swait_prepare_locked(head, w);
+	__set_current_state(state);
+	raw_spin_unlock_irqrestore(&head->lock, flags);
+}
+EXPORT_SYMBOL_GPL(swait_prepare);
+
+void swait_finish_locked(struct swait_head *head, struct swaiter *w)
+{
+	__set_current_state(TASK_RUNNING);
+	if (w->task)
+		__swait_dequeue(w);
+}
+
+void swait_finish(struct swait_head *head, struct swaiter *w)
+{
+	unsigned long flags;
+
+	__set_current_state(TASK_RUNNING);
+	if (w->task) {
+		raw_spin_lock_irqsave(&head->lock, flags);
+		__swait_dequeue(w);
+		raw_spin_unlock_irqrestore(&head->lock, flags);
+	}
+}
+EXPORT_SYMBOL_GPL(swait_finish);
+
+unsigned int
+__swait_wake_locked(struct swait_head *head, unsigned int state, unsigned int num)
+{
+	struct swaiter *curr, *next;
+	int woken = 0;
+
+	list_for_each_entry_safe(curr, next, &head->list, node) {
+		if (wake_up_state(curr->task, state)) {
+			__swait_dequeue(curr);
+			/*
+			 * The waiting task can free the waiter as
+			 * soon as curr->task = NULL is written,
+			 * without taking any locks. A memory barrier
+			 * is required here to prevent the following
+			 * store to curr->task from getting ahead of
+			 * the dequeue operation.
+			 */
+			smp_wmb();
+			curr->task = NULL;
+			if (++woken == num)
+				break;
+		}
+	}
+	return woken;
+}
+
+unsigned int
+__swait_wake(struct swait_head *head, unsigned int state, unsigned int num)
+{
+	unsigned long flags;
+	int woken;
+
+	if (!swait_head_has_waiters(head))
+		return 0;
+
+	raw_spin_lock_irqsave(&head->lock, flags);
+	woken = __swait_wake_locked(head, state, num);
+	raw_spin_unlock_irqrestore(&head->lock, flags);
+	return woken;
+}
+EXPORT_SYMBOL_GPL(__swait_wake);
@ kernel/watchdog.c:204 @ static int is_softlockup(unsigned long touch_ts)
 
 #ifdef CONFIG_HARDLOCKUP_DETECTOR
 
+static DEFINE_RAW_SPINLOCK(watchdog_output_lock);
+
 static struct perf_event_attr wd_hw_attr = {
 	.type		= PERF_TYPE_HARDWARE,
 	.config		= PERF_COUNT_HW_CPU_CYCLES,
@ kernel/watchdog.c:240 @ static void watchdog_overflow_callback(struct perf_event *event,
 		if (__this_cpu_read(hard_watchdog_warn) == true)
 			return;
 
-		if (hardlockup_panic)
+		/*
+		 * If early-printk is enabled then make sure we do not
+		 * lock up in printk() and kill console logging:
+		 */
+		printk_kill();
+
+		if (hardlockup_panic) {
 			panic("Watchdog detected hard LOCKUP on cpu %d", this_cpu);
-		else
+		} else {
+			raw_spin_lock(&watchdog_output_lock);
 			WARN(1, "Watchdog detected hard LOCKUP on cpu %d", this_cpu);
+			raw_spin_unlock(&watchdog_output_lock);
+		}
 
 		__this_cpu_write(hard_watchdog_warn, true);
 		return;
@ kernel/watchdog.c:439 @ static void watchdog_prepare_cpu(int cpu)
 	WARN_ON(per_cpu(softlockup_watchdog, cpu));
 	hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 	hrtimer->function = watchdog_timer_fn;
+	hrtimer->irqsafe = 1;
 }
 
 static int watchdog_enable(int cpu)
@ kernel/workqueue.c:140 @ struct worker {
 	unsigned int		flags;		/* X: flags */
 	int			id;		/* I: worker id */
 	struct work_struct	rebind_work;	/* L: rebind worker to cpu */
+	int			sleeping;	/* None */
 };
 
 /*
@ kernel/workqueue.c:664 @ static void wake_up_worker(struct global_cwq *gcwq)
 }
 
 /**
- * wq_worker_waking_up - a worker is waking up
- * @task: task waking up
- * @cpu: CPU @task is waking up to
+ * wq_worker_running - a worker is running again
+ * @task: task returning from sleep
  *
- * This function is called during try_to_wake_up() when a worker is
- * being awoken.
- *
- * CONTEXT:
- * spin_lock_irq(rq->lock)
+ * This function is called when a worker returns from schedule()
  */
-void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
+void wq_worker_running(struct task_struct *task)
 {
 	struct worker *worker = kthread_data(task);
 
+	if (!worker->sleeping)
+		return;
 	if (!(worker->flags & WORKER_NOT_RUNNING))
-		atomic_inc(get_gcwq_nr_running(cpu));
+		atomic_inc(get_gcwq_nr_running(smp_processor_id()));
+	worker->sleeping = 0;
 }
 
 /**
  * wq_worker_sleeping - a worker is going to sleep
  * @task: task going to sleep
- * @cpu: CPU in question, must be the current CPU number
- *
- * This function is called during schedule() when a busy worker is
- * going to sleep.  Worker on the same cpu can be woken up by
- * returning pointer to its task.
- *
- * CONTEXT:
- * spin_lock_irq(rq->lock)
  *
- * RETURNS:
- * Worker task on @cpu to wake up, %NULL if none.
+ * This function is called from schedule() when a busy worker is
+ * going to sleep.
  */
-struct task_struct *wq_worker_sleeping(struct task_struct *task,
-				       unsigned int cpu)
+void wq_worker_sleeping(struct task_struct *task)
 {
-	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
-	struct global_cwq *gcwq = get_gcwq(cpu);
-	atomic_t *nr_running = get_gcwq_nr_running(cpu);
+	struct worker *worker = kthread_data(task);
+	struct global_cwq *gcwq;
+	int cpu;
 
 	if (worker->flags & WORKER_NOT_RUNNING)
-		return NULL;
+		return;
+
+	if (WARN_ON_ONCE(worker->sleeping))
+		return;
 
-	/* this can only happen on the local cpu */
-	BUG_ON(cpu != raw_smp_processor_id());
+	worker->sleeping = 1;
 
+	cpu = smp_processor_id();
+	gcwq = get_gcwq(cpu);
+	spin_lock_irq(&gcwq->lock);
 	/*
 	 * The counterpart of the following dec_and_test, implied mb,
 	 * worklist not empty test sequence is in insert_work().
 	 * Please read comment there.
-	 *
-	 * NOT_RUNNING is clear.  This means that trustee is not in
-	 * charge and we're running on the local cpu w/ rq lock held
-	 * and preemption disabled, which in turn means that none else
-	 * could be manipulating idle_list, so dereferencing idle_list
-	 * without gcwq lock is safe.
 	 */
-	if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
-		to_wakeup = first_worker(gcwq);
-	return to_wakeup ? to_wakeup->task : NULL;
+	if (atomic_dec_and_test(get_gcwq_nr_running(cpu)) &&
+	    !list_empty(&gcwq->worklist)) {
+		worker = first_worker(gcwq);
+		if (worker)
+			wake_up_process(worker->task);
+	}
+	spin_unlock_irq(&gcwq->lock);
 }
 
 /**
@ kernel/workqueue.c:1066 @ int queue_work(struct workqueue_struct *wq, struct work_struct *work)
 {
 	int ret;
 
-	ret = queue_work_on(get_cpu(), wq, work);
-	put_cpu();
+	ret = queue_work_on(get_cpu_light(), wq, work);
+	put_cpu_light();
 
 	return ret;
 }
@ kernel/workqueue.c:1211 @ static void worker_enter_idle(struct worker *worker)
 	} else
 		wake_up_all(&gcwq->trustee_wait);
 
-	/*
-	 * Sanity check nr_running.  Because trustee releases gcwq->lock
-	 * between setting %WORKER_ROGUE and zapping nr_running, the
-	 * warning may trigger spuriously.  Check iff trustee is idle.
-	 */
-	WARN_ON_ONCE(gcwq->trustee_state == TRUSTEE_DONE &&
-		     gcwq->nr_workers == gcwq->nr_idle &&
+	/* sanity check nr_running */
+	WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
 		     atomic_read(get_gcwq_nr_running(gcwq->cpu)));
 }
 
@ kernel/workqueue.c:3538 @ static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
 				kthread_stop(new_trustee);
 			return NOTIFY_BAD;
 		}
+		break;
+	case CPU_POST_DEAD:
+	case CPU_UP_CANCELED:
+	case CPU_DOWN_FAILED:
+	case CPU_ONLINE:
+		break;
+	case CPU_DYING:
+		/*
+		 * We access this lockless. We are on the dying CPU
+		 * and called from stomp machine.
+		 *
+		 * Before this, the trustee and all workers except for
+		 * the ones which are still executing works from
+		 * before the last CPU down must be on the cpu.  After
+		 * this, they'll all be diasporas.
+		 */
+		gcwq->flags |= GCWQ_DISASSOCIATED;
+	default:
+		goto out;
 	}
 
 	/* some are called w/ irq disabled, don't disturb irq status */
@ kernel/workqueue.c:3576 @ static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
 		gcwq->first_idle = new_worker;
 		break;
 
-	case CPU_DYING:
-		/*
-		 * Before this, the trustee and all workers except for
-		 * the ones which are still executing works from
-		 * before the last CPU down must be on the cpu.  After
-		 * this, they'll all be diasporas.
-		 */
-		gcwq->flags |= GCWQ_DISASSOCIATED;
-		break;
-
 	case CPU_POST_DEAD:
 		gcwq->trustee_state = TRUSTEE_BUTCHER;
 		/* fall through */
@ kernel/workqueue.c:3609 @ static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
 
 	spin_unlock_irqrestore(&gcwq->lock, flags);
 
+out:
 	return notifier_from_errno(0);
 }
 
@ kernel/workqueue_sched.h:7 @
  * Scheduler hooks for concurrency managed workqueue.  Only to be
  * included from sched.c and workqueue.c.
  */
-void wq_worker_waking_up(struct task_struct *task, unsigned int cpu);
-struct task_struct *wq_worker_sleeping(struct task_struct *task,
-				       unsigned int cpu);
+void wq_worker_running(struct task_struct *task);
+void wq_worker_sleeping(struct task_struct *task);
@ lib/Kconfig:234 @ config CHECK_SIGNATURE
 
 config CPUMASK_OFFSTACK
 	bool "Force CPU masks off stack" if DEBUG_PER_CPU_MAPS
+	depends on !PREEMPT_RT_FULL
 	help
 	  Use dynamic allocation for cpumask_var_t, instead of putting
 	  them on the stack.  This is a bit more expensive, but avoids
@ lib/Kconfig.debug:154 @ config DEBUG_KERNEL
 
 config DEBUG_SHIRQ
 	bool "Debug shared IRQ handlers"
-	depends on DEBUG_KERNEL && GENERIC_HARDIRQS
+	depends on DEBUG_KERNEL && GENERIC_HARDIRQS && !PREEMPT_RT_BASE
 	help
 	  Enable this to generate a spurious interrupt as soon as a shared
 	  interrupt handler is registered, and just before one is deregistered.
@ lib/Makefile:40 @ obj-$(CONFIG_HAS_IOMEM) += iomap_copy.o devres.o
 obj-$(CONFIG_CHECK_SIGNATURE) += check_signature.o
 obj-$(CONFIG_DEBUG_LOCKING_API_SELFTESTS) += locking-selftest.o
 obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock_debug.o
+
+ifneq ($(CONFIG_PREEMPT_RT_FULL),y)
 lib-$(CONFIG_RWSEM_GENERIC_SPINLOCK) += rwsem-spinlock.o
 lib-$(CONFIG_RWSEM_XCHGADD_ALGORITHM) += rwsem.o
+endif
 
 CFLAGS_hweight.o = $(subst $(quote),,$(CONFIG_ARCH_HWEIGHT_CFLAGS))
 obj-$(CONFIG_GENERIC_HWEIGHT) += hweight.o
@ lib/debugobjects.c:309 @ __debug_object_init(void *addr, struct debug_obj_descr *descr, int onstack)
 	struct debug_obj *obj;
 	unsigned long flags;
 
-	fill_pool();
+#ifdef CONFIG_PREEMPT_RT_FULL
+	if (preempt_count() == 0 && !irqs_disabled())
+#endif
+		fill_pool();
 
 	db = get_bucket((unsigned long) addr);
 
@ lib/debugobjects.c:1021 @ static int __init debug_objects_replace_static_objects(void)
 		}
 	}
 
+	local_irq_enable();
 	printk(KERN_DEBUG "ODEBUG: %d of %d active objects replaced\n", cnt,
 	       obj_pool_used);
-	local_irq_enable();
 	return 0;
 free:
 	hlist_for_each_entry_safe(obj, node, tmp, &objects, node) {
@ lib/radix-tree.c:169 @ radix_tree_node_alloc(struct radix_tree_root *root)
 		 * succeed in getting a node here (and never reach
 		 * kmem_cache_alloc)
 		 */
-		rtp = &__get_cpu_var(radix_tree_preloads);
+		rtp = &get_cpu_var(radix_tree_preloads);
 		if (rtp->nr) {
 			ret = rtp->nodes[rtp->nr - 1];
 			rtp->nodes[rtp->nr - 1] = NULL;
 			rtp->nr--;
 		}
+		put_cpu_var(radix_tree_preloads);
 	}
 	if (ret == NULL)
 		ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
@ lib/radix-tree.c:210 @ radix_tree_node_free(struct radix_tree_node *node)
 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 }
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 /*
  * Load up this CPU's radix_tree_node buffer with sufficient objects to
  * ensure that the addition of a single element in the tree cannot fail.  On
@ lib/radix-tree.c:245 @ out:
 	return ret;
 }
 EXPORT_SYMBOL(radix_tree_preload);
+#endif
 
 /*
  *	Return the maximum key which can be store into a
@ lib/scatterlist.c:426 @ void sg_miter_stop(struct sg_mapping_iter *miter)
 			flush_kernel_dcache_page(miter->page);
 
 		if (miter->__flags & SG_MITER_ATOMIC) {
-			WARN_ON(!irqs_disabled());
+			WARN_ON_NONRT(!irqs_disabled());
 			kunmap_atomic(miter->addr, KM_BIO_SRC_IRQ);
 		} else
 			kunmap(miter->page);
@ lib/scatterlist.c:466 @ static size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents,
 
 	sg_miter_start(&miter, sgl, nents, sg_flags);
 
-	local_irq_save(flags);
+	local_irq_save_nort(flags);
 
 	while (sg_miter_next(&miter) && offset < buflen) {
 		unsigned int len;
@ lib/scatterlist.c:483 @ static size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents,
 
 	sg_miter_stop(&miter);
 
-	local_irq_restore(flags);
+	local_irq_restore_nort(flags);
 	return offset;
 }
 
@ lib/smp_processor_id.c:42 @ notrace unsigned int debug_smp_processor_id(void)
 	if (!printk_ratelimit())
 		goto out_enable;
 
-	printk(KERN_ERR "BUG: using smp_processor_id() in preemptible [%08x] "
-			"code: %s/%d\n",
-			preempt_count() - 1, current->comm, current->pid);
+	printk(KERN_ERR "BUG: using smp_processor_id() in preemptible [%08x %08x] "
+	       "code: %s/%d\n", preempt_count() - 1,
+	       __migrate_disabled(current), current->comm, current->pid);
 	print_symbol("caller is %s\n", (long)__builtin_return_address(0));
 	dump_stack();
 
@ lib/spinlock_debug.c:34 @ void __raw_spin_lock_init(raw_spinlock_t *lock, const char *name,
 
 EXPORT_SYMBOL(__raw_spin_lock_init);
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 void __rwlock_init(rwlock_t *lock, const char *name,
 		   struct lock_class_key *key)
 {
@ lib/spinlock_debug.c:52 @ void __rwlock_init(rwlock_t *lock, const char *name,
 }
 
 EXPORT_SYMBOL(__rwlock_init);
+#endif
 
 static void spin_dump(raw_spinlock_t *lock, const char *msg)
 {
@ lib/spinlock_debug.c:160 @ void do_raw_spin_unlock(raw_spinlock_t *lock)
 	arch_spin_unlock(&lock->raw_lock);
 }
 
+#ifndef CONFIG_PREEMPT_RT_FULL
 static void rwlock_bug(rwlock_t *lock, const char *msg)
 {
 	if (!debug_locks_off())
@ lib/spinlock_debug.c:302 @ void do_raw_write_unlock(rwlock_t *lock)
 	debug_write_unlock(lock);
 	arch_write_unlock(&lock->raw_lock);
 }
+
+#endif
@ localversion-rt:1 @
+-rt59
@ mm/Kconfig:310 @ config NOMMU_INITIAL_TRIM_EXCESS
 
 config TRANSPARENT_HUGEPAGE
 	bool "Transparent Hugepage Support"
-	depends on X86 && MMU
+	depends on X86 && MMU && !PREEMPT_RT_FULL
 	select COMPACTION
 	help
 	  Transparent Hugepages allows the kernel to use huge pages and
@ mm/filemap.c:2050 @ size_t iov_iter_copy_from_user_atomic(struct page *page,
 	char *kaddr;
 	size_t copied;
 
-	BUG_ON(!in_atomic());
+	BUG_ON(!pagefault_disabled());
 	kaddr = kmap_atomic(page, KM_USER0);
 	if (likely(i->nr_segs == 1)) {
 		int left;
@ mm/memcontrol.c:686 @ static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 	return total;
 }
 
-static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
+static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
+				       enum mem_cgroup_events_target target)
 {
 	unsigned long val, next;
 
 	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
 	next = __this_cpu_read(memcg->stat->targets[target]);
 	/* from time_after() in jiffies.h */
-	return ((long)next - (long)val < 0);
-}
-
-static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
-{
-	unsigned long val, next;
-
-	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
-
-	switch (target) {
-	case MEM_CGROUP_TARGET_THRESH:
-		next = val + THRESHOLDS_EVENTS_TARGET;
-		break;
-	case MEM_CGROUP_TARGET_SOFTLIMIT:
-		next = val + SOFTLIMIT_EVENTS_TARGET;
-		break;
-	case MEM_CGROUP_TARGET_NUMAINFO:
-		next = val + NUMAINFO_EVENTS_TARGET;
-		break;
-	default:
-		return;
+	if ((long)next - (long)val < 0) {
+		switch (target) {
+		case MEM_CGROUP_TARGET_THRESH:
+			next = val + THRESHOLDS_EVENTS_TARGET;
+			break;
+		case MEM_CGROUP_TARGET_SOFTLIMIT:
+			next = val + SOFTLIMIT_EVENTS_TARGET;
+			break;
+		case MEM_CGROUP_TARGET_NUMAINFO:
+			next = val + NUMAINFO_EVENTS_TARGET;
+			break;
+		default:
+			break;
+		}
+		__this_cpu_write(memcg->stat->targets[target], next);
+		return true;
 	}
-
-	__this_cpu_write(memcg->stat->targets[target], next);
+	return false;
 }
 
 /*
@ mm/memcontrol.c:722 @ static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 {
 	preempt_disable();
 	/* threshold event is triggered in finer grain than soft limit */
-	if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
+	if (unlikely(mem_cgroup_event_ratelimit(memcg,
+						MEM_CGROUP_TARGET_THRESH))) {
+		bool do_softlimit, do_numainfo;
+
+		do_softlimit = mem_cgroup_event_ratelimit(memcg,
+						MEM_CGROUP_TARGET_SOFTLIMIT);
+#if MAX_NUMNODES > 1
+		do_numainfo = mem_cgroup_event_ratelimit(memcg,
+						MEM_CGROUP_TARGET_NUMAINFO);
+#endif
+		preempt_enable();
+
 		mem_cgroup_threshold(memcg);
-		__mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
-		if (unlikely(__memcg_event_check(memcg,
-			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
+		if (unlikely(do_softlimit))
 			mem_cgroup_update_tree(memcg, page);
-			__mem_cgroup_target_update(memcg,
-						   MEM_CGROUP_TARGET_SOFTLIMIT);
-		}
 #if MAX_NUMNODES > 1
-		if (unlikely(__memcg_event_check(memcg,
-			MEM_CGROUP_TARGET_NUMAINFO))) {
+		if (unlikely(do_numainfo))
 			atomic_inc(&memcg->numainfo_events);
-			__mem_cgroup_target_update(memcg,
-				MEM_CGROUP_TARGET_NUMAINFO);
-		}
 #endif
-	}
-	preempt_enable();
+	} else
+		preempt_enable();
 }
 
 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
@ mm/memory.c:3455 @ unlock:
 	return 0;
 }
 
+#ifdef CONFIG_PREEMPT_RT_FULL
+void pagefault_disable(void)
+{
+	migrate_disable();
+	current->pagefault_disabled++;
+	/*
+	 * make sure to have issued the store before a pagefault
+	 * can hit.
+	 */
+	barrier();
+}
+EXPORT_SYMBOL_GPL(pagefault_disable);
+
+void pagefault_enable(void)
+{
+	/*
+	 * make sure to issue those last loads/stores before enabling
+	 * the pagefault handler again.
+	 */
+	barrier();
+	current->pagefault_disabled--;
+	migrate_enable();
+}
+EXPORT_SYMBOL_GPL(pagefault_enable);
+#endif
+
 /*
  * By the time we get here, we already hold the mm semaphore
  */
@ mm/memory.c:4041 @ void copy_user_huge_page(struct page *dst, struct page *src,
 	}
 }
 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
+
+#if defined(CONFIG_PREEMPT_RT_FULL) && (USE_SPLIT_PTLOCKS > 0)
+/*
+ * Heinous hack, relies on the caller doing something like:
+ *
+ *   pte = alloc_pages(PGALLOC_GFP, 0);
+ *   if (pte)
+ *     pgtable_page_ctor(pte);
+ *   return pte;
+ *
+ * This ensures we release the page and return NULL when the
+ * lock allocation fails.
+ */
+struct page *pte_lock_init(struct page *page)
+{
+	page->ptl = kmalloc(sizeof(spinlock_t), GFP_KERNEL);
+	if (page->ptl) {
+		spin_lock_init(__pte_lockptr(page));
+	} else {
+		__free_page(page);
+		page = NULL;
+	}
+	return page;
+}
+
+void pte_lock_deinit(struct page *page)
+{
+	kfree(page->ptl);
+	page->mapping = NULL;
+}
+
+#endif
@ mm/mmu_context.c:29 @ void use_mm(struct mm_struct *mm)
 	struct task_struct *tsk = current;
 
 	task_lock(tsk);
+	local_irq_disable_rt();
 	active_mm = tsk->active_mm;
 	if (active_mm != mm) {
 		atomic_inc(&mm->mm_count);
@ mm/mmu_context.c:37 @ void use_mm(struct mm_struct *mm)
 	}
 	tsk->mm = mm;
 	switch_mm(active_mm, mm, tsk);
+	local_irq_enable_rt();
 	task_unlock(tsk);
 
 	if (active_mm != mm)
@ mm/page_alloc.c:60 @
 #include <linux/ftrace_event.h>
 #include <linux/memcontrol.h>
 #include <linux/prefetch.h>
+#include <linux/locallock.h>
 
 #include <asm/tlbflush.h>
 #include <asm/div64.h>
@ mm/page_alloc.c:226 @ EXPORT_SYMBOL(nr_node_ids);
 EXPORT_SYMBOL(nr_online_nodes);
 #endif
 
+static DEFINE_LOCAL_IRQ_LOCK(pa_lock);
+
+#ifdef CONFIG_PREEMPT_RT_BASE
+# define cpu_lock_irqsave(cpu, flags)		\
+	local_lock_irqsave_on(pa_lock, flags, cpu)
+# define cpu_unlock_irqrestore(cpu, flags)		\
+	local_unlock_irqrestore_on(pa_lock, flags, cpu)
+#else
+# define cpu_lock_irqsave(cpu, flags)		local_irq_save(flags)
+# define cpu_unlock_irqrestore(cpu, flags)	local_irq_restore(flags)
+#endif
+
 int page_group_by_mobility_disabled __read_mostly;
 
 static void set_pageblock_migratetype(struct page *page, int migratetype)
@ mm/page_alloc.c:597 @ static inline int free_pages_check(struct page *page)
 }
 
 /*
- * Frees a number of pages from the PCP lists
+ * Frees a number of pages which have been collected from the pcp lists.
  * Assumes all pages on list are in same zone, and of same order.
  * count is the number of pages to free.
  *
@ mm/page_alloc.c:608 @ static inline int free_pages_check(struct page *page)
  * pinned" detection logic.
  */
 static void free_pcppages_bulk(struct zone *zone, int count,
-					struct per_cpu_pages *pcp)
+			       struct list_head *list)
 {
-	int migratetype = 0;
-	int batch_free = 0;
 	int to_free = count;
+	unsigned long flags;
 
-	spin_lock(&zone->lock);
+	spin_lock_irqsave(&zone->lock, flags);
 	zone->all_unreclaimable = 0;
 	zone->pages_scanned = 0;
 
+	while (!list_empty(list)) {
+		struct page *page = list_first_entry(list, struct page, lru);
+
+		/* must delete as __free_one_page list manipulates */
+		list_del(&page->lru);
+		/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
+		__free_one_page(page, zone, 0, page_private(page));
+		trace_mm_page_pcpu_drain(page, 0, page_private(page));
+		to_free--;
+	}
+	WARN_ON(to_free != 0);
+	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
+	spin_unlock_irqrestore(&zone->lock, flags);
+}
+
+/*
+ * Moves a number of pages from the PCP lists to free list which
+ * is freed outside of the locked region.
+ *
+ * Assumes all pages on list are in same zone, and of same order.
+ * count is the number of pages to free.
+ */
+static void isolate_pcp_pages(int to_free, struct per_cpu_pages *src,
+			      struct list_head *dst)
+{
+	int migratetype = 0, batch_free = 0;
+
 	while (to_free) {
 		struct page *page;
 		struct list_head *list;
@ mm/page_alloc.c:659 @ static void free_pcppages_bulk(struct zone *zone, int count,
 			batch_free++;
 			if (++migratetype == MIGRATE_PCPTYPES)
 				migratetype = 0;
-			list = &pcp->lists[migratetype];
+			list = &src->lists[migratetype];
 		} while (list_empty(list));
 
 		/* This is the only non-empty list. Free them all. */
@ mm/page_alloc.c:667 @ static void free_pcppages_bulk(struct zone *zone, int count,
 			batch_free = to_free;
 
 		do {
-			page = list_entry(list->prev, struct page, lru);
-			/* must delete as __free_one_page list manipulates */
+			page = list_last_entry(list, struct page, lru);
 			list_del(&page->lru);
-			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
-			__free_one_page(page, zone, 0, page_private(page));
-			trace_mm_page_pcpu_drain(page, 0, page_private(page));
+			list_add(&page->lru, dst);
 		} while (--to_free && --batch_free && !list_empty(list));
 	}
-	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
-	spin_unlock(&zone->lock);
 }
 
 static void free_one_page(struct zone *zone, struct page *page, int order,
 				int migratetype)
 {
-	spin_lock(&zone->lock);
+	unsigned long flags;
+
+	spin_lock_irqsave(&zone->lock, flags);
 	zone->all_unreclaimable = 0;
 	zone->pages_scanned = 0;
 
 	__free_one_page(page, zone, order, migratetype);
 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
-	spin_unlock(&zone->lock);
+	spin_unlock_irqrestore(&zone->lock, flags);
 }
 
 static bool free_pages_prepare(struct page *page, unsigned int order)
@ mm/page_alloc.c:722 @ static void __free_pages_ok(struct page *page, unsigned int order)
 	if (!free_pages_prepare(page, order))
 		return;
 
-	local_irq_save(flags);
+	local_lock_irqsave(pa_lock, flags);
 	if (unlikely(wasMlocked))
 		free_page_mlock(page);
 	__count_vm_events(PGFREE, 1 << order);
 	free_one_page(page_zone(page), page, order,
 					get_pageblock_migratetype(page));
-	local_irq_restore(flags);
+	local_unlock_irqrestore(pa_lock, flags);
 }
 
 /*
@ mm/page_alloc.c:1104 @ static int rmqueue_bulk(struct zone *zone, unsigned int order,
 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
 {
 	unsigned long flags;
+	LIST_HEAD(dst);
 	int to_drain;
 
-	local_irq_save(flags);
+	local_lock_irqsave(pa_lock, flags);
 	if (pcp->count >= pcp->batch)
 		to_drain = pcp->batch;
 	else
 		to_drain = pcp->count;
-	free_pcppages_bulk(zone, to_drain, pcp);
+	isolate_pcp_pages(to_drain, pcp, &dst);
 	pcp->count -= to_drain;
-	local_irq_restore(flags);
+	local_unlock_irqrestore(pa_lock, flags);
+	free_pcppages_bulk(zone, to_drain, &dst);
 }
 #endif
 
@ mm/page_alloc.c:1134 @ static void drain_pages(unsigned int cpu)
 	for_each_populated_zone(zone) {
 		struct per_cpu_pageset *pset;
 		struct per_cpu_pages *pcp;
+		LIST_HEAD(dst);
+		int count;
 
-		local_irq_save(flags);
+		cpu_lock_irqsave(cpu, flags);
 		pset = per_cpu_ptr(zone->pageset, cpu);
 
 		pcp = &pset->pcp;
-		if (pcp->count) {
-			free_pcppages_bulk(zone, pcp->count, pcp);
+		count = pcp->count;
+		if (count) {
+			isolate_pcp_pages(count, pcp, &dst);
 			pcp->count = 0;
 		}
-		local_irq_restore(flags);
+		cpu_unlock_irqrestore(cpu, flags);
+		if (count)
+			free_pcppages_bulk(zone, count, &dst);
 	}
 }
 
@ mm/page_alloc.c:1165 @ void drain_local_pages(void *arg)
  */
 void drain_all_pages(void)
 {
+#ifndef CONFIG_PREEMPT_RT_BASE
 	on_each_cpu(drain_local_pages, NULL, 1);
+#else
+	int i;
+
+	for_each_online_cpu(i)
+		drain_pages(i);
+#endif
 }
 
 #ifdef CONFIG_HIBERNATION
@ mm/page_alloc.c:1228 @ void free_hot_cold_page(struct page *page, int cold)
 
 	migratetype = get_pageblock_migratetype(page);
 	set_page_private(page, migratetype);
-	local_irq_save(flags);
+	local_lock_irqsave(pa_lock, flags);
 	if (unlikely(wasMlocked))
 		free_page_mlock(page);
 	__count_vm_event(PGFREE);
@ mm/page_alloc.c:1255 @ void free_hot_cold_page(struct page *page, int cold)
 		list_add(&page->lru, &pcp->lists[migratetype]);
 	pcp->count++;
 	if (pcp->count >= pcp->high) {
-		free_pcppages_bulk(zone, pcp->batch, pcp);
+		LIST_HEAD(dst);
+		int count;
+
+		isolate_pcp_pages(pcp->batch, pcp, &dst);
 		pcp->count -= pcp->batch;
+		count = pcp->batch;
+		local_unlock_irqrestore(pa_lock, flags);
+		free_pcppages_bulk(zone, count, &dst);
+		return;
 	}
 
 out:
-	local_irq_restore(flags);
+	local_unlock_irqrestore(pa_lock, flags);
 }
 
 /*
@ mm/page_alloc.c:1362 @ again:
 		struct per_cpu_pages *pcp;
 		struct list_head *list;
 
-		local_irq_save(flags);
+		local_lock_irqsave(pa_lock, flags);
 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
 		list = &pcp->lists[migratetype];
 		if (list_empty(list)) {
@ mm/page_alloc.c:1394 @ again:
 			 */
 			WARN_ON_ONCE(order > 1);
 		}
-		spin_lock_irqsave(&zone->lock, flags);
+		local_spin_lock_irqsave(pa_lock, &zone->lock, flags);
 		page = __rmqueue(zone, order, migratetype);
-		spin_unlock(&zone->lock);
-		if (!page)
+		if (!page) {
+			spin_unlock(&zone->lock);
 			goto failed;
+		}
 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
+		spin_unlock(&zone->lock);
 	}
 
 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
 	zone_statistics(preferred_zone, zone, gfp_flags);
-	local_irq_restore(flags);
+	local_unlock_irqrestore(pa_lock, flags);
 
 	VM_BUG_ON(bad_range(zone, page));
 	if (prep_new_page(page, order, gfp_flags))
@ mm/page_alloc.c:1414 @ again:
 	return page;
 
 failed:
-	local_irq_restore(flags);
+	local_unlock_irqrestore(pa_lock, flags);
 	return NULL;
 }
 
@ mm/page_alloc.c:1969 @ __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
 	if (*did_some_progress != COMPACT_SKIPPED) {
 
 		/* Page migration frees to the PCP lists but we want merging */
-		drain_pages(get_cpu());
-		put_cpu();
+		drain_pages(get_cpu_light());
+		put_cpu_light();
 
 		page = get_page_from_freelist(gfp_mask, nodemask,
 				order, zonelist, high_zoneidx,
@ mm/page_alloc.c:3788 @ static int __zone_pcp_update(void *data)
 	for_each_possible_cpu(cpu) {
 		struct per_cpu_pageset *pset;
 		struct per_cpu_pages *pcp;
+		LIST_HEAD(dst);
 
 		pset = per_cpu_ptr(zone->pageset, cpu);
 		pcp = &pset->pcp;
 
-		local_irq_save(flags);
-		free_pcppages_bulk(zone, pcp->count, pcp);
+		cpu_lock_irqsave(cpu, flags);
+		isolate_pcp_pages(pcp->count, pcp, &dst);
+		free_pcppages_bulk(zone, pcp->count, &dst);
 		setup_pageset(pset, batch);
-		local_irq_restore(flags);
+		cpu_unlock_irqrestore(cpu, flags);
 	}
 	return 0;
 }
@ mm/page_alloc.c:5160 @ static int page_alloc_cpu_notify(struct notifier_block *self,
 void __init page_alloc_init(void)
 {
 	hotcpu_notifier(page_alloc_cpu_notify, 0);
+	local_irq_lock_init(pa_lock);
 }
 
 /*
@ mm/page_cgroup.c:20 @ static void __meminit init_page_cgroup(struct page_cgroup *pc, unsigned long id)
 	set_page_cgroup_array_id(pc, id);
 	pc->mem_cgroup = NULL;
 	INIT_LIST_HEAD(&pc->lru);
+	page_cgroup_lock_init(pc);
 }
 static unsigned long total_usage;
 
@ mm/slab.c:119 @
 #include	<linux/kmemcheck.h>
 #include	<linux/memory.h>
 #include	<linux/prefetch.h>
+#include	<linux/locallock.h>
 
 #include	<asm/cacheflush.h>
 #include	<asm/tlbflush.h>
@ mm/slab.c:611 @ int slab_is_available(void)
 	return g_cpucache_up >= EARLY;
 }
 
+/*
+ * Guard access to the cache-chain.
+ */
+static DEFINE_MUTEX(cache_chain_mutex);
+static struct list_head cache_chain;
+
 #ifdef CONFIG_LOCKDEP
 
 /*
@ mm/slab.c:678 @ static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
 		slab_set_debugobj_lock_classes_node(cachep, node);
 }
 
-static void init_node_lock_keys(int q)
+static void init_lock_keys(struct kmem_cache *cachep, int node)
 {
-	struct cache_sizes *s = malloc_sizes;
+	struct kmem_list3 *l3;
 
 	if (g_cpucache_up < LATE)
 		return;
 
-	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
-		struct kmem_list3 *l3;
+	l3 = cachep->nodelists[node];
+	if (!l3 || OFF_SLAB(cachep))
+		return;
 
-		l3 = s->cs_cachep->nodelists[q];
-		if (!l3 || OFF_SLAB(s->cs_cachep))
-			continue;
+	slab_set_lock_classes(cachep, &on_slab_l3_key, &on_slab_alc_key, node);
+}
 
-		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
-				&on_slab_alc_key, q);
-	}
+static void init_node_lock_keys(int node)
+{
+	struct kmem_cache *cachep;
+
+	list_for_each_entry(cachep, &cache_chain, next)
+		init_lock_keys(cachep, node);
 }
 
-static inline void init_lock_keys(void)
+static inline void init_cachep_lock_keys(struct kmem_cache *cachep)
 {
 	int node;
 
 	for_each_node(node)
-		init_node_lock_keys(node);
+		init_lock_keys(cachep, node);
 }
 #else
-static void init_node_lock_keys(int q)
+static void init_node_lock_keys(int node)
 {
 }
 
-static inline void init_lock_keys(void)
+static void init_cachep_lock_keys(struct kmem_cache *cachep)
 {
 }
 
@ mm/slab.c:725 @ static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
 }
 #endif
 
+static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
+static DEFINE_PER_CPU(struct list_head, slab_free_list);
+static DEFINE_LOCAL_IRQ_LOCK(slab_lock);
+
+#ifndef CONFIG_PREEMPT_RT_BASE
+# define slab_on_each_cpu(func, cp)	on_each_cpu(func, cp, 1)
+#else
 /*
- * Guard access to the cache-chain.
+ * execute func() for all CPUs. On PREEMPT_RT we dont actually have
+ * to run on the remote CPUs - we only have to take their CPU-locks.
+ * (This is a rare operation, so cacheline bouncing is not an issue.)
  */
-static DEFINE_MUTEX(cache_chain_mutex);
-static struct list_head cache_chain;
+static void
+slab_on_each_cpu(void (*func)(void *arg, int this_cpu), void *arg)
+{
+	unsigned int i;
 
-static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
+	get_cpu_light();
+	for_each_online_cpu(i)
+		func(arg, i);
+	put_cpu_light();
+}
+
+static void lock_slab_on(unsigned int cpu)
+{
+	local_lock_irq_on(slab_lock, cpu);
+}
+
+static void unlock_slab_on(unsigned int cpu)
+{
+	local_unlock_irq_on(slab_lock, cpu);
+}
+#endif
+
+static void free_delayed(struct list_head *h)
+{
+	while(!list_empty(h)) {
+		struct page *page = list_first_entry(h, struct page, lru);
+
+		list_del(&page->lru);
+		__free_pages(page, page->index);
+	}
+}
+
+static void unlock_l3_and_free_delayed(spinlock_t *list_lock)
+{
+	LIST_HEAD(tmp);
+
+	list_splice_init(&__get_cpu_var(slab_free_list), &tmp);
+	local_spin_unlock_irq(slab_lock, list_lock);
+	free_delayed(&tmp);
+}
+
+static void unlock_slab_and_free_delayed(unsigned long flags)
+{
+	LIST_HEAD(tmp);
+
+	list_splice_init(&__get_cpu_var(slab_free_list), &tmp);
+	local_unlock_irqrestore(slab_lock, flags);
+	free_delayed(&tmp);
+}
 
 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 {
 	return cachep->array[smp_processor_id()];
 }
 
+static inline struct array_cache *cpu_cache_get_on_cpu(struct kmem_cache *cachep,
+						       int cpu)
+{
+	return cachep->array[cpu];
+}
+
 static inline struct kmem_cache *__find_general_cachep(size_t size,
 							gfp_t gfpflags)
 {
@ mm/slab.c:1135 @ static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
 	if (l3->alien) {
 		struct array_cache *ac = l3->alien[node];
 
-		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
+		if (ac && ac->avail &&
+		    local_spin_trylock_irq(slab_lock, &ac->lock)) {
 			__drain_alien_cache(cachep, ac, node);
-			spin_unlock_irq(&ac->lock);
+			local_spin_unlock_irq(slab_lock, &ac->lock);
 		}
 	}
 }
@ mm/slab.c:1153 @ static void drain_alien_cache(struct kmem_cache *cachep,
 	for_each_online_node(i) {
 		ac = alien[i];
 		if (ac) {
-			spin_lock_irqsave(&ac->lock, flags);
+			local_spin_lock_irqsave(slab_lock, &ac->lock, flags);
 			__drain_alien_cache(cachep, ac, i);
-			spin_unlock_irqrestore(&ac->lock, flags);
+			local_spin_unlock_irqrestore(slab_lock, &ac->lock, flags);
 		}
 	}
 }
@ mm/slab.c:1234 @ static int init_cache_nodelists_node(int node)
 			cachep->nodelists[node] = l3;
 		}
 
-		spin_lock_irq(&cachep->nodelists[node]->list_lock);
+		local_spin_lock_irq(slab_lock, &cachep->nodelists[node]->list_lock);
 		cachep->nodelists[node]->free_limit =
 			(1 + nr_cpus_node(node)) *
 			cachep->batchcount + cachep->num;
-		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
+		local_spin_unlock_irq(slab_lock, &cachep->nodelists[node]->list_lock);
 	}
 	return 0;
 }
@ mm/slab.c:1263 @ static void __cpuinit cpuup_canceled(long cpu)
 		if (!l3)
 			goto free_array_cache;
 
-		spin_lock_irq(&l3->list_lock);
+		local_spin_lock_irq(slab_lock, &l3->list_lock);
 
 		/* Free limit for this kmem_list3 */
 		l3->free_limit -= cachep->batchcount;
@ mm/slab.c:1271 @ static void __cpuinit cpuup_canceled(long cpu)
 			free_block(cachep, nc->entry, nc->avail, node);
 
 		if (!cpumask_empty(mask)) {
-			spin_unlock_irq(&l3->list_lock);
+			unlock_l3_and_free_delayed(&l3->list_lock);
 			goto free_array_cache;
 		}
 
@ mm/slab.c:1285 @ static void __cpuinit cpuup_canceled(long cpu)
 		alien = l3->alien;
 		l3->alien = NULL;
 
-		spin_unlock_irq(&l3->list_lock);
+		unlock_l3_and_free_delayed(&l3->list_lock);
 
 		kfree(shared);
 		if (alien) {
@ mm/slab.c:1359 @ static int __cpuinit cpuup_prepare(long cpu)
 		l3 = cachep->nodelists[node];
 		BUG_ON(!l3);
 
-		spin_lock_irq(&l3->list_lock);
+		local_spin_lock_irq(slab_lock, &l3->list_lock);
 		if (!l3->shared) {
 			/*
 			 * We are serialised from CPU_DEAD or
@ mm/slab.c:1374 @ static int __cpuinit cpuup_prepare(long cpu)
 			alien = NULL;
 		}
 #endif
-		spin_unlock_irq(&l3->list_lock);
+		local_spin_unlock_irq(slab_lock, &l3->list_lock);
 		kfree(shared);
 		free_alien_cache(alien);
 		if (cachep->flags & SLAB_DEBUG_OBJECTS)
@ mm/slab.c:1565 @ void __init kmem_cache_init(void)
 	if (num_possible_nodes() == 1)
 		use_alien_caches = 0;
 
+	local_irq_lock_init(slab_lock);
+	for_each_possible_cpu(i)
+		INIT_LIST_HEAD(&per_cpu(slab_free_list, i));
+
 	for (i = 0; i < NUM_INIT_LISTS; i++) {
 		kmem_list3_init(&initkmem_list3[i]);
 		if (i < MAX_NUMNODES)
@ mm/slab.c:1749 @ void __init kmem_cache_init_late(void)
 
 	/* 6) resize the head arrays to their final sizes */
 	mutex_lock(&cache_chain_mutex);
-	list_for_each_entry(cachep, &cache_chain, next)
+	list_for_each_entry(cachep, &cache_chain, next) {
 		if (enable_cpucache(cachep, GFP_NOWAIT))
 			BUG();
+		init_cachep_lock_keys(cachep);
+	}
 	mutex_unlock(&cache_chain_mutex);
 
-	/* Annotate slab for lockdep -- annotate the malloc caches */
-	init_lock_keys();
-
 	/* Done! */
 	g_cpucache_up = FULL;
 
@ mm/slab.c:1846 @ static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
 /*
  * Interface to system's page release.
  */
-static void kmem_freepages(struct kmem_cache *cachep, void *addr)
+static void kmem_freepages(struct kmem_cache *cachep, void *addr, bool delayed)
 {
 	unsigned long i = (1 << cachep->gfporder);
-	struct page *page = virt_to_page(addr);
+	struct page *page, *basepage = virt_to_page(addr);
 	const unsigned long nr_freed = i;
 
+	page = basepage;
+
 	kmemcheck_free_shadow(page, cachep->gfporder);
 
 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
@ mm/slab.c:1869 @ static void kmem_freepages(struct kmem_cache *cachep, void *addr)
 	}
 	if (current->reclaim_state)
 		current->reclaim_state->reclaimed_slab += nr_freed;
-	free_pages((unsigned long)addr, cachep->gfporder);
+
+	if (!delayed) {
+		free_pages((unsigned long)addr, cachep->gfporder);
+	} else {
+		basepage->index = cachep->gfporder;
+		list_add(&basepage->lru, &__get_cpu_var(slab_free_list));
+	}
 }
 
 static void kmem_rcu_free(struct rcu_head *head)
@ mm/slab.c:1883 @ static void kmem_rcu_free(struct rcu_head *head)
 	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
 	struct kmem_cache *cachep = slab_rcu->cachep;
 
-	kmem_freepages(cachep, slab_rcu->addr);
+	kmem_freepages(cachep, slab_rcu->addr, false);
 	if (OFF_SLAB(cachep))
 		kmem_cache_free(cachep->slabp_cache, slab_rcu);
 }
@ mm/slab.c:2102 @ static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slab
  * Before calling the slab must have been unlinked from the cache.  The
  * cache-lock is not held/needed.
  */
-static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
+static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp,
+			 bool delayed)
 {
 	void *addr = slabp->s_mem - slabp->colouroff;
 
@ mm/slab.c:2116 @ static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
 		slab_rcu->addr = addr;
 		call_rcu(&slab_rcu->head, kmem_rcu_free);
 	} else {
-		kmem_freepages(cachep, addr);
+		kmem_freepages(cachep, addr, delayed);
 		if (OFF_SLAB(cachep))
 			kmem_cache_free(cachep->slabp_cache, slabp);
 	}
@ mm/slab.c:2565 @ kmem_cache_create (const char *name, size_t size, size_t align,
 		slab_set_debugobj_lock_classes(cachep);
 	}
 
+	init_cachep_lock_keys(cachep);
+
 	/* cache setup completed, link it into the list */
 	list_add(&cachep->next, &cache_chain);
 oops:
@ mm/slab.c:2584 @ EXPORT_SYMBOL(kmem_cache_create);
 #if DEBUG
 static void check_irq_off(void)
 {
-	BUG_ON(!irqs_disabled());
+	BUG_ON_NONRT(!irqs_disabled());
 }
 
 static void check_irq_on(void)
@ mm/slab.c:2619 @ static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
 			struct array_cache *ac,
 			int force, int node);
 
-static void do_drain(void *arg)
+static void __do_drain(void *arg, unsigned int cpu)
 {
 	struct kmem_cache *cachep = arg;
 	struct array_cache *ac;
-	int node = numa_mem_id();
+	int node = cpu_to_mem(cpu);
 
-	check_irq_off();
-	ac = cpu_cache_get(cachep);
+	ac = cpu_cache_get_on_cpu(cachep, cpu);
 	spin_lock(&cachep->nodelists[node]->list_lock);
 	free_block(cachep, ac->entry, ac->avail, node);
 	spin_unlock(&cachep->nodelists[node]->list_lock);
 	ac->avail = 0;
 }
 
+#ifndef CONFIG_PREEMPT_RT_BASE
+static void do_drain(void *arg)
+{
+	__do_drain(arg, smp_processor_id());
+}
+#else
+static void do_drain(void *arg, int cpu)
+{
+	LIST_HEAD(tmp);
+
+	lock_slab_on(cpu);
+	__do_drain(arg, cpu);
+	list_splice_init(&per_cpu(slab_free_list, cpu), &tmp);
+	unlock_slab_on(cpu);
+	free_delayed(&tmp);
+}
+#endif
+
 static void drain_cpu_caches(struct kmem_cache *cachep)
 {
 	struct kmem_list3 *l3;
 	int node;
 
-	on_each_cpu(do_drain, cachep, 1);
+	slab_on_each_cpu(do_drain, cachep);
 	check_irq_on();
 	for_each_online_node(node) {
 		l3 = cachep->nodelists[node];
@ mm/slab.c:2686 @ static int drain_freelist(struct kmem_cache *cache,
 	nr_freed = 0;
 	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
 
-		spin_lock_irq(&l3->list_lock);
+		local_spin_lock_irq(slab_lock, &l3->list_lock);
 		p = l3->slabs_free.prev;
 		if (p == &l3->slabs_free) {
-			spin_unlock_irq(&l3->list_lock);
+			local_spin_unlock_irq(slab_lock, &l3->list_lock);
 			goto out;
 		}
 
@ mm/slab.c:2703 @ static int drain_freelist(struct kmem_cache *cache,
 		 * to the cache.
 		 */
 		l3->free_objects -= cache->num;
-		spin_unlock_irq(&l3->list_lock);
-		slab_destroy(cache, slabp);
+		local_spin_unlock_irq(slab_lock, &l3->list_lock);
+		slab_destroy(cache, slabp, false);
 		nr_freed++;
 	}
 out:
@ mm/slab.c:2998 @ static int cache_grow(struct kmem_cache *cachep,
 	offset *= cachep->colour_off;
 
 	if (local_flags & __GFP_WAIT)
-		local_irq_enable();
+		local_unlock_irq(slab_lock);
 
 	/*
 	 * The test for missing atomic flag is performed here, rather than
@ mm/slab.c:3028 @ static int cache_grow(struct kmem_cache *cachep,
 	cache_init_objs(cachep, slabp);
 
 	if (local_flags & __GFP_WAIT)
-		local_irq_disable();
+		local_lock_irq(slab_lock);
 	check_irq_off();
 	spin_lock(&l3->list_lock);
 
@ mm/slab.c:3039 @ static int cache_grow(struct kmem_cache *cachep,
 	spin_unlock(&l3->list_lock);
 	return 1;
 opps1:
-	kmem_freepages(cachep, objp);
+	kmem_freepages(cachep, objp, false);
 failed:
 	if (local_flags & __GFP_WAIT)
-		local_irq_disable();
+		local_lock_irq(slab_lock);
 	return 0;
 }
 
@ mm/slab.c:3435 @ retry:
 		 * set and go into memory reserves if necessary.
 		 */
 		if (local_flags & __GFP_WAIT)
-			local_irq_enable();
+			local_unlock_irq(slab_lock);
 		kmem_flagcheck(cache, flags);
 		obj = kmem_getpages(cache, local_flags, numa_mem_id());
 		if (local_flags & __GFP_WAIT)
-			local_irq_disable();
+			local_lock_irq(slab_lock);
 		if (obj) {
 			/*
 			 * Insert into the appropriate per node queues
@ mm/slab.c:3557 @ __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
 		return NULL;
 
 	cache_alloc_debugcheck_before(cachep, flags);
-	local_irq_save(save_flags);
+	local_lock_irqsave(slab_lock, save_flags);
 
 	if (nodeid == NUMA_NO_NODE)
 		nodeid = slab_node;
@ mm/slab.c:3582 @ __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
 	/* ___cache_alloc_node can fall back to other nodes */
 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
   out:
-	local_irq_restore(save_flags);
+	local_unlock_irqrestore(slab_lock, save_flags);
 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
 	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
 				 flags);
@ mm/slab.c:3642 @ __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
 		return NULL;
 
 	cache_alloc_debugcheck_before(cachep, flags);
-	local_irq_save(save_flags);
+	local_lock_irqsave(slab_lock, save_flags);
 	objp = __do_cache_alloc(cachep, flags);
-	local_irq_restore(save_flags);
+	local_unlock_irqrestore(slab_lock, save_flags);
 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
 	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
 				 flags);
@ mm/slab.c:3692 @ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
 				 * a different cache, refer to comments before
 				 * alloc_slabmgmt.
 				 */
-				slab_destroy(cachep, slabp);
+				slab_destroy(cachep, slabp, true);
 			} else {
 				list_add(&slabp->list, &l3->slabs_free);
 			}
@ mm/slab.c:3955 @ void kmem_cache_free(struct kmem_cache *cachep, void *objp)
 {
 	unsigned long flags;
 
-	local_irq_save(flags);
 	debug_check_no_locks_freed(objp, obj_size(cachep));
 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
 		debug_check_no_obj_freed(objp, obj_size(cachep));
+	local_lock_irqsave(slab_lock, flags);
 	__cache_free(cachep, objp, __builtin_return_address(0));
-	local_irq_restore(flags);
+	unlock_slab_and_free_delayed(flags);
 
 	trace_kmem_cache_free(_RET_IP_, objp);
 }
@ mm/slab.c:3984 @ void kfree(const void *objp)
 
 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
 		return;
-	local_irq_save(flags);
 	kfree_debugcheck(objp);
 	c = virt_to_cache(objp);
 	debug_check_no_locks_freed(objp, obj_size(c));
 	debug_check_no_obj_freed(objp, obj_size(c));
+	local_lock_irqsave(slab_lock, flags);
 	__cache_free(c, (void *)objp, __builtin_return_address(0));
-	local_irq_restore(flags);
+	unlock_slab_and_free_delayed(flags);
 }
 EXPORT_SYMBOL(kfree);
 
@ mm/slab.c:4033 @ static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
 		if (l3) {
 			struct array_cache *shared = l3->shared;
 
-			spin_lock_irq(&l3->list_lock);
+			local_spin_lock_irq(slab_lock, &l3->list_lock);
 
 			if (shared)
 				free_block(cachep, shared->entry,
@ mm/slab.c:4046 @ static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
 			}
 			l3->free_limit = (1 + nr_cpus_node(node)) *
 					cachep->batchcount + cachep->num;
-			spin_unlock_irq(&l3->list_lock);
+			unlock_l3_and_free_delayed(&l3->list_lock);
+
 			kfree(shared);
 			free_alien_cache(new_alien);
 			continue;
@ mm/slab.c:4094 @ struct ccupdate_struct {
 	struct array_cache *new[0];
 };
 
-static void do_ccupdate_local(void *info)
+static void __do_ccupdate_local(void *info, int cpu)
 {
 	struct ccupdate_struct *new = info;
 	struct array_cache *old;
 
-	check_irq_off();
-	old = cpu_cache_get(new->cachep);
+	old = cpu_cache_get_on_cpu(new->cachep, cpu);
+
+	new->cachep->array[cpu] = new->new[cpu];
+	new->new[cpu] = old;
+}
 
-	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
-	new->new[smp_processor_id()] = old;
+#ifndef CONFIG_PREEMPT_RT_BASE
+static void do_ccupdate_local(void *info)
+{
+	__do_ccupdate_local(info, smp_processor_id());
 }
+#else
+static void do_ccupdate_local(void *info, int cpu)
+{
+	lock_slab_on(cpu);
+	__do_ccupdate_local(info, cpu);
+	unlock_slab_on(cpu);
+}
+#endif
 
 /* Always called with the cache_chain_mutex held */
 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
@ mm/slab.c:4143 @ static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
 	}
 	new->cachep = cachep;
 
-	on_each_cpu(do_ccupdate_local, (void *)new, 1);
+	slab_on_each_cpu(do_ccupdate_local, (void *)new);
 
 	check_irq_on();
 	cachep->batchcount = batchcount;
@ mm/slab.c:4154 @ static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
 		struct array_cache *ccold = new->new[i];
 		if (!ccold)
 			continue;
-		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
+		local_spin_lock_irq(slab_lock,
+				    &cachep->nodelists[cpu_to_mem(i)]->list_lock);
 		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
-		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
+
+		unlock_l3_and_free_delayed(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
 		kfree(ccold);
 	}
 	kfree(new);
@ mm/slab.c:4234 @ static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
 	if (ac->touched && !force) {
 		ac->touched = 0;
 	} else {
-		spin_lock_irq(&l3->list_lock);
+		local_spin_lock_irq(slab_lock, &l3->list_lock);
 		if (ac->avail) {
 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
 			if (tofree > ac->avail)
@ mm/slab.c:4244 @ static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
 			memmove(ac->entry, &(ac->entry[tofree]),
 				sizeof(void *) * ac->avail);
 		}
-		spin_unlock_irq(&l3->list_lock);
+		local_spin_unlock_irq(slab_lock, &l3->list_lock);
 	}
 }
 
@ mm/slab.c:4383 @ static int s_show(struct seq_file *m, void *p)
 			continue;
 
 		check_irq_on();
-		spin_lock_irq(&l3->list_lock);
+		local_spin_lock_irq(slab_lock, &l3->list_lock);
 
 		list_for_each_entry(slabp, &l3->slabs_full, list) {
 			if (slabp->inuse != cachep->num && !error)
@ mm/slab.c:4408 @ static int s_show(struct seq_file *m, void *p)
 		if (l3->shared)
 			shared_avail += l3->shared->avail;
 
-		spin_unlock_irq(&l3->list_lock);
+		local_spin_unlock_irq(slab_lock, &l3->list_lock);
 	}
 	num_slabs += active_slabs;
 	num_objs = num_slabs * cachep->num;
@ mm/slab.c:4637 @ static int leaks_show(struct seq_file *m, void *p)
 			continue;
 
 		check_irq_on();
-		spin_lock_irq(&l3->list_lock);
+		local_spin_lock_irq(slab_lock, &l3->list_lock);
 
 		list_for_each_entry(slabp, &l3->slabs_full, list)
 			handle_slab(n, cachep, slabp);
 		list_for_each_entry(slabp, &l3->slabs_partial, list)
 			handle_slab(n, cachep, slabp);
-		spin_unlock_irq(&l3->list_lock);
+		local_spin_unlock_irq(slab_lock, &l3->list_lock);
 	}
 	name = cachep->name;
 	if (n[0] == n[1]) {
@ mm/swap.c:34 @
 #include <linux/backing-dev.h>
 #include <linux/memcontrol.h>
 #include <linux/gfp.h>
+#include <linux/locallock.h>
 
 #include "internal.h"
 
@ mm/swap.c:45 @ static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
 
+static DEFINE_LOCAL_IRQ_LOCK(rotate_lock);
+static DEFINE_LOCAL_IRQ_LOCK(swap_lock);
+
 /*
  * This path almost never happens for VM activity - pages are normally
  * freed via pagevecs.  But it gets used by networking.
@ mm/swap.c:274 @ void rotate_reclaimable_page(struct page *page)
 		unsigned long flags;
 
 		page_cache_get(page);
-		local_irq_save(flags);
+		local_lock_irqsave(rotate_lock, flags);
 		pvec = &__get_cpu_var(lru_rotate_pvecs);
 		if (!pagevec_add(pvec, page))
 			pagevec_move_tail(pvec);
-		local_irq_restore(flags);
+		local_unlock_irqrestore(rotate_lock, flags);
 	}
 }
 
@ mm/swap.c:334 @ static void activate_page_drain(int cpu)
 void activate_page(struct page *page)
 {
 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
-		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
+		struct pagevec *pvec = &get_locked_var(swap_lock,
+						       activate_page_pvecs);
 
 		page_cache_get(page);
 		if (!pagevec_add(pvec, page))
 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
-		put_cpu_var(activate_page_pvecs);
+		put_locked_var(swap_lock, activate_page_pvecs);
 	}
 }
 
@ mm/swap.c:381 @ EXPORT_SYMBOL(mark_page_accessed);
 
 void __lru_cache_add(struct page *page, enum lru_list lru)
 {
-	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
+	struct pagevec *pvec = &get_locked_var(swap_lock, lru_add_pvecs)[lru];
 
 	page_cache_get(page);
 	if (!pagevec_add(pvec, page))
 		____pagevec_lru_add(pvec, lru);
-	put_cpu_var(lru_add_pvecs);
+	put_locked_var(swap_lock, lru_add_pvecs);
 }
 EXPORT_SYMBOL(__lru_cache_add);
 
@ mm/swap.c:520 @ static void drain_cpu_pagevecs(int cpu)
 		unsigned long flags;
 
 		/* No harm done if a racing interrupt already did this */
-		local_irq_save(flags);
+		local_lock_irqsave(rotate_lock, flags);
 		pagevec_move_tail(pvec);
-		local_irq_restore(flags);
+		local_unlock_irqrestore(rotate_lock, flags);
 	}
 
 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
@ mm/swap.c:550 @ void deactivate_page(struct page *page)
 		return;
 
 	if (likely(get_page_unless_zero(page))) {
-		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
+		struct pagevec *pvec = &get_locked_var(swap_lock,
+						       lru_deactivate_pvecs);
 
 		if (!pagevec_add(pvec, page))
 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
-		put_cpu_var(lru_deactivate_pvecs);
+		put_locked_var(swap_lock, lru_deactivate_pvecs);
 	}
 }
 
 void lru_add_drain(void)
 {
-	drain_cpu_pagevecs(get_cpu());
-	put_cpu();
+	drain_cpu_pagevecs(local_lock_cpu(swap_lock));
+	local_unlock_cpu(swap_lock);
 }
 
 static void lru_add_drain_per_cpu(struct work_struct *dummy)
@ mm/swap.c:775 @ unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
 
 EXPORT_SYMBOL(pagevec_lookup);
 
+/* Early setup for the local locks */
+static int __init swap_init_locks(void)
+{
+	local_irq_lock_init(rotate_lock);
+	local_irq_lock_init(swap_lock);
+	return 1;
+}
+early_initcall(swap_init_locks);
+
 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
 		pgoff_t *index, int tag, unsigned nr_pages)
 {
@ mm/vmalloc.c:785 @ static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
 	struct vmap_block *vb;
 	struct vmap_area *va;
 	unsigned long vb_idx;
-	int node, err;
+	int node, err, cpu;
 
 	node = numa_node_id();
 
@ mm/vmalloc.c:824 @ static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
 	BUG_ON(err);
 	radix_tree_preload_end();
 
-	vbq = &get_cpu_var(vmap_block_queue);
+	cpu = get_cpu_light();
+	vbq = &__get_cpu_var(vmap_block_queue);
 	vb->vbq = vbq;
 	spin_lock(&vbq->lock);
 	list_add_rcu(&vb->free_list, &vbq->free);
 	spin_unlock(&vbq->lock);
-	put_cpu_var(vmap_block_queue);
+	put_cpu_light();
 
 	return vb;
 }
@ mm/vmalloc.c:904 @ static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 	struct vmap_block *vb;
 	unsigned long addr = 0;
 	unsigned int order;
-	int purge = 0;
+	int purge = 0, cpu;
 
 	BUG_ON(size & ~PAGE_MASK);
 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
@ mm/vmalloc.c:912 @ static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 
 again:
 	rcu_read_lock();
-	vbq = &get_cpu_var(vmap_block_queue);
+	cpu = get_cpu_light();
+	vbq = &__get_cpu_var(vmap_block_queue);
 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 		int i;
 
@ mm/vmalloc.c:950 @ next:
 	if (purge)
 		purge_fragmented_blocks_thiscpu();
 
-	put_cpu_var(vmap_block_queue);
+	put_cpu_light();
 	rcu_read_unlock();
 
 	if (!addr) {
@ mm/vmscan.c:1384 @ static int too_many_isolated(struct zone *zone, int file,
  */
 static noinline_for_stack void
 putback_lru_pages(struct zone *zone, struct scan_control *sc,
-				unsigned long nr_anon, unsigned long nr_file,
-				struct list_head *page_list)
+		  unsigned long nr_anon, unsigned long nr_file,
+		  struct list_head *page_list, unsigned long nr_reclaimed)
 {
 	struct page *page;
 	struct pagevec pvec;
@ mm/vmscan.c:1396 @ putback_lru_pages(struct zone *zone, struct scan_control *sc,
 	/*
 	 * Put back any unfreeable pages.
 	 */
-	spin_lock(&zone->lru_lock);
+	spin_lock_irq(&zone->lru_lock);
+
+	if (current_is_kswapd())
+		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
+	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
+
 	while (!list_empty(page_list)) {
 		int lru;
 		page = lru_to_page(page_list);
@ mm/vmscan.c:1584 @ shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
 					priority, &nr_dirty, &nr_writeback);
 	}
 
-	local_irq_disable();
-	if (current_is_kswapd())
-		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
-	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
-
-	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
+	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list, nr_reclaimed);
 
 	/*
 	 * If reclaim is isolating dirty pages under writeback, it implies
@ mm/vmstat.c:219 @ void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 	long x;
 	long t;
 
+	preempt_disable_rt();
 	x = delta + __this_cpu_read(*p);
 
 	t = __this_cpu_read(pcp->stat_threshold);
@ mm/vmstat.c:229 @ void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 		x = 0;
 	}
 	__this_cpu_write(*p, x);
+	preempt_enable_rt();
 }
 EXPORT_SYMBOL(__mod_zone_page_state);
 
@ mm/vmstat.c:262 @ void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
 	s8 __percpu *p = pcp->vm_stat_diff + item;
 	s8 v, t;
 
+	preempt_disable_rt();
 	v = __this_cpu_inc_return(*p);
 	t = __this_cpu_read(pcp->stat_threshold);
 	if (unlikely(v > t)) {
@ mm/vmstat.c:271 @ void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
 		zone_page_state_add(v + overstep, zone, item);
 		__this_cpu_write(*p, -overstep);
 	}
+	preempt_enable_rt();
 }
 
 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
@ mm/vmstat.c:286 @ void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
 	s8 __percpu *p = pcp->vm_stat_diff + item;
 	s8 v, t;
 
+	preempt_disable_rt();
 	v = __this_cpu_dec_return(*p);
 	t = __this_cpu_read(pcp->stat_threshold);
 	if (unlikely(v < - t)) {
@ mm/vmstat.c:295 @ void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
 		zone_page_state_add(v - overstep, zone, item);
 		__this_cpu_write(*p, overstep);
 	}
+	preempt_enable_rt();
 }
 
 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
@ net/core/dev.c:225 @ static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
 static inline void rps_lock(struct softnet_data *sd)
 {
 #ifdef CONFIG_RPS
-	spin_lock(&sd->input_pkt_queue.lock);
+	raw_spin_lock(&sd->input_pkt_queue.raw_lock);
 #endif
 }
 
 static inline void rps_unlock(struct softnet_data *sd)
 {
 #ifdef CONFIG_RPS
-	spin_unlock(&sd->input_pkt_queue.lock);
+	raw_spin_unlock(&sd->input_pkt_queue.raw_lock);
 #endif
 }
 
@ net/core/dev.c:1822 @ static inline void __netif_reschedule(struct Qdisc *q)
 	sd->output_queue_tailp = &q->next_sched;
 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
 	local_irq_restore(flags);
+	preempt_check_resched_rt();
 }
 
 void __netif_schedule(struct Qdisc *q)
@ net/core/dev.c:1844 @ void dev_kfree_skb_irq(struct sk_buff *skb)
 		sd->completion_queue = skb;
 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
 		local_irq_restore(flags);
+		preempt_check_resched_rt();
 	}
 }
 EXPORT_SYMBOL(dev_kfree_skb_irq);
@ net/core/dev.c:2970 @ enqueue:
 	rps_unlock(sd);
 
 	local_irq_restore(flags);
+	preempt_check_resched_rt();
 
 	atomic_long_inc(&skb->dev->rx_dropped);
 	kfree_skb(skb);
@ net/core/dev.c:3009 @ int netif_rx(struct sk_buff *skb)
 		struct rps_dev_flow voidflow, *rflow = &voidflow;
 		int cpu;
 
-		preempt_disable();
+		migrate_disable();
 		rcu_read_lock();
 
 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
@ net/core/dev.c:3019 @ int netif_rx(struct sk_buff *skb)
 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
 
 		rcu_read_unlock();
-		preempt_enable();
+		migrate_enable();
 	}
 #else
 	{
 		unsigned int qtail;
-		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
-		put_cpu();
+		ret = enqueue_to_backlog(skb, get_cpu_light(), &qtail);
+		put_cpu_light();
 	}
 #endif
 	return ret;
@ net/core/dev.c:3036 @ int netif_rx_ni(struct sk_buff *skb)
 {
 	int err;
 
-	preempt_disable();
+	migrate_disable();
 	err = netif_rx(skb);
 	if (local_softirq_pending())
-		do_softirq();
-	preempt_enable();
+		thread_do_softirq();
+	migrate_enable();
 
 	return err;
 }
 EXPORT_SYMBOL(netif_rx_ni);
 
+#ifdef CONFIG_PREEMPT_RT_FULL
+/*
+ * RT runs ksoftirqd as a real time thread and the root_lock is a
+ * "sleeping spinlock". If the trylock fails then we can go into an
+ * infinite loop when ksoftirqd preempted the task which actually
+ * holds the lock, because we requeue q and raise NET_TX softirq
+ * causing ksoftirqd to loop forever.
+ *
+ * It's safe to use spin_lock on RT here as softirqs run in thread
+ * context and cannot deadlock against the thread which is holding
+ * root_lock.
+ *
+ * On !RT the trylock might fail, but there we bail out from the
+ * softirq loop after 10 attempts which we can't do on RT. And the
+ * task holding root_lock cannot be preempted, so the only downside of
+ * that trylock is that we need 10 loops to decide that we should have
+ * given up in the first one :)
+ */
+static inline int take_root_lock(spinlock_t *lock)
+{
+	spin_lock(lock);
+	return 1;
+}
+#else
+static inline int take_root_lock(spinlock_t *lock)
+{
+	return spin_trylock(lock);
+}
+#endif
+
 static void net_tx_action(struct softirq_action *h)
 {
 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
@ net/core/dev.c:3114 @ static void net_tx_action(struct softirq_action *h)
 			head = head->next_sched;
 
 			root_lock = qdisc_lock(q);
-			if (spin_trylock(root_lock)) {
+			if (take_root_lock(root_lock)) {
 				smp_mb__before_clear_bit();
 				clear_bit(__QDISC_STATE_SCHED,
 					  &q->state);
@ net/core/dev.c:3442 @ static void flush_backlog(void *arg)
 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
 		if (skb->dev == dev) {
 			__skb_unlink(skb, &sd->input_pkt_queue);
-			kfree_skb(skb);
+			__skb_queue_tail(&sd->tofree_queue, skb);
 			input_queue_head_incr(sd);
 		}
 	}
@ net/core/dev.c:3451 @ static void flush_backlog(void *arg)
 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
 		if (skb->dev == dev) {
 			__skb_unlink(skb, &sd->process_queue);
-			kfree_skb(skb);
+			__skb_queue_tail(&sd->tofree_queue, skb);
 			input_queue_head_incr(sd);
 		}
 	}
+
+	if (!skb_queue_empty(&sd->tofree_queue))
+		raise_softirq_irqoff(NET_RX_SOFTIRQ);
 }
 
 static int napi_gro_complete(struct sk_buff *skb)
@ net/core/dev.c:3795 @ static void net_rps_action_and_irq_enable(struct softnet_data *sd)
 	} else
 #endif
 		local_irq_enable();
+	preempt_check_resched_rt();
 }
 
 static int process_backlog(struct napi_struct *napi, int quota)
@ net/core/dev.c:3868 @ void __napi_schedule(struct napi_struct *n)
 	local_irq_save(flags);
 	____napi_schedule(&__get_cpu_var(softnet_data), n);
 	local_irq_restore(flags);
+	preempt_check_resched_rt();
 }
 EXPORT_SYMBOL(__napi_schedule);
 
@ net/core/dev.c:3943 @ static void net_rx_action(struct softirq_action *h)
 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
 	unsigned long time_limit = jiffies + 2;
 	int budget = netdev_budget;
+	struct sk_buff *skb;
 	void *have;
 
 	local_irq_disable();
 
+	while ((skb = __skb_dequeue(&sd->tofree_queue))) {
+		local_irq_enable();
+		kfree_skb(skb);
+		local_irq_disable();
+	}
+
 	while (!list_empty(&sd->poll_list)) {
 		struct napi_struct *n;
 		int work, weight;
@ net/core/dev.c:6380 @ static int dev_cpu_callback(struct notifier_block *nfb,
 
 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
 	local_irq_enable();
+	preempt_check_resched_rt();
 
 	/* Process offline CPU's input_pkt_queue */
 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
@ net/core/dev.c:6391 @ static int dev_cpu_callback(struct notifier_block *nfb,
 		netif_rx(skb);
 		input_queue_head_incr(oldsd);
 	}
+	while ((skb = __skb_dequeue(&oldsd->tofree_queue))) {
+		kfree_skb(skb);
+	}
 
 	return NOTIFY_OK;
 }
@ net/core/dev.c:6661 @ static int __init net_dev_init(void)
 		struct softnet_data *sd = &per_cpu(softnet_data, i);
 
 		memset(sd, 0, sizeof(*sd));
-		skb_queue_head_init(&sd->input_pkt_queue);
-		skb_queue_head_init(&sd->process_queue);
+		skb_queue_head_init_raw(&sd->input_pkt_queue);
+		skb_queue_head_init_raw(&sd->process_queue);
+		skb_queue_head_init_raw(&sd->tofree_queue);
 		sd->completion_queue = NULL;
 		INIT_LIST_HEAD(&sd->poll_list);
 		sd->output_queue = NULL;
@ net/core/sock.c:2039 @ void lock_sock_nested(struct sock *sk, int subclass)
 	if (sk->sk_lock.owned)
 		__lock_sock(sk);
 	sk->sk_lock.owned = 1;
-	spin_unlock(&sk->sk_lock.slock);
+	spin_unlock_bh(&sk->sk_lock.slock);
 	/*
 	 * The sk_lock has mutex_lock() semantics here:
 	 */
 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
-	local_bh_enable();
 }
 EXPORT_SYMBOL(lock_sock_nested);
 
@ net/ipv4/icmp.c:70 @
 #include <linux/jiffies.h>
 #include <linux/kernel.h>
 #include <linux/fcntl.h>
+#include <linux/sysrq.h>
 #include <linux/socket.h>
 #include <linux/in.h>
 #include <linux/inet.h>
@ net/ipv4/icmp.c:805 @ out_err:
 }
 
 /*
+ * 32bit and 64bit have different timestamp length, so we check for
+ * the cookie at offset 20 and verify it is repeated at offset 50
+ */
+#define CO_POS0		20
+#define CO_POS1		50
+#define CO_SIZE		sizeof(int)
+#define ICMP_SYSRQ_SIZE	57
+
+/*
+ * We got a ICMP_SYSRQ_SIZE sized ping request. Check for the cookie
+ * pattern and if it matches send the next byte as a trigger to sysrq.
+ */
+static void icmp_check_sysrq(struct net *net, struct sk_buff *skb)
+{
+	int cookie = htonl(net->ipv4.sysctl_icmp_echo_sysrq);
+	char *p = skb->data;
+
+	if (!memcmp(&cookie, p + CO_POS0, CO_SIZE) &&
+	    !memcmp(&cookie, p + CO_POS1, CO_SIZE) &&
+	    p[CO_POS0 + CO_SIZE] == p[CO_POS1 + CO_SIZE])
+		handle_sysrq(p[CO_POS0 + CO_SIZE]);
+}
+
+/*
  *	Handle ICMP_ECHO ("ping") requests.
  *
  *	RFC 1122: 3.2.2.6 MUST have an echo server that answers ICMP echo
@ net/ipv4/icmp.c:855 @ static void icmp_echo(struct sk_buff *skb)
 		icmp_param.data_len	   = skb->len;
 		icmp_param.head_len	   = sizeof(struct icmphdr);
 		icmp_reply(&icmp_param, skb);
+
+		if (skb->len == ICMP_SYSRQ_SIZE &&
+		    net->ipv4.sysctl_icmp_echo_sysrq) {
+			icmp_check_sysrq(net, skb);
+		}
 	}
 }
 
@ net/ipv4/route.c:254 @ struct rt_hash_bucket {
 };
 
 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
-	defined(CONFIG_PROVE_LOCKING)
+	defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_PREEMPT_RT_FULL)
 /*
  * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
  * The size of this table is a power of two and depends on the number of CPUS.
@ net/ipv4/sysctl_net_ipv4.c:690 @ static struct ctl_table ipv4_net_table[] = {
 		.proc_handler	= proc_dointvec
 	},
 	{
+		.procname	= "icmp_echo_sysrq",
+		.data		= &init_net.ipv4.sysctl_icmp_echo_sysrq,
+		.maxlen		= sizeof(int),
+		.mode		= 0644,
+		.proc_handler	= proc_dointvec
+	},
+	{
 		.procname	= "icmp_ignore_bogus_error_responses",
 		.data		= &init_net.ipv4.sysctl_icmp_ignore_bogus_error_responses,
 		.maxlen		= sizeof(int),
@ net/mac80211/rx.c:3005 @ void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
 	struct ieee80211_supported_band *sband;
 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
 
-	WARN_ON_ONCE(softirq_count() == 0);
+	WARN_ON_ONCE_NONRT(softirq_count() == 0);
 
 	if (WARN_ON(status->band < 0 ||
 		    status->band >= IEEE80211_NUM_BANDS))
@ net/netfilter/core.c:23 @
 #include <linux/proc_fs.h>
 #include <linux/mutex.h>
 #include <linux/slab.h>
+#include <linux/locallock.h>
 #include <net/net_namespace.h>
 #include <net/sock.h>
 
 #include "nf_internals.h"
 
+#ifdef CONFIG_PREEMPT_RT_BASE
+DEFINE_LOCAL_IRQ_LOCK(xt_write_lock);
+EXPORT_PER_CPU_SYMBOL(xt_write_lock);
+#endif
+
 static DEFINE_MUTEX(afinfo_mutex);
 
 const struct nf_afinfo __rcu *nf_afinfo[NFPROTO_NUMPROTO] __read_mostly;
@ net/packet/af_packet.c:92 @
 #include <linux/virtio_net.h>
 #include <linux/errqueue.h>
 #include <linux/net_tstamp.h>
+#include <linux/delay.h>
 
 #ifdef CONFIG_INET
 #include <net/inet_common.h>
@ net/packet/af_packet.c:677 @ static void prb_retire_rx_blk_timer_expired(unsigned long data)
 	if (BLOCK_NUM_PKTS(pbd)) {
 		while (atomic_read(&pkc->blk_fill_in_prog)) {
 			/* Waiting for skb_copy_bits to finish... */
-			cpu_relax();
+			cpu_chill();
 		}
 	}
 
@ net/packet/af_packet.c:932 @ static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
 		if (!(status & TP_STATUS_BLK_TMO)) {
 			while (atomic_read(&pkc->blk_fill_in_prog)) {
 				/* Waiting for skb_copy_bits to finish... */
-				cpu_relax();
+				cpu_chill();
 			}
 		}
 		prb_close_block(pkc, pbd, po, status);
@ net/rds/ib_rdma.c:37 @
 #include <linux/slab.h>
 #include <linux/rculist.h>
 #include <linux/llist.h>
+#include <linux/delay.h>
 
 #include "rds.h"
 #include "ib.h"
@ net/rds/ib_rdma.c:290 @ static inline void wait_clean_list_grace(void)
 	for_each_online_cpu(cpu) {
 		flag = &per_cpu(clean_list_grace, cpu);
 		while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
-			cpu_relax();
+			cpu_chill();
 	}
 }
 
@ scripts/mkcompile_h:7 @ TARGET=$1
 ARCH=$2
 SMP=$3
 PREEMPT=$4
-CC=$5
+RT=$5
+CC=$6
 
 vecho() { [ "${quiet}" = "silent_" ] || echo "$@" ; }
 
@ scripts/mkcompile_h:61 @ UTS_VERSION="#$VERSION"
 CONFIG_FLAGS=""
 if [ -n "$SMP" ] ; then CONFIG_FLAGS="SMP"; fi
 if [ -n "$PREEMPT" ] ; then CONFIG_FLAGS="$CONFIG_FLAGS PREEMPT"; fi
+if [ -n "$RT" ] ; then CONFIG_FLAGS="$CONFIG_FLAGS RT"; fi
 UTS_VERSION="$UTS_VERSION $CONFIG_FLAGS $TIMESTAMP"
 
 # Truncate to maximum length