
REPRINT FOR

Quality assessment of real-time Linux

REPRINT FOR

110886_Osadl_BAS09_Osadl_2 29.09.11 13:23 Seite 1

Quality assessment of real-time Linux

OPERATING SYSTEMS

n Since the highly positive reception for fur-
thering the real-time capabilities of the Linux
kernel at the 2006 Kernel Summit in Ottawa,
mainline Linux maintainer Linus Torvalds has
regularly been accepting related patches. Over
the last five years and 22 versions from version
2.6.18 to 2.6.40, many of the real-time compo-
nents have been included in the Linux kernel.
There will, by the way, be no version 2.6.40
since it has been renumbered to version 3.0.
The remaining patches that are not yet available
in mainline Linux have been combined in an
archive and need to be included before the config-
uration variable CONFIG_PREEMPT_RT_FULL
becomes available and can be set to enable
production of a realtime Linux kernel. The archive
is called PREEMPT_RT patch, and the Linux
 version is called PREEMPT_RT Linux after the
former name of the configuration variable.

The PREEMPT_RT patch will turn Linux into a
classic real-time operating system with a POSIX
programming interface. The real-time tasks or
threads will not have to run in kernel space or in
the context of the interrupt service handler; they
can instead run as normal user programs in user
space with a given priority. A total of 99 priori-
ty levels are available where a value of 1 repre-
sents the lowest, and a value of 99 represents the
highest priority. To set the priority of a process,
the POSIX call sched_setparam() is available

that can also be used to simultaneously select
the desired scheduler policy. In case of a multi-
processor system, it can become necessary to as-
sign a specific processor or group of processors
to a process. This is done using the POSIX call
sched_setaffinity(). Apart from the calls mlock()
and mlockall() that are used to prevent the
 memory of a process from being swapped to disk
(which is unacceptable for a real-time process),
no other calls to the operating system are
 necessary to define the real-time characteristics
of an application.

The real-time capability of an operating system
can be measured both externally and internally.
For external measurement, a voltage change is
triggered at the input of an interrupt-capable
I/O controller, and the time is measured from
this voltage change until a waiting user space
program is scheduled and continues execution.
In a simplified form, this measurement can also
be executed using the timer interrupt and wait-
ing for the expiration of a sleep() call. In any
case, one sample is obtained per interrupt; that
is, the duration from an external event to the ex-
ecution of the user space program. This time is
called the preemption latency or the total la-
tency. Normally, the individual samples are en-
tered in a histogram with a range width of 1 µs.
To graphically represent this, it is recommended
to use a linear x-scale with the latency values and

a logarithmic y-scale with the sample frequen-
cies per range. In this way, it is also possible to
visualize measurements that occur only very
rarely. This is necessary, since the highest meas-
ured value is the most important part of the
measurement, and may occur very rarely, some-
times only once. In addition, it is important to
take a very high number of individual meas-
urements in order for the result to be sufficiently
reliable – at least 100 million or preferably 1 bil-
lion measurements. At a measuring frequency of
5 kHz, obtaining 100 million measurements
takes about 5 hours and 33 minutes. The worst-
case latency ever measured represents the
 characteristic property of a real-time system.

With internal measurements, the Linux kernel
(as part of the trace subsystem) records the
 current time at the beginning of interrupt
 processing and immediately before the user
space regains control. The differences between
these two time stamps are then saved in a his-
togram that can be read out using the sysfs vir-
tual file system. In this internal measurement,
several stations are run through, the delays of
which also are calculated and recorded indi-
vidually: delay until starting the timer interrupt,
delay from the end of the timer interrupt to
 enqueuing the user space program, delay
 between enqueuing the user space program and
the actual context change, and delay between

By Carsten Emde, Open Source Automation Development Lab (OSADL)

and Thomas Gleixner, Linutronix

This article describes
in detail the real-time

capabilities and built-in
testing features of Linux.

It also explains the
advantages that OSADL brings

to the Linux
community by testing

real-time Linux exhaustively
in the OSADL QA farm.

September 2011 2

Figure 1. Each test rack in the OSADL QA
farm has eight power switches with a network
connection, eight network switches
(10/100/1000 Mbit/s) with port mirroring,
and eight serial network adapters.

110886_Osadl_BAS09_Osadl_2 29.09.11 13:23 Seite 2

the context change and returning from system
call. In addition, sums of intermediate periods
of time such as the combined timer delay and
wakeup latency are calculated and saved in his-
tograms. The sysfs virtual file system contains
a mechanism to reset the histograms. This can
be used to let the measurement cover only se-
lected periods of time. Last not least, charac-
teristic data of the process for which the
maximum latency was measured are saved
and made available through the virtual file sys-
tem. These data are the name, ID and priority
of the process. In addition, such data are also
saved of the process from which the switch was
made to the delayed process. This is done to
 obtain information about why a longer latency
occurred in an individual case.

In contrast to proprietary operating systems,
the technical data of Linux, and in particular
the real-time capability of specific processor
families and processors, are not presented in

glossy sales brochures; rather, each user is
 responsible for dealing with the data himself. In
addition, and this is even more important,
everyone must guarantee that these data are
maintained. Since this is difficult or even im-
possible for individual users such as an average
machine company, the Open Source Automa-
tion Development Lab was founded in 2005
which is tasked with functioning like a Linux
company. Its responsibilities include providing
the real-time capability data of the Linux ker-
nel and guaranteeing that these data are main-
tained. OSADL is a registered cooperative and
 financed by the contributions of its member
companies. All users of open source software in
the fields of machine construction and au-
tomation and in general all companies that use
such software in industrial environments and
pass it on are invited to join OSADL. To gen-
erate relevant measurements, the OSADL test
center or OSADL QA farm was set up. The sys-
tems to be tested are placed on individual test
tablets, and eight systems form a test rack as
shown in figure 1. Each tablet is equipped with
uniform plug-in connections for power (220 V,
50 Hz), a network connection (RJ45), and serial
connection (RJ45). Each test rack has eight
power switches with a network connection,
eight network switches (10/100/1000 Mbit/s)
with port mirroring, and eight serial network
adapters. The tablets can be easily removed and
temporarily operated in a workplace, e.g. for
error analysis. Depending on the project
 definition, the test system can be released with
the Linux kernel provided by the hardware
manufacturer, or with the current Latest Stable
real-time kernel released by OSADL.

All the systems undergo a 12-hour test cycle in
which they are measured continuously – one-
half of the time under continuous idle condi-
tions, and one-half of the time under load. In
the first two hours of the six-hour load period,
timer interrupts are triggered at a frequency of
5 kHz as the only load. During the following
four hours, the systems are additionally exposed
to a specific load with memory allocations, net-
work accesses and file system calls. For the cyclic
timer interrupts, the test program cyclictest is
used that is contained in the rt-tests package
provided by many Linux distributions.

The processor families and processors listed in
table 1 are tested in the OSADL QA farm (as of
June 2011).

The continuous internal kernel latency meas-
urement is reset after every five minutes, and
the measurements that were taken up to that
time are saved. This yields a continuous flow of
consecutive five-minute maxima that can be dis-
played as a data curve over time. The example
in figure 2 shows a 30-hour section of a meas-
urement, but similar plots can be generated for

a month or even for a year. The maximum
value arising during the entire measuring peri-
od which is displayed below the curve on the
right corresponds to the measurement total and
is termed the worst-case latency. In this mode
of representation, we can easily see abnormally
high latencies that have only occurred once.

Figure 3 shows an example of a latency that was
triggered for calibration purposes with a driver
that intentionally generates latencies in a system.
In this case, only the first of the eight processor
cores was affected by this particularly high la-
tency. To generate latency plots, latency was
measured twice every day for five hours and 33
minutes in the OSADL test center.

Figure 4 shows an example of such a measure-
ment on a 6-core processor. The plots are based
on 100 million individual measurements per
CPU core. In evaluating the real-time capability,
the bottom right section of the latency plot is par-
ticularly important. The steeper the curve the
more reliable the results. As already mentioned,
time-related information is lost in latency his-
tograms. In addition, it is desirable to record
and depict longer periods of time and a larger
number of measured values. For this reason, the
latency plots recorded in the OSADL test center
are also combined into a single figure, and sev-
eral hundred plots can be easily portrayed se-
quentially. The time axis runs backwards, i.e.
the most recent measurement is at the front of
the drawing. The scale selected for the individ-
ual latency plot is left logarithmic so that in-
frequent events still can be identified.

Figure 5 shows such a long-term latency plot
comprising more than 20 billion individual
measurements. One elevated (in this case known)
latency value is clearly identifiable. Latency plots
that are repeatedly recorded over long periods of
time are also important in the analysis of the real-
time behavior with reference to changes in the
run-time conditions. These include the inten-
tional removal of inappropriate hardware com-
ponents and specifically parametrizing the kernel
to modifying dynamic kernel variables. Figure 6
shows the effect of the kernel parameter proces-
sor.max_cstate=1 on a system's real-time be-
havior. Apparently, this processor is a
particularly energy-saving version in which en-
ergy is saved by largely turning off the processor
when idling. This is conversely disadvanta-
geous for the real-time behavior since, given an
asynchronous external event, the processor
has to restart which apparently takes approxi-
mately 100µs in this instance. If a C state high-
er than 1 is prevented by the cited kernel
parameter, the energy savings are canceled, but
the real-time behavior of the system improves
due to the reduced latency. Whereas the effect
described above would have been identifiable in
individual latency plots, there are other

3 September 2011

OPERATING SYSTEMS

Figure 2. The example shows a 30-hour sec-
tion of a measurement, but similar plots can
be generated for a month or even for a year.

Figure 3. Example of a latency that was trig-
gered for calibration purposes with a driver that
intentionally generates latencies in a system.

Figure 4. Latency measurement on a 6-core
processor. The plots are based on 100 million
individual measurements per CPU core.

110886_Osadl_BAS09_Osadl_2 29.09.11 13:23 Seite 3

September 2011 4

OPERATING SYSTEMS

 phenomena that are only identifiable in a long-
term depiction of a large number of repeatedly
recorded latency plots.

The example in figure 7 is one of the cases that
show the advantage and the necessity of long-
term measurements: the very rare yet important
latency exceptions are only depicted in the ex-
tremely high number of individual measure-
ments. This is probably a very rare SMI (system
management interrupt) or another design flaw.
This finding has not been analyzed further since
the relatively slow processor under test from the
mid-1990s is no longer being manufactured, and
is only running as a reference on the OSADL QA
farm. The subsequent versions by the same
manufacturer do not manifest this problem. In
any case, it would be inadvisable to use this
processor or chipset in a real-time project. With

the exception of the repeatedly recorded laten-
cy plots that only OSADL member companies
can access, the data and graphics shown here
are available on the OSADL website for anyone,
along with a great deal of additional
 information. The continuous latency meas-
urements are updated every five minutes. The
latency plots and profiles of all the systems are
updated twice a day after the end of the
cyclictest measuring phases. For this purpose,
the OSADL test center is connected to the
OSADL web server via a high-speed VPN
 connection. Among others, the profiles in-
clude the complete kernel configuration, kernel
parameters and other information that is re-
quired to build identical systems at other
places to challenge the results obtained at the
OSADL QA farm. The URL of the OSADL test
center is http://www.osadl.org/QA. n

Open Source Automation Development Lab

OSADL eG
Aichhalder Str. 39
D-78713 Schramberg • Germany

Phone: +49(7422)515-8820
Fax.: +49(7422)515-8822
E-Mail: info@osadl.org

Figure 6. Effect of the kernel parameter
processor. max_cstate=1 on a system real-time
behavior

Figure 7. Advantage and the necessity of long-term measurements: The very rare yet important
latency exceptions are only depicted in the extremely high number of individual measurements

Table 1. The processor families and processors
tested in the OSADL QA farm

x86 processor family

AMD

K6 3D, @333 MHz, 32 bit

LX800 @500 MHz, 32 bit

Athlon XP 2000+, 32 bit

Athlon 64 2800+, 64 bit

G-Series T56N @1400 MHz, 64 bit

Phenom II X6 @3200 MHz, 64 bit

Intel

Pentium @133 MHz, 32 bit

Pentium II Klamath @233 MHz, 32 bit

Atom N270 @1600 MHz, 32 bit

Atom D510 @1667 MHz, 64 bit

Atom D525 @1800 MHz, 64 bit

Atom Z530 @1600 MHz, 32 bit
(standard kernel as a reference)

Celeron M @1500 MHz, 32 bit

Pentium M dual-core @2300 MHz, 32 bit

Xeon (single socket) @2000 MHz, 32 bit

Xeon (dual socket) @2800 MHz, 32 bit

Core 2 Duo @2400 MHz, 64 bit

Core 2 Quad @2400 MHz, 32 bit

i7 Nehalem 975 @3333 MHz, 32 bit

i7 Gulftown X980 @3333 MHz, 64 bit

Core i3-2100T @2500 MHz, 64 bit

Core i7-2600K @3400 MHz, 64 bit

VIA

C3 Samuel 2 @533, 32 bit

C3 Nehemiah @533 MHz, 32 bit

C7 @1000 MHz, 32 bit

ARM processor family

Freescale

i.MX27 ARM9 @400 MHz, 32 bit

i.MX35 ARM11 @532 MHz, 32 bit

Marvell

SheevaPlug @1200 MHz, 32 bit

Texas Instruments

AM3517 @600 MHz, 32 bit

OMAP3525 ARM cortex-a8 @720 MHz,
32 bit

AM4430 @1000 MHz, 32 bit

PowerPC processor family

Freescale

MPC 5200 @396 MHz, 32 bit

MPC 5121 @400 MHz, 32 bit

MIPS processor family

ICT

Loongson 2F @800 MHz, 64 bit

Figure 5. Long-term latency plot comprising
more than 20 billion individual measurements.
One elevated latency value of known origin is
clearly identifiable.

110886_Osadl_BAS09_Osadl_2 29.09.11 13:23 Seite 4

