
CONTRARY TO COMMON belief, the underlying
economics of FOSS are not totally new. The
‘Open Innovation’ concept has long been used
to let different companies – even competitors
– jointly develop industrial components. Cost
reduction is achieved by avoiding unnecessary
parallel development. As such, FOSS can be
seen as a variant of ‘Open Innovation’. The most
important prerequisite for a company to enter
such a project, however, is to ensure that the
components for joint development are not
aimed at providing uniqueness to one of the
participating companies.
For machine software, this is illustrated in

the ‘uniqueness pyramid’ (Fig. 1) where the
bottom level of the pyramid includes basic
technologies without an exclusive benefit, and
the top area includes unique knowledge that
is differentiating the company from its
competitors. Somewhere between the base and
the tip of the pyramid is the ‘uniqueness limit’
to be individually determined for a specific
company. If this limit is directly at the base
of the pyramid, there is little or no expertise
that can be exchanged with competitors, and
FOSS cannot be used (at least not with a
copyleft license – see the FOSS text panel for
an explanation). If the uniqueness limit is
higher (yellow and green lines), there is no
particular reason why FOSS with a copyleft
license cannot be used to develop components
in the area below the uniqueness limit.

Linux: The new RTOS?
In the good old days when most of the
computer systems on a machine were built
specifically for the purpose, the traditional
RTOS was also a custom job. In contrast to
large and demanding operating systems that
were already available at this time, the machine
operating systems (e.g. OS-9, VxWorks, etc.)
were small and fast and could be loaded
without any problem in 512-KB eproms and run
at 8MHz in a single MByte of ram. In addition,
they provided the required real-time capabili-
ties other operating systems could not.
But about ten years ago, with the general

availability of the Internet and the ubiquitous

presence of computers, people were no longer
prepared to consider a machine as something
special. It was only natural that a CD/DVD file
system, USB-based interfaces and unrestricted
network capabilities were requested in
machines in the same way as they were
available, for example, in laptops. In addition,
the advanced features of state-of-the-art
processors – 64-bit, multi-core, virtualisation
etc. – had to be supported in machine
computers as well.

With this growing number of requirements,
it became virtually impossible to implement
all of them in the various traditional RTOSes.
The Linux operating system, on the other hand,
provided such technologies, but possessed no
real-time capabilities. Many people thought it
simply impossible to turn Linux into a real-

22

Te
ch
no
lo
gy Open Source industrial software:

more hype or a new, better way?
The term ‘Free and Open Source Software’ (FOSS) denotes a type of software license that allows the licensee,
among others, to continuously use, adapt and distribute a certain piece of software without fearing its
discontinuation. The fact that Open Source software cannot be discontinued is probably the most important
reason why FOSS is quickly gaining uptake in the machine and automation industry. When you ask the
manufacturers of industrial products why they prefer FOSS, you frequently hear responses such as the machine
builder needs complete control of his machine… independence from discontinuations…, or, avoiding vendor
lock. The Open Source Automation Development Lab's manager, Carsten Emde, explains

the indust r ia l e thernet book 05.2009

Uniqueness limit

Operating system

Drivers

Operating system libraries

Application libraries

Applications

Testing

GUI

QM

unique

not
unique

Fig. 1. Example of a ‘uniqueness limit’ that
shows the different levels of knowledge of a
company. Above the uniqueness limit lies the
knowledge that differentiates a company from
its competitors; below this limit are the basic
technologies that do not make any difference in
the market. If this threshold is at the bottom of
the pyramid for a company (red line), that is,
practically all the knowledge is market-relevant
and confidential, FOSS should not be used. The
higher the limit (yellow and green lines), the
more (economically) attractive it is to use free
and open software (FOSS).

What is Open Source software?
The terms ‘Open Source software’ and ‘Free
Software’ represent different ideological
perspectives, but legally and practically, both
terms are equivalent descriptions of a specific
type of software licensing. The term ‘Free and
Open Source Software’ (FOSS) is, therefore, best
used for this type of license.

The GNU General Public License (GNU GPL)

Most active FOSS projects use the GNU General
Public License. This license grants the rights:

1. To run the program, for any purpose;

2. To study how the program works, and adapt
it to a user’s need;

3. To redistribute copies so one can help his or
her neighbour;

4. To improve the program, and release the
improvements to the public, so that the whole
community benefits.

The second and fourth points require free
access to the source code. This access is, thus,
a necessary but not exclusive condition for
qualifying a software as Open Source.When the
software is passed on to others, the recipient
must also be able to acquire these rights
depending on the type of FOSS license. If the
user only uses the software himself and does
not pass it on, all the requirements from the
Open Source license no longer have meaning.
Contrary to a frequently-stated belief, money
may be charged for FOSS, but only for
associated services such as the effort required
to pass on the FOSS, and not for the license
itself. Apart from this consideration, a service
provider may, of course, also charge customers
for the activities required to develop and
maintain FOSS.

Reprinted from Industrial Ethernet Book 52

A4_version:Layout 1 4/6/09 11:32 Page 1

http://ethernet.industrial-networking.com/
http://ethernet.industrial-networking.com/


time operating system, yet equipping tradi-
tional RTOSes with all the new technologies
was equally impossible…
Anyway, making Linux an RTOS was seen as

having more possibilities. In a first step, a
separate microkernel was used to provide the
real-time capabilities, and a modified Linux
kernel was running under the control of the
microkernel to provide the required interfaces
and protocols. This principle is known as ‘Linux
Real-Time Extension’ or ‘Dual-kernel approach’
(Fig. 2). RTAI, RT-Linux and Xenomai are
examples of such implementations. The disad-
vantage with this approach however is that the
Linux kernel must be patched in order to be
used in this environment, and it was clear from
the very beginning that these patches would
never be accepted in the mainline Linux kernel.
In consequence, other developers, namely

Ingo Molnár and Thomas Gleixner, tried to
patch the native Linux kernel in such a way
that it becomes an RTOS; this project took the
name PREEMPT_RT, as ‘Linux mainline real-time’
or as ‘Single-kernel approach’ (Fig. 3). At the
occasion of the Ottawa Linux kernel summit in
summer 2006, it was agreed that this is the
way to go, and the PREEMPT_RT patches were
gradually merged into the Linux kernel since
then. Today, about 80% of the patches are
available in mainline, and it is expected that
the rest of it will follow by the end of the year.
A number of commercially available Linux

distributions (e.g. Red Hat’s MRG) already
contain the PREEMPT_RT patches in production
quality. The worst-case rule-of-thumb latency
is in the range of 105 multiplied by the CPU
cycle duration with these systems without
special optimisation. For example, a 1GHz
processor has a cycle duration of one
nanosecond which results in a worst-case
latency of about 100µs. This is considered
sufficient for the vast majority of real-time
projects. Using latency optimisation, however,
the worst-case latency can be reduced by up
to three times.

From theory to practice
In principle, there are three different ways to
install Linux on an embedded system:
� Use a standard distribution (e.g. Fedora,
Novell, Red Hat, Debian etc.) and adapt it to
the requirements of an embedded system.

This is, obviously, restricted to processor and
chip sets for server and desktop computers

supported by a particular standard distribu-
tion. While there is normally no problem with
x86-based architectures, others such as ARM
and MIPS are rarely supported.
� Use a dedicated distribution for embedded
systems (Montavista, Timesys, Windriver or
ELDK/Denx, Elinos/Sysgo, PTXdist/Pengutronix).
These distributions support a wide variety of

architectures, chip sets and controllers.
� Use the standard (vanilla) Linux kernel and
assemble the required tools and libraries
directly from the related repositories.
This method allows the developer to make

maximum use of the Linux kernel but requires
considerable knowledge.

Technology

05.2009 the indust r ia l e thernet book
23

!"#$%"#&'
"()*#"+*,-.'
/"0&#'-#

1,+#-2&#.&/

!"#$%"#&

3&#.&/

4&"/5*,1&'
+-16/,".*
2&#.&/

,.7#")*#8+*8#&

9-*'#&"/5*,1&'+-16/,".*
2&#.&/',.7#")*#8+*8#&

9-.5#&"/5*,1&'"66/,+"*,-.':;<= ;.*&##86*)

>)&#')6"+&

4&"/5*,1&'"66/,+"*,-.':

4?
@A;

4&"/5*,1&
6#-B#"1)
"*'2&#.&/
/&C&/

D,.8E
@A;

4&"/5*,1&'"66/,+"*,-.'F

4&"/5*,1&'"66/,+"*,-.'9

9-.5#&"/5*,1&'"66/,+"*,-.'F

9-.5#&"/5*,1&'"66/,+"*,-.'9

Fig. 2. The ‘Dual-kernel approach’ to achieve real-time capabilities with Linux

A4_version:Layout 1 4/6/09 11:32 Page 2

http://ethernet.industrial-networking.com/


When a standard distribution is used, it may
be difficult to obtain support and training from
the software distributor, since these packages
are not intended to be used in embedded
systems and the distributor may not have the
required expertise. Manufacturers of dedicated
distributions, however, provide support and
training which may be purchased on a per-time
basis. In addition, the development of special
drivers and extensions may be commissioned.
The same holds for the third way when a

standard vanilla kernel is used. A number of
Linux software service providers such as
Linutronix, Germany, offer support to manage
the native Linux kernel and to build tool chains

and other software packages individually.
Overall, these ways to install the operating
system on an embedded system are not very
different from the ways of traditional RTOSes,

except that Linux makes it possible to change
either the distribution or the software service
provider more easily, since the Open Source
nature of the license forbids the addition of
proprietary components to the kernel.

The development process
How to develop system software and user appli-
cations? Developing for an embedded system in
general is done either on a cross-development
system or in a self-hosted environment.
Traditional RTOSes are either self-hosted, e.g.

OS-9/68k, or cross-development systems, e.g.
VxWorks, and cannot be changed easily. As an
advantage of cross-development, the fastest

24

Te
ch

no
lo

gy

the indust r ia l e thernet book 05.2009

!"#$%"#&
"'()#"*)+,-

.&#-&/

0&"/1)+2&3"44/+*")+,-35

678

9(&#3(4"*&

:+-;<
=>6

0&"/1)+2&3"44/+*")+,-3?

0&"/1)+2&3"44/+*")+,-3@

0&"/1)+2&3
*,24/+"-)3
A&#-&/3

+-B#"()#;*);#&

!"#$%"#&
6-)&##;4)(

Fig. 3. The ‘Single-kernel approach’ to turn Linux into a real-time operating system

What is a copyleft?
The word ‘copyleft’ is an artificial word to
denote the ‘opposite of copyright’. This word-
play employs the term ‘left’ as the opposite of
‘right’ and also in the sense of the past tense
of ‘to leave’ (somebody, something). Whereas
the normal copyright forbids the passing on of
a copyright work, the copyleft allows it and
forces the identical license to be used as for the
original work [in the manner of a legal
covenant – Ed]. This requirement applies not
only to the original version of the work, but also
to all changes and additions. This constitutes a
unique regulation since normal copyright
regulations leave it up to the license holder to
choose the type of license that will govern the
changes and additions. However, when a
license holder acquires a license containing a
copyleft, he assumes this particular requirement
which takes effect when the work is passed on.

The presently-known different Open Source
licenses differ according to the strength of this
copyleft effect. The BSD (Berkeley Software
Distribution) license does not dictate to the
license holder which license will govern the
subject software along with the changes and
additions; it is therefore an Open Source license
without copyleft.An example of an Open Source
license with full copyleft is the above-cited GNU
GPL; it forces the license holder to retain the
original license in its identical form for the
subject software and any changes and
additions.

For examples of the requirements of the GPL
when passing on the Linux kernel, see also the
FAQ box.

Fig. 4. Example of a real-time project in the Eclipse Open Source integrated development
environment

Fig. 5. The Open Source CyclictestoSCOPE developed by Arnaldo Carvalho de Melo is used to
register and detect latencies on a real-time system

A4_version:Layout 1 4/6/09 11:32 Page 3

http://ethernet.industrial-networking.com/


available system can be used for the develop-
ment in order to reduce the compile time; the
advantage of a self-hosted system is that
debugging and tracing is more efficient and
straight-forward. With Linux it is often possible
to combine cross and self-hosted development
which makes it possible to use the best of both
worlds.
Many traditional RTOSes come with a propri-

etary work bench that integrates a number of
tools under a common GUI to develop, debug
and optimise a given system. Under Linux,
there is a wide variety of such tools, but not
all of them are integrated into a common user
interface. Neither are they always easy to find
and to use. Overall, however, similarly powerful
tools are available. The most frequently used
Open Source integrated development environ-
ment, for example, is Eclipse (Fig. 4). It
provides everything needed during code devel-
opment.
Another example that may be very helpful

during optimisation of a real-time system is
the CyclictestoSCOPE developed by Arnaldo
Carvalho de Melo (Fig. 5). Again, Open Source
software service providers may help to find
tools which are best suitable for a given
situation and provide training to use them.
Linux is now an RTOS and can be used in

similar ways to traditional RTOSes. There are
various options to use either standard distribu-
tions, dedicated distributions or to build local
expertise in a particular company. The
advantage of Open Source software and, in
particular, Linux relates to the flexibility and
unrestricted availability which it affords – no
other operating system supports as many archi-
tectures and controllers as Linux does.
The disadvantage is that a particular tool may

be difficult to find and less elegant in use
compared to its commercial counterpart. On
the other hand, Open Source software service
providers may be able to help in cases where
something does not work. Normally, the savings
in the license costs far exceed those of hiring
a Linux service provider for a limited time.

OSADL
The Open Source Automation Development Lab
(OSADL) was founded in December 2005 and
registered as a cooperative in summer 2006
with eleven founding members. Today, OSADL
comprises some 30 members including semi-
conductor companies, software manufacturers
and distributors, manufacturers of industrial
computer boards and other hardware, Linux and
Open Source software service providers and,
most importantly, machine builders and
industrial automation companies.
The goal of the Open Source Automation

Development Lab (OSADL) is to promote and
support the usage of Open Source software in
the industry. The membership fees are used to
delegate the development of Open Source
software requested by the majority of members,

or at least agreeing to do so. Other benefits
of the OSADL membership include participa-
tion at exhibitions where OSADL is represented
with a booth, free access to OSADL-organised
conferences and seminars, free legal advice on
questions of general interest and much more.
Details about OSADL’s various projects and

activities are available at www.osadl.org

Carsten Emde has spent more than 20 years as
a software developer, system integrator and
software consultant for industrial computer
systems. Among others, he is specialised on
real time, video and image processing. Since
founding the Open Source Automation
Development Lab (OSADL) in 2005, he is
serving the organisation as general manager.

25

Technology

05.2009 the indust r ia l e thernet book

Open Source software Frequently Asked Questions
Q: I have used the Open Source GNU C compiler (gcc) to generate a machine control application. Do
I have to make the gcc source code available to a customer when I am selling the machine?

A: No.

Q: I have used the Open Source GNU C compiler (gcc) to generate a machine control application. Do
I have to make the source code of the application available to a customer when I am selling the machine?

A: No.

Q: The control computer of a machine that I have developed runs under the Linux Open Source operating
system. Do I have to make the schematics of my machine available to a customer when I am selling
the machine?

A: No.

Q: I have developed a machine control application for the Linux Open Source operating system. Do I
have to make the source code of the application available to a customer when I am selling the machine
along with the operating system and the application to a customer?

A: No.

Q: I have discovered a bug on the gcc and fixed it. I am using the gcc solely within my company. Do I
have to publish the bug fix anywhere?

A: No (but you will make a point of doing so if you wish the bug to be fixed in the next version).

Q: I am using the Linux Open Source operating system solely within my own company. Are there
important obligations of the Open Source license that I have to follow.

A: No.

Q: I am using the Linux Open Source operating system solely within my own company and do not
distribute it to anybody. I have discovered and fixed a bug in the network driver. Do I have to publish
the bug fix anywhere?

A: No (but you will make a point of doing so if you wish the bug to be fixed in the next version).

Q: The control computer of a machine that I have developed is running under the Linux Open Source
operating system. Do I have to follow any obligations of the Open Source licence when I am selling
the machine along with the operating system to a customer?

A:Yes.A number of information and disclosure obligations must be followed: Information that the product
uses Open Source software and the license text of the Open Source license, i.e. the GNU General Public
License version 2, must accompany the product. This is best done in a dedicated section of the User’s
Manual. The source code of the Linux operating system must be made available in one of the various
ways described in the GNU General Public License.

Q: The control computer of a machine that I have developed is running under the Open Source operating
system Linux. I have discovered and fixed a bug in the network driver. Do I have to publish the bug fix
anywhere, when I am selling the machine along with the operating system to a customer?

A: Yes. The bug fix must be licensed under the same license as the entire operating system and, thus,
made available to the customer.This mechanism is called copyleft and defined in the GNU General Public
License.

Q: I am very enthusiastic about using Open Source software in the machine and automation industry
and in embedded systems. I have a lot more questions with respect to legal and other issues.Who has
the answers?

A:To use Open Source software effectively in a commercial environment, a number of common interest
groups have been founded. One of them is the Linux Foundation where Linux creator Linus Torvalds
and other kernel developers are employed. A similar organisation, the Open Source Automation
Development Lab (OSADL), is taking care of the special requirements of the machine and automation
industry and of using Open Source software in embedded systems (see the section headed ‘OSADL’
to the left of this panel).

A4_version:Layout 1 4/6/09 11:32 Page 4

http://ethernet.industrial-networking.com/
www.osadl.org

