Jpen Source Automation
Development Lab (OSADL) e

OSADL Add-on Patches for the Linux Real-time Kernel (@SHDL

WWW.Osadl.Org Open Source Automation Development Lab eG

eeeeeeeeeeeeeeeeeeeeeeeeeee

Introduction

In addition to the so-called PREEMPT_RT basic patch set that is used to merely equip
a vanilla Linux kernel with real-time capabilities, there are patches that additionally
provide diagnostic and other functionality to the basic patch set. These patches are
useful during software development; however, they are not needed when simply
running the kernel. Some of the additional patches originally were part of the
PREEMPT_RT patches, but were removed in order not to jeopardize the mainlining
process of the patches. Some other patches have been developed idependently by
OSADL.

OSADL makes the currently five patches available for every real-time patchable
kernel and later on for every supported kernel starting from version 4, patchlevel 16.
The patches altogether are named "OSADL Linux Add-on Patcches” and are offered
for download from the OSADL Web site at the URL https://www.osadl.org/?id=2943.
If the Linux add-on patches apply without offset for a number of kernels, only a single
patch will be provided that fits all of them, but will be labeled accordingly.

Imported patches from the PREEMPT_RT patch and extended

Ping SysRq: net-ipv4-icmp-ping-sysrq.patch
Latency histograms with culprit/victim info: /atency-histograms.patch

Developed by OSADL among other for its QA Farm

NMI SysRq: add-nmi-callback-and-raw-parport-driver.patch
Built-in kernel patchset: save-current-patchset-in-kernel.patch
Precise load measurement: sched-add-per-cpu-load-measurement patch

To avoid errors, the patches must be applied in the following order:

add-nmi-callback-and-raw-parport-driver.patch
latency-histograms.patch
net-ipv4-icmp-ping-sysrq.patch
save-current-patchset-in-kernel.patch
sched-add-per-cpu-load-measurement.patch

Page 1

Ping SysRq

What is SysAq?

The SysAg functionality is provided to allow sending diagnostic or recovery
commands to the Linux kernel in a situation when normal I/0 is no longer possible
because of, for example, a system crash. SysRq usually is triggered from the
keyboard by simultaneously pressing the RightAltand the SysRq (PrntScrn) key.
However, the system may be impaired in such a way that even the keyboard interrupt
stopped working. If the network is still up and running and able to receive ICMP
packets, this SysAq function via network ping may help. In order to work, the target
system must have defined a particular pattern — preferably at boot time — that will be
used as a key to authorize the SysRq action from remote.

Example prerequisite on target to authorize a particular pattern
echo 0x01020304 >/proc/sys/net/ipv4/icmp_echo_sysrq

Ping command on remote system (use the registered pattern)
ping -cl -s57 -p01020304<ASCII hex command> target

Example: Gracefully reboot system

SysRq S (sync block devices) = ASCII 0x73:
ping -cl -s57 -p0102030473 target

SysRq U (unmount block devices) = ASCII 0x75:
ping -cl -s57 -p0102030475 target

SysRq B (reboot) = ASCII 0x62:
ping -cl -s57 -p0102030462 target

Page 2

{OSADL

Automation Development Lab eG

Latency histograms

What are latency histograms?

Linux kernel latency histograms are used to determine the duration of certain
pathways that contribute to the preemption latency. As a side effect, the data stored
along with the histogram data may allow to discover the source of an unusual long
latency, since these data include the name and characteristic data of the previous
and the next task of a delayed scheduling action. The original latency histograms
were made available in the RT patch set in 2005; a number of additions were made
since then:

e Separate histograms of shared vs. non-shared priority tasks

e Separate recording of “victim” and “culprit” of the highest latency

¢ Additional histogram to record latency of missed timers

e Additional histogram to record the sum of timer and wakeup latency

e Additional histogram to record duration of context switch

¢ Additional histogram to record the sum of timer, wakeup and context switch
latency

Thus, the current version of the patch covers histograms to investigate the entire time
span from the wake up trigger of an RT task to its execution continuation in user
space.

Configure latency histograms

CONFIG_PREEMPT_OFF_HIST=y
CONFIG_INTERRUPT_OFF_HIST=y
CONFIG_MISSED_TIMER_OFFSETS_HIST=Y
CONFIG_WAKEUP_LATENCY_HIST=y
CONFIG_SWITCHTIME_HIST=y

Page 3

{GSADL

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Enable latency histograms

enabledir=/sys/kernel/debug/latency_hist/enable
for i in wakeup missed_timer_offsets
timerandwakeup\ switchtime timerwakeupswitch
do

enable=%$enabledir/$

if test -f $enable

then

echo 1 >$%$enable
i
done

Display latency histograms of, for example, core #0

cd /sys/kernel/debug/latency_hist/timerwakeupswitch
cat CPUO

Display the longest latency since the most recent reset of, for exam-
ple, core #0 along with culprit and victim data

cat /sys/kernel/debug/latency_hist/
timerwakeupswitch/max_Tlatency-CPuUO

13457 99 42 (2,9) cyclictest <- 6681 5 alsa-sink-
HDMI 1164604.885757 SyS_clock_nanosleep

Victim

Process ID Priority Latency values Program name <-
Culprit

Process ID Priority Program name

Additional information

Seconds.microseconds Name of the most recent kernel
call

Page 4

eeeeeeeeeeeeeeeeeeeeeeeeeee

NMI SysRq

Why NMI?

A system may become non-responsive in such a way that no input can be sent any
longer to the system; such situation normally is the result of disabled interrupts and a
complete system misbehavior that prevents it from re-enabling them. The last resort
to gain diagnostic data in order to elucidate the origin of the system misbehavior is
the non-maskable interrupt (NMI) that very probably still is executed from time to
time and which may be polled. For such polling an input channel is needed that can
be probed without the need for interrupt processing. An appropriate input channel for
this purpose is the parallel interface aka Centronics printer port. It has eight output
and four input channels.

While the input channels are used to select an action to be executed when the NM|
fires, the output channels can be used to signal a particular action — again without
the need of interrupt processing. Some — rather oldish — computers still may be
equipped with a Centronics printer port, while on newer computers a separate
parallel printer port with PCl or PCle bus interface must be installed. A simple device
with a 25-pin parallel port connector, eight LEDs to display the output channels and
four touch buttons to set the input channels dubbed OSADL Parport Monitor can be
ordered at OSADL. Alternatively, it can be home made, since all required production
material is available online. Last not least, the OSADL Parport Monitor can be
purchased from OSADL.

Kernel configuration help text

It sometimes is required to directly signal a specific state at the parallel port without
using a driver, e.g. in a crashed system that still has some kind of life in it. Usage:
echo 0 .. 255 >/dev/setparport set output byte
echo 256 .. 511 >/dev/setparport "or" output byte
echo 512 >/dev/setparport clear all output bits
echo 513 >/dev/setparport set all output bits

echo 514 >/dev/setparport invert output bits

echo 515 >/dev/setparport increment output bits
echo 516 >/dev/setparport decrement output bits
echo 517 >/dev/setparport status register to output
echo 518 >/dev/setparport jiffies>>10 to output

Page 5

{OSADL

Open Source Automation Development La!

In addition, this driver is used as a callback in the NMI handler. If installed, it allows
to monitor NMI activity, e.g. using LEDs connected to the parallel port. The module
parameter "nmicode” is then used to define the code to be sent at every NMI call,
e.g. to increment the 8-bit number at the parallel port at every NMI

modprobe setparport nmicode=515

or

echo 515 >/sys/module/setparport/parameters/nmicode

The four input lines can also be used to request specific actions; defaults are
enabled, if the parameter actions=yes is given:

e S4: Show task states (SysRqg-T)

e S5: Sync block devices (SysRg-S)

e S6: Unmount bloick devices (SysRg-U)

e S7: Reboot (SysRg-B)

Please note that this is a simple polling mechanism; you need to press the button at
least as long as until the next NMI occurs. This was deliberately implemented this
way in order to keep it functional even if the entire IRQ subsystem is no longer
working. The only prerequisite is a working memory mapping of the parallel port's 10
region. If you want to let the NMI execute other debug actions, they must be
programmed into drivers/misc/setparport.c.

Last not least, this driver can be used to output the LSB of the most recent syscall,
hardware IRQ or software IRQ vector at the parallel port which may provide useful
post-mortem information in case of a system crash.

System call:

modprobe setparport sysenter=1 sysexit=0

or

echo 1 >/sys/module/setparport/parameters/sysenter
echo 0 >/sys/module/setparport/parameters/sysexit

Hardware IRQ number:

modprobe setparport irgenter=1l, irqgexit=384

or

echo 1 >/sys/module/setparport/parameters/irgenter
echo 384 >/sys/module/setparport/parameters/irgexit

Page 6

{OSADL

utomation Development Lab eG

Software IRQ vector number:

modprobe setparport sirgenter=1 sirgexit=384

or

echo 1 >/sys/module/setparport/parameters/sirgenter
echo 384 >/sys/module/setparport/parameters/
sirgexit

If configured as a built-in kernel module, the following kernel command line
parameters apply:

setparport=<actions>,<nmicode>
setparportirg=<irgenter>,<irgexit>
setparportsirg=<sirqgenter>,<sirgexit>
setparportsyscall=<sysenter>,<sysexit>

Page 7

eeeeeeeeeeeeeeeeeeeeeeeeeee

Built-in kernel patchset

Why storing the patchset in the kernel?

The kernel configuration can be stored in the binary kernel using the
CONFIG_IKCONFIG=y kernel configuration setting; this is a welcome feature to
reproduce a particular kernel at a later date when the original configuration may got
lost. However, the kernel configuration is useless, if the kernel was patched and the
patch set got lost as well. Therefore, an additional mechanism to also store the quilt
queue in the binary kernel was added, configuration setting CONFIG_IKPATCHSET=y.
If the patchset shall be made available via /proc filesystem, the configuration setting
CONFIG_IKPATCHSET_PROC=y must additionally be given (equivalent to
CONFIG_IKCONFIG_PROC=y).

BTW: Making the kernel sources available through this mechanism certainly does not
fulfill the disclosure obligations of the GPL (but it already is much better than making
available nothing).

How to recreate the kernel source tree?

The following command sequence will create a patched kernel source tree from
which an identical kernel can be rebuilt (assumes that IKPATCHSET_PROC is also
configured):

tar zxf /proc/patchset.tar.gz baseversion
major="cut -d. -fl baseversion’
urldir=http://www.kernel.org/pub/Tinux/kernel/
v¥major.x

dir=1inux- cat baseversion’

rm -f baseversion

archive=$dir.tar.xz

wget $urldir/$archive

tar Ixf $archive

cd $dir

tar zxf /proc/patchset.tar.gz

quilt push -a

zcat /proc/config.gz >.config

Page 8

{OSADL

Open Source Automation Development La!

Precise load measurement

Why another load measurement?

The standard load measurement of the Linux kernel has the disadvantage that it is
collecting load data at discrete points in time, but the load may be completely
different some time before and some time after the data were collected. A more
precise per-CPU load measurement can be obtained, if the time is recorded a
particular CPU core spends in idle processing and this time is compared against the
total time.

How does it work?

The related patch (configured with CONFIG_CPU_IDLERUNTIME=y) adds entries for
every CPU in /proc/idleruntime/cpuX/data in the format "<idletime> <runtime>". The
counters can be reset by writing to /proc/idleruntime/cpuN/reset. To calculate the
per-core CPU usage since the most recent reset, divide the runtime by the sum of
runtime plus idletime, e.g. on a 4-core processor:

for i in "1s -1d /proc/idleruntime/cpu* | sort
-nkl1.22

do

echo "$i: “awk '{ print (100.0%$2) / ($1+
$2)"%" }' <$i/data "

echo 1 >$i/reset
done
/proc/idleruntime/cpu0: 72.0048%
/proc/idleruntime/cpul: 5.49522%
/proc/idleruntime/cpu2: 0.27916%
/proc/idleruntime/cpu3: 32.3493%

In addition, summed up data of all present CPUs are available in /proc/idleruntime/
all in the same format as above. Thus, to calculate the overall CPU usage since the
most recent reset, the following command may be used:

awk '{ print (100.0*%$2) / ($1+%$2)"%" }' </proc/
idleruntime/all/data

Page 9

@SHDL Open Source Automation Development Lab (OSADL) eG
Im Neuenheimer Feld 583 e D-69120 Heidelberg e Telefon: 06221 98504 0 e info@osad|.org ® www.osadl.org

