
www.osadl.org

Open Source Automation

Whitepaper ¨Free and Open Source Software (FOSS)¨

Development Lab (OSADL) eG



1

Open Source software in the automation industry – just a fashion or
a change of paradigm?

by Carsten Emde, Open Source Automation Development Lab (OSADL) eG

Introduction
As is the case with many other fields, Open Source software has gained a foothold
in the automation industry and, at first glance, has opened up many new possibil­
ities, especially for extending the service life of machines and other embedded sys­
tems. But what exactly is Open Source software? What are the considerations for its
use, development and conveyance in an industrial environment?

In the following, the principles of Open Source software will be explained as well as
guidelines for its specific use will be given.

What is Open Source software?
The terms "Open Source software" and “Free Software" represent different ideologi­
cal perspectives, but legally and practically, both terms are equivalent descriptions of
a specific type of software licensing. This article will therefore use the common term
"Free and Open Source Software" (FOSS) for this type of license. Many active FOSS
projects such as the Linux kernel use the GNU General Public License (GNU GPL). The
GNU GPL grants the rights to unrestrictedly

1. run the program, for any purpose,
2. study how the program works,
3. convey copies,
4. modify the program and convey it in its modified form.

The second and fourth points require free access to the source code. This access is
therefore a necessary but not exclusive condition for qualifying the software as Open
Source software. When the software is conveyed to others, the recipient must also
be able to acquire the mentioned four rights. If the user only uses the software
himself and does not convey it, all the requirements from the Open Source licenses
are moot. Contrary to a frequently­stated belief, money may be charged for FOSS,



2

but only for associated services such as the effort required to convey FOSS, and not
for the license itself. Apart from this consideration, a service provider may of course
also charge customers for the activities required to further develop and maintain
FOSS.

What is "copyleft"?
The word "copyleft" is a newly­created term for a particular property of an Open
Source license. This play on words employs the term "left" as the opposite of "right"
and also in the sense of "to leave" (somebody something). But none of them actually
explains what "copyleft" is.

Copyleft does not come into play, unless existing Open Source software is modified
or extended. Normally, the author of such modifications or extensions can freely de­
cide how to license them. If, however, the license of the original software contains a
copyleft provision, the author who modified or extended the software voluntarily
refrains from using his normal licensing right when converying the software, but
must use the original license for the modifications or extensions. As a consequence,
such licensed Open Source software always remains free and open, even after any
modification or addition. It is, for example, generally accepted that the choice of a
copyleft­provisioned license of the Linux kernel largely contributed to its quality and
its success.

The presently­known different Open Source licenses differ according to the strength
of the copyleft effect. The BSD (Berkeley software distribution) license does not
dictate to the licenseholder which license will govern the provided software along
with any applied modifications and additions; it is therefore an Open Source license
without copyleft. An example of an Open Source license with strong copyleft is the
above­mentioned GNU GPL; it forces the licenseholder to retain the original license
in its identical form for the provided software and any modifications and additions.

Pragmatism versus ideology
The concept of "Free Software" was first presented by Richard Stallman in 1983, and
it developed into the formulation of the mentioned GNU GPL. The underlying idea is
that a program in a computer language with a source code that is unavailable to the



3

user represents a type of restriction that should be rejected for fundamental ethical
considerations. Only when the source code of a program is made available the de­
sired freedom is ensured, according to Stallman.

The alternative term of "Open Source software" developed by Bruce Perens, Eric
Raymond and others toward the end of the 90s has a more pragmatic aim. Disclosing
the source code generates a much larger team of developers in comparison to propri­
etary software, and this team can create software products with a much higher level
of quality and stability.

Starting from around this time, FOSS was increasingly used in an industrial context
and in automation industry, that is, in embedded systems or for mechanical and plant
engineering. When you ask the manufacturers of industrial products why they prefer
FOSS, you frequently hear responses such as: "the machine builder has complete
control of his machine," "independence from discontinuations," or "avoiding vendor
lock." This indicates that the original motivation envisioning the freedom of the soft­
ware user was justified to a certain degree. In fact, one of the special features of
FOSS is that the user is entitled to comprehensive usage over time instead of a right
of use for a very restricted period, as is the case with proprietary software; of course,
the right to use FOSS is non­exclusive. In addition, the mentioned pragmatic reasons
of the Open Source movement make this type of software attractive to industry, since
quality and stability have always been a chief requirement for industrial software.

An open knowledge economy
Perhaps even more relevant than the above discussion of freedom and openness is
the perspective that views the FOSS development model in economic terms. In this
context, FOSS has been scientifically analyzed from the vantage point of economics
and business administration. The wealth of knowledge and experience of a company
is considered capital in terms of the unique position of a company. Part of this capital
is suitable for distinguishing a company’s products from those of a competitor ("dif­
ferentiating know­how") whereas another part of the capital does not possess this
ability ("non­differentiating know­how"). The latter part is generally larger. To maxi­
mize economic success, a company must invest a maximum amount of its resources
in developing and maintaining the differentiating know­how. It should refrain from
individually investing in non­differentiating know­how. Precisely because the know­
how is non­differentiating, it is recommendable to work jointly with other companies



4

and even competitors on FOSS projects. The savings are obvious since unnecessary
parallel developments are avoided.

Qualms are continuously expressed that the use of a FOSS operating system with a
copyleft license will force companies to disclose company secrets in process tech­
nology and applications. However, this is not the case because the application inter­
face between the operating system (the "kernel") and the application generally fol­
lows the so­called POSIX standard. This interface standardized by the IEEE and Open
Group is supported by a wide range of different operating systems; an application
associated with a specific kernel therefore cannot be considered a change or addi­
tion to the kernel. Thus, the application is considered as not "derived from the oper­
ating system" and therefore does not have to be released under the GNU GPL li­
cense. Mechanical engineers can therefore use Linux as an operating system that is
licensed under the GNU GPL without having to disclose their applications or other
process details.

Joint development of basic technologies and relevance of open
standards
The joint development of basic technologies by a large number of market participants
has another positive effect in addition to the mentioned reduced costs: Standardi­
zation is achieved as a side­effect because the joint development of basic technolo­
gies and their use necessarily requires jointly­defined interfaces and protocols. This
argument also applies in reverse: Many existing open standards were developed
earlier for Open Source projects such as Ethernet, TCP/IP and other network
protocols, page description languages, etc. Outstanding implementations of these
standards are therefore available for FOSS­based systems. These frequently are of
clearly higher quality than subsequent implementations developed for proprietary
operating systems.

Countering globalization using globalization’s tools
The joint development of basic technologies would be impossible without globali­
zation, and especially without the Internet. The same globalization is also respon­
sible for subjecting some companies to increased cost pressure from competitors in
countries with lower labor costs. If this cost pressure is countered by the joint de­



5

velopment of basic technologies, it is quite possible that a free software component
that a German mechanical engineer obtains from the Internet and uses will have
been developed in a country previously associated only with software piracy. By
using FOSS, the disadvantages of globalization are offset to a certain degree by its
advantages.

"Joint development of basic technologies" – how does that work in
practice?
The usual FOSS development model implies that a company which is the first to re­
quire a particular software functionality is forced to develop it on their own and dis­
close the source code according to the Open Source license conditions. Consequent­
ly, a pioneer in a specific field will assume the costs for developing a software that
subsequently can be adopted freely by less advanced competitors. A company may
accept the basic requirement of disclosing source code as a matter of principle of
Open Source, but the resulting unbalance in financing is unacceptable. To achieve a
more equitable distribution of development costs among a large number of benefi­
ciaries, an organization is needed that is jointly financed by numerous interested
companies and is able to commission software projects requested by a majority of
the participants. One of these organizations is the cooperative Open Source Auto­
mation Development Lab (OSADL) eG that was founded at the end of 2005
(http://osadl.org/). Since then, OSADL has realized a substantial number of jointly
financed projects such as further developing the real­time capabilities of the Linux
kernel, creating various Linux drivers, developing board support packages, migration
tools, etc.

Recommendations on the use of FOSS in industrial systems
As mentioned, not all areas of a company that develops or uses software are suitable
for participating in a FOSS project; only those areas should participate that use
technologies of general interest. Before a decision is made to participate in a FOSS
project, one must determine how much the project will affect company knowledge
and experience that cannot be disclosed without endangering the company's market
position. Guidelines can be offered for specific sectors, however substantial devi­
ations can arise in individual cases. Typically, machine builders do not gain a unique
market position from the features of the operating system and its programming in­



6

terface. On the other hand, special controls for unusual requirements may necessi­
tate developing components for operating systems with unique benefits for the
respective machine builder. In such cases, it would be unreasonable to disclose the
source code, and a FOSS operating system with a copyleft license could not be used.
It is, however, also conceivable that software initially considered worthy to stay pro­
prietary may not be so upon closer analysis, and the advantage of open development
can justify the release of the software in a FOSS project.

The various levels of know­how of a company are best illustrated by a pyramid where
the bottom level of the pyramid includes basic technologies without a unique benefit,
and the top area includes highly proprietary intellectual property. Somewhere be­
tween the base and the top of the pyramid is the "uniqueness limit" to be individually
determined for a specific company (see Figure). If this limit is directly at the base of
the pyramid, there is little or no expertise that can be exchanged with competitors,
and FOSS (at least with copyleft) cannot be used. If the uniqueness limit is higher
(yellow and green lines), there is no particular reason why FOSS with copyleft cannot
be used .

Once the decision to use FOSS or to develop an independent FOSS project has been
made, legal advice should be obtained. This concerns the way in which the customer
must be informed that FOSS is being used in a specific project, how best to disclose
software, and which rights and obligations are associated with the granted FOSS
license. In addition, the company should precisely determine to what extent assertion
of own patents is affected. Generally, legal considerations only concern rules of the
game and methods that are easy to observe once they are known. Attorneys who
have specialized in FOSS can provide assistance, or legal advice can be obtained
from the private Institut für Rechtsfragen der Freien und Open Source Software [Insti­
tute for Legal Issues on Free and Open Source Software] (ifrOSS, http://ifross.org/).
Furthermore, OSADL members have free access to a knowledge data base of best
practices of using Open Source software in industrial products and get legal advice
through the organization's General Counsel. Such legal advice is of particular impor­
tance, since the legally compliant conveyance of products includes the observance of
license obligations and is part of the management's duties.



7

Conclusion
The use of FOSS in the automation industry is not a panacea, however, FOSS often
can measurably reduce costs and improve quality. If used appropriately, it offers a
new option for protecting investment in machine­related software and its long­term
management. Organizations such as the cooperative Open Source Automation
Development Lab (OSADL) eG offer a collaboration platform for interested companies
and ensure the fair distribution of investments.

Uniqueness limit

Operating system

Drivers

Operating system libraries

Application libraries

Applications

Testing

GUI

QM

unique

not
unique

Figure
Example of a "uniqueness pyramid" that shows the different levels of knowledge of a
company. Above the uniqueness limit lies the knowledge that differentiates a compa­
ny from its competitors; below this limit are the basic technologies that are not di­
rectly visible to the market. If this limit is at the bottom of the pyramid for a company
(red line), that is, practically all the knowledge is market­relevant and confidential,
FOSS should not be used. The higher the limit (yellow and green lines), the more
(economically) attractive is the use of Free and Open Source Software (FOSS).



Open Source Automation Development Lab (OSADL) eG
Im Neuenheimer Feld 583 • 69120 Heidelberg, Germany • Phone: +49 (0) 6221 98504 0 • info@osadl.org • www.osadl.org


