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Abstract

immediate C  -  iC for short - is  an extension of the language  C.  It utilizes the syntax of C  to give 
meaning to statements that have no semantic support in C. In addition to standard variables, which are 
modified by the flow of instructions,  iC provides  so  called  'immediate' variables, whose  values  are 
updated, whenever a change of input calls for an immediate change in output. An efficient Data Flow 
technique implements this strategy.

iC provides  programmers  with built in operators, whose  function is  closely modelled on integrated 
circuits. The name iC is a reminder of this fact. Logical AND , OR , EXCLUSIVE- OR  and NOT  as well as 
D  flip-flops, SR  flip-flops and many others are implemented in such a way, that their use  follows the 
same  design  rules, which apply to their hardware counterparts. These  rules  have  led to a  well-
developed hardware technology, whose  effectiveness  is  demonstrated by the success  of today's  
complex computer hardware. Particularly the concept of clocked functions plays an important role in 
the language  iC. It gives  the same  protection against timing races  in iC programs, as  it provides for 
hardware IC designs.

Writing programs in the language iC has  the added quality, that many simple ideas and relationships, 
which should result in direct actions, can be written down immediately in one line. The coding of call 
back routines and other overhead is not required. It was this thought, which also prompted the name 
"immediate C ".
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Zusammenfassung

immediate C  - kurz iC - ist eine Erweiterung der Sprache C. Sie basiert auf der Syntax von C  und gibt 
vielen Befehlen Bedeutung, die keine  semantische  Unterstützung  in C  haben. Zu  den  einfachen 
Variablen, die im normalen Programmfluss  verändert werden, kommen in iC so  genannte 'immediate' 
oder 'sofort' Variablen, dessen Wert sofort verändert wird, wenn eine Eingangsänderung, die sofortige 
Änderung eines Ausgangs  zur Folge hat. Um dies zu erreichen, wird eine effiziente Datenfluss-Technik 
eingesetzt.

iC stellt Programmierern eingebaute Operatoren zur Verfügung, deren Arbeitsweise  die Funktionen 
von IC-Bausteinen modelliert. Der Name iC soll an diese Tatsache erinnern. Logisches  UND , ODER,  
EXCLUSIV-ODER  und NICHT  sowie D  flip-flops, SR  flip-flops und viele mehr sind so  implementiert, 
dass  deren  Anwendung  den  gleichen  Entwurfsregeln entspricht, wie die der entsprechenden  IC-
Bausteine. Diese  Regeln  haben  zu  einer ausgereiften Technik  geführt, deren  Wirksamkeit durch 
unsere  heutige  komplexe  Computertechnik  belegt  ist. Besonders  das  Konzept  von  getakteten 
(clocked) Funktionen spielt in der Sprache  iC eine wichtige Rolle. Damit wird derselbe Schutz gegen 
Laufzeitprobleme in iC-Programmen erreicht, der damit in IC-Schaltkreisen bewirkt wird.

Programme die in iC geschrieben werden, haben das zusätzliche Merkmal, dass  viele einfache Ideen 
und Zusammenhänge, die zu direkten Aktionen führen sollen, sofort in einer Zeile niedergeschrieben 
werden  können.  Callback-Routinen  sind  nicht notwendig.  Auch  dieser  Gedanke  ist  im  Namen 
"immediate C " enthalten.
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1    Introduction

immediate C  -  iC for short - is  an extension of the language  C.  It utilizes the syntax of C  to give 
meaning to statements that have no semantic support in C. In addition to standard variables, which are 
modified by the flow of instructions,  iC provides  so  called  'immediate' variables, whose  values  are 
updated, whenever a change of input calls for an immediate change in output. An efficient Data Flow 
technique implements this strategy.

1.1  Relationship to Object Orientation
immediate C  uses  the OO-paradigm in its concept. Each immediate variable is an independent object, 
which acts on other immediate variables by a number of methods. These methods are expressed in a 
number of functions and overloaded on to the logical and arithmetic operators. In conventional OO  
languages  like Smalltalk or C++, a method is an action which acts on the object owning the method. 
Conceptually descriptions of Object Orientation talk of methods being actions or messages  sent from 
one object to another. It is in this sense  that iC immediate variable objects interact with each other by 
the use of Data Flow techniques.

1.2  Relationship to Instruction Flow Languages
Traditional High  Level  Languages  such  as  FORTRAN,  Pascal  or  C  are  called Instruction Flow 
Languages,  because  they express  instruction sequences  for abstract machines, which are closely 
modelled on the underlying, instruction driven machine. By being independent of the actual machine, 
these languages  have helped to hide unessential details of the hardware, to make programs  portable 
and to focus the programmer's attention on the problem to be solved. The overwhelming usefulness  of 
these instruction flow languages  to express  precise algorithms is recognized in iC, by including the 
whole of C  or C++  as  a subset, for dealing with algorithmic problems in established ways. Learning of 
the language iC should therefore be very easy for C  and C++  programmers. 

Many of the undesirable characteristics of the underlying hardware are reflected in today's High Level 
Languages. These  characteristics make it difficult to express  a large number of everyday problems 
briefly and clearly. Particularly the manipulation of events is not easy to integrate into programs written 
in traditional High Level Languages. Yet events play an increasing role in today's  interactive, mouse  
driven programs. Many different functions must be ready to execute as  a result of external or user 
generated events, which occur at unpredictable times. The instruction driven computer only executes a 
particular instruction,  when  the flow of instructions  in a  program gets  around  to executing  that 
instruction. This statement may sound pedantic, but much of the complexity of modern programs is a 
direct result of this fundamental truism. How does  one organize a program, so  that it can respond 
quickly to many and varied external events?  iC provides answers to this question. 

The interrupt mechanism, designed to tackle such  problems  at a system level, is intractable for the 
average  programmer and  is  not supported in a  general way by most  High  Level Languages.  iC 
harnesses  interrupts and hides their complexity. 

1.3  Programmable Logic Controllers
The situation is even more critical in systems  that deal with a large number of external inputs. In the 
early 1980's  a completely new class  of computer was  developed to deal with such  problems  in the 
environment of factories and machine control. These  are the "Programmable Logic Controllers"  or 
"PLC"  for short. (SPS  or Speicher-Programmierbare Steuerung in German) Conventional PLC's  have a 
standard instruction driven architecture. They differ from conventional computers in two main areas: 

• They provide fast bit instructions and data access  to individual bits on top of the more conventional 
instructions to manipulate data words. 

• They have a built in operating system, which runs  the stored program over and over. Inputs are 
automatically polled at reasonably short intervals and Boolean and arithmetic expressions  making 
up  the stored program are re-evaluated continuously. This  is  necessary, because  outputs and 
intermediate values in a PLC  are assumed to reflect an immediate transformation of the inputs, as  
carried out by the expressions of the stored program. 

This  organization of PLC's  has  two very serious  drawbacks, which are direct consequences  of the 
differences mentioned: 

• Conventional PLC's  require a  special CPU,  which can never be as  cheap as  a  mass  produced 
microprocessor chip, or they emulate the PLC  instruction set, in which case they are slow. 
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• The cyclic execution of the stored program sets very real limits to the length of possible programs. 
The longer the program, the longer the cycle time, which is the time interval at which inputs are 
polled. If this  time gets  too long, the response  of the PLC  is  no  longer acceptable for many 
applications. 

PLC's  are facing a crisis on two fronts:

• Traditionally PLC  program memories were measured in kilobytes. Today megabytes of memory are 
available at low cost. This  1000 fold increase in potential program size cannot be utilized with the 
cyclic execution strategy of conventional PLC's.  Even  with a  10  fold increase  in speed, these 
machines would be too slow. 

• The  second  crisis  is  the lack  of a  High  Level Language  for PLC's.  Most  PLC  programs  are 
developed with antiquated tools  that support semi  graphical languages  for Boolean  logic and 
assembly  programming  for  numerical  subsystems.  The  international  standard  IEC-1131  is 
attempting to fill this vacuum by specifying such  a language. Unfortunately this standard simply 
freezes current programming practice, by incorporating five different languages, four of which are 
the semi graphical and assembly languages  in common use today. For algorithmic programming it 
introduces  a  completely new High  Level Language  called 'Structured Text', which will require a 
large learning effort by programmers and whose utility in the limited area of PLC's  seems  doubtful. 
IEC-1131 makes no attempt to confront the fundamental speed problems facing PLC  users. 

Because  PLC's  are  completely compute  bound,  the  type  of  program  organization  they  use  is 
unacceptable for standard computers. Nevertheless  many programmers  designing  event controlled 
applications on standard computers resort to polling schemes, despite the drawbacks  involved. The 
High Level Languages  they use do not give them any simple alternatives. 

The language iC can be used to program standard computer systems and PLC's  in a uniform way. iC 
is fast, because it responds immediately to any changes  in input, and does not waste time evaluating 
expressions,  whose  input operands  have  not changed. The  extensions  which  iC offers  over the 
algorithmic language C, can also be coded graphically, using current CAD  packages  for IC design. For 
factory staff, who require very simple programming  methods, the use  of  Ladder Diagram (LD) or 
Function Block Diagram (FBD)  in conformity with IEC-1131, using suitable front ends is possible. 

1.4  Relationship to Integrated Circuits
iC provides  programmers  with built in operators, whose  function is  closely modelled on integrated 
circuits. The name iC is a reminder of this fact. Logical AND , OR , EXCLUSIVE- OR  and NOT  are the 
basic  functions  implemented using  a  very  fast data-flow algorithm. The  full range  of  arithmetic 
operators is  also  available. These  are not normally considered as  hardware components, although 
once  they formed  the  basis  of  the  very  important “Analog  Computer”. They  can  be  used  for 
implementing control algorithms, fuzzy logic –  the possibilities are endless.  Also  implemented as  
efficient built in functions  are the D  flip-flop, SR  flip-flop, JK  flip-flop, shift register and many other 
popular integrated circuit types, which are implemented in such a way, that their use in iC programs 
follows the same design rules, which apply to their hardware counterparts. These  rules have led to a 
well-developed hardware technology, whose effectiveness  is demonstrated by the success  of today's  
complex computer hardware. Particularly the concept of clocked functions plays an important role in 
the language  iC. It gives  the same  protection against timing races  in iC programs, as  it provides for 
hardware IC designs. 

Another idea taken from integrated circuits is Large-Scale-Integration. User  defined Function Blocks 
emulate LSI  circuits and produce complex sub-units with a  known functionality and a  well defined 
external interface, which can be re-used without regard to the internals. IC  hardware design may not 
be part of the average programmers  repertoire, but there is much literature on the subject. The run-
time code is not meant to be just a simulation of IC  hardware –  the generated code is extremely fast, 
because of the data-flow techniques used and can provide useful control programs. 

1.5  Summary
Writing programs in the language iC has  the added quality, that many simple ideas and relationships, 
which should result in direct actions, can be written down immediately in one line. 

if (IX0.0) { printf(”Hello! world\n”); }

This  is  a  complete runnable  iC program.  IX0.0  is  an  external  immediate bit input in IEC-1131 
notation, which generates an event when it changes  state. The coding of call back routines and other 
overhead is not required. It was this thought, which also prompted the name "immediate C ". 
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2    Language description

2.1  Immediate Variables 
An immediate variable is a data object that has  a value, but which also has  the ability to transmit any 
change in its value as  an event. This event triggers the re-calculation of all  expressions  that contain 
the  immediate variable. The  fundamental assumption is, that  the value  of  an  expression  only 
changes, if one of the variables  making  up the expression  changes . Thus  it is only necessary to 
re-calculate an expression, if one of the variables making up the expression changes. Conversely, if an 
expression is re-calculated whenever one of its variables changes, and all unnecessary recalculations 
of expressions  are left out, the value of all expressions  will be up to date within a very short time. 
Immediate variables provide the mechanism to make this strategy possible.

2.2  Immediate Types
iC introduces the type modifier imm to declare immediate variables of the basic data types  int in C  
and the basic data type bit, which is a new data type in iC. Type bit declares variables capable of 
holding the values 0 and 1. Unless  the C  or C++  compiler, used to translate the generated code, itself 
supports bit as a basic data type, the use of type bit is restricted to imm bit. The word 'boolean' was 
avoided deliberately, because it has a different semantic bias in languages  where it is used. (Truth of a 
test rather than single bit objects). Both  imm int and imm bit are value types.

iC also  has  clocking  types  imm clock and  imm timer, which  can  only be  used  as  function 
parameters. These will be discussed later.

2.2.1  Immediate declarations
An immediate declaration declares an immediate variable to be either of type imm int, imm bit, imm 
clock or imm timer, using syntax similar to declarations in C. Any value type variable not declared 
before it is used is assumed to be of type imm bit. Undeclared clocking type variables inherit the type 
from the assigning function. Calling the immcc compiler with the strict option -S  makes  declarations 
mandatory for all imm variables –  this is highly recommended. All variables in a declaration may be 
assigned directly.

imm int fader, colour; // declaration only
imm int brightness = fader * colour; // decl and assignment

2.2.2  extern immediate declarations
Just like in C,  several  iC sources  may be compiled separately and linked into a single application. 
When  immediate variables declared and assigned in one source are referenced in another source, 
they must be declared with an extern declaration, before they can be used in an expression. 

extern imm int fader, colour;
extern imm int brightness;

2.3  Immediate Expressions  
Immediate expressions are arithmetic or bit expressions external to all functions, which contain at least 
one  immediate value  variable.  Immediate arithmetic  expressions  may  also  contain  constant 
expressions. An  immediate expression is re-calculated whenever the value of one of the immediate 
variables  it contains  has  changed. If an  expression  consists  only of constants  and no  immediate 
variables it is a constant expression evaluated once during initialisation.

2.4  Operators in immediate expressions
Most operators available in C  may be used with immediate variables. The precedence of the operators 
is  the same  as  in C.  Some  C  operators  are  not valid for  immediate expressions,  because  the 
semantics  are different. These  are the increment and decrement operators  ++ and  --, as  well as 
structure and  pointer operators  -> .(dot)  &(address  of) and  *(pointer dereference). Assignment 
expressions  += etc. are also  not allowed. These  restrictions do not apply to embedded C  code in 
literal blocks and immediate if else or switch statements, which will be introduced later.

Array variables and index expressions  using [ ] are available with the Array extension of the language 
using the pre-compiler immac (called automatically). See section section 3.
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2.4.1  Arithmetic and Relational Operators
The binary arithmetic operators + - * /, the modulo operator %, as well as unary - and + operate on 
numeric values and yield numeric results of type imm int. The same applies to the shift operators << 
and >>. If an operand of the wrong type is used with one of these operators, automatic type conversion 
takes  place. Values  of type imm bit are converted to the int values  0 or 1 corresponding to the 
values  of the bit. The  relational and equality operators  <,  <=,  >,  >=,  ==,  != also  have  numeric 
operands, but these operators yield imm bit results by default. 

2.4.2  Bitwise and Bit Operators
If both operands  of the binary operators &, |, ^ or the single operand of operator ~ are of type imm 
int, these operators carry out bitwise manipulation on their integer operands  –  just like in C. The 
result is an  imm int. Immediate arithmetic, relational and bitwise logical expressions  with numeric 
operands may contain constants, as well as immediate operands. 

If one of the operands of the binary operators &, |, ^ or the single operand of operator ~ are of type 
imm bit, these operators carry out the bit manipulation operations and, or, exclusive-or and not on 
imm bit objects. The result is an  imm bit. Any operands  of type imm int are converted to imm 
bit. The numeric value 0 converts to 0 (false), any other arithmetic value converts to 1 (true). 
The bit operators are used frequently in immediate C , since bit manipulation is very common in event 
driven systems –  more so than in algorithmic programs written in conventional languages  like C, which 
does  not even provide a type bit. Such  logical bit expressions  in immediate C  may not contain any 
constants or non-immediate values. Constants in immediate bit expressions  do not make much sense. 
They either do not change a variable (a & 1, b | 0) or they produce another constant (c & 0, d | 
1, ~1). 

2.4.3  Logical Operators
The  logical connectives  &&  and  ||  are  executed as  arithmetic expressions,  when  one  of the 
operands  is of type imm int. Evaluation is from left to right, and evaluation stops  when the truth or 
falsehood of the result is known –  just like in C. The result is of type imm bit by default. The unary 
complement operator !, operating on an imm int produces an imm bit result. 

The operators &&, || and ! with only imm bit operands are interpreted by the compiler exactly like 
the logical operators  &,  |  and  ~. There is  little sense  converting such  bit operands  to integers, 
evaluating the arithmetic expression and then converting back to a bit. Since evaluation of && and || 
in bit expressions  is  not from left to right as  expected, but depends  on  which operands  in the 
expression change, their use  and the use  of ! in expressions  where all operands  are  imm bit is 
deprecated and causes  a warning.

2.4.4  Conditional Operators
The  operators  ? :  implement conditional expressions,  which  are  evaluated as  a  whole  in an 
arithmetic context. The conditional expression 

expression_1 ? expression_2 : expression_3 

is a valid immediate arithmetic expression, which is triggered by a change in any immediate variable in 
any of the three sub-expressions.  An alternate form of conditional expression, which leaves  out the 
middle expression is allowed by modern C  compilers, particularly by gcc  and is allowed in iC (if the C  
compiler used supports the construct)

expression_1 ? : expression_3 

The following excerpt from 'info gcc' explains the advantages and use of the construct:

5.8 Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted.  Then if the first operand is non-zero, its value is the 
value of the conditional expression.

   Therefore, the expression

     x ? : y

has the value of x̀' if that is non-zero; otherwise, the value of ỳ'.

   This example is perfectly equivalent to

     x ? x : y
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In this simple case, the ability to omit the middle operand is not especially useful.  When it becomes  useful is when 
the first operand does, or may (if it is a macro argument), contain a side effect.  Then repeating the operand in the 
middle would perform the side effect twice.  Omitting the middle operand uses  the value already computed without 
the undesirable effects of recomputing it.

2.5  Function and macro calls
Immediate expressions  may contain function calls for several types of functions and macros. All of 
these look very similar to C  function calls. The differences will be discussed  in later chapters. These  
can be:

1. Built in iC function calls. The parameter ramps and return values are pre-defined.

2. User defined iC function block calls. These must be defined by the user before they are called.

3. C  function calls. 

4. C  pre-processor macro calls.

C  function and macros called in immediate expressions may only have int parameters (if any) and an 
int return value. They should be declared as follows to evoke an error message  if the function name 
is mistyped or the parameter ramp or return value is wrong:

extern int rand(); // C function with no parameters
extern int rand(void); // alternative syntax
extern int abs(int); // C function with 1 parameter
extern int min(int, int); // macro with 2 parameters

When 'strict' is active, any C  functions or macros, which are called in immediate expressions  must be 
declared in the iC code.  If 'strict' is not active, mistyped function names  with any type of parameter 
ramp look like C  function calls and will be compiled as such without error. This error is not discovered 
until link time. With an extern declaration, a clean error message  is produced and the extra effort is 
not great. When a pre-declared C  function or macro is called in an immediate expression, a check is 
made, that the number of parameters is correct. Otherwise an error message is issued. 

If declared a second time, the following will evoke a warning if 'strict'

extern bit rand(); // wrong return type – converted to int

If declared a second time, the following will evoke an error if 'strict'

extern int rand; // not used as a function
extern clock rand(); // absolutely wrong return type
extern timer rand(); // absolutely wrong return type

No check is made for C  function calls in C  fragments controlled by if else or switch statements or 
other literal C  code, since the compilation is handled by the follow up C  compiler. Note: built in  iC 
functions and iC function blocks can not be called in such C  fragments under any circumstances.

2.6  Parentheses  
In immediate C  it is possible to write mixed arithmetic and bit expressions, nested to any depth using 
the usual precedence rules and parentheses.

Immediate arithmetic expressions  are evaluated as  a  whole C  expression, every time one of their 
component immediate variables changes –  but only then. To improve execution speed, it is sometimes 
more efficient to break up very long immediate arithmetic expressions with many operands into several 
sub-expressions  –  particularly if each sub-expression is triggered by different operands. In this case  
not all the sub-expressions  are executed. On the other hand there is a certain amount of overhead for 
triggering each  new node and execution of a  compiled C  expression  is  fast, even if it has  many 
operands.

Immediate bit expressions are compiled into a network of forward looking nodes, one for each different 
bit operand and execute even more efficiently. There is no need to break up a complex immediate bit 
expression  into  sub-expressions  –  the  compiler  does  this  already.  Immediate bit expressions 
embedded in an arithmetic expression are compiled into separate sub-expressions  and only the type 
converted arithmetic result is used in the arithmetic expression.
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2.7  Immediate statements
Most  immediate statements are  immediate declarations  or  immediate assignments  terminated by a 
semicolon. Immediate declarations and assignments may be combined.

2.7.1  Immediate Assignments 
Immediate assignments are assignments of immediate expressions  to immediate variables external to 
all functions. Value changes  to an  immediate variable are detected in the assignment and this event 
triggers the re-calculation of follow on expressions.  Like in C, an  immediate assignment is also an 
immediate expression, which means that assignments embedded in expressions are allowed. As  noted 
earlier, immediate assignments can be combined with the declarations of immediate variables. 

2.7.2  Aliases  
Immediate arithmetic and bit assignments, in which the right hand expression consists of only a single 
immediate variable are accepted by the iC compiler, but produce no code. This  type of statement is 
called an alias. The alias name on the left hand side is simply an alternative name for the immediate 
variable on the right hand side. Any reference to the alias will be substituted by the right hand side 
variable, whose  value is always  the correct immediate value of the intended assignment. Bit aliases 
may be either normal or inverting. The bit not operator ~ does not produce any code when used on an 
imm bit operand. All ~x sub-expressions are implemented as inverting aliases of x. Thus the direct 
assignment of ~x to another imm bit variable is also an (inverting) alias.

imm bit a, b; b = a; // b is an alias for a   (normal)
imm bit x, nx; nx = ~x; // nx is an alias for ~x (inverting)
imm int j, k; k = j; // k is an alias for j
imm int two; two = 2; // two is an alias for 2

2.7.3  The single assignment rule 
Immediate assignments must obey the single assignment rule, a rule which applies generally for data 
flow systems 1. Any immediate variable may only be assigned in one immediate assignment. The value 
of an  immediate variable is  the value of the expression, from which it is  assigned, at all times. A 
second  assignment to the same  immediate variable would force different values  on  that variable, 
causing a conflict. The immediate variable being assigned cannot hold different values simultaneously. 
The single assignment rule is monitored by the iC compiler. An  error message  is generated if it is 
broken. 

Expressions  that occur in C  code triggered by immediate conditional if else or switch statements or in 
C  functions in literal blocks  may contain immediate variables. These  expressions  are not immediate 
expressions  and are not triggered by those variables. When such an expression is executed in the C  
code, the current value of any immediate variable is used. 

Immediate variables may even be assigned in C  code embedded in immediate conditional if else or 
switch statements and in literal blocks. Such  an assignment is  not an  immediate assignment –  the 
value is  changed  when the C  statement is  executed. Nevertheless  any change  in the  immediate 
variable assigned in the C  code will trigger immediate expressions  that contain that variable. Several 
such assignments to the same  immediate variable may be made inside different sections of C  code. 
Every new assignment changes  the variable in accordance with the intended algorithm. Immediate 
variables used in C  code must be declared as  immC bit or immC int in an  iC code section. An 
immediate variable that is assigned in C  code may not also be assigned in an immediate assignment. 

2.8  Immediate control statements
An  immediate conditional if else statement and an  immediate switch statement are the only control 
constructs available in iC. The syntax of both statement types is similar to their C  counterpart, except 
that braces around the C  statements are mandatory. In particular an else if is not allowed, since the if 
after the  else would have  been part of the C  statement controlled by the  else part of the whole 
immediate if statement, which would be very confusing. 

if (imm_bit_expression) { C_statement_1 }
if (imm_bit_expression) { C_statement_1 } else { C_statement_2 }
switch (imm_int_expression) { C_statement } 

1 see  Werner  Kluge:   The  organization  of  Reduction,  Data  Flow,  and  Control  Flow  Systems  -  pp.  317.
   The MIT Press 1992. [Kluge92]
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These  are  valid  immediate statements  when  they occur  external to any  function and  when  the 
controlling  expression  is  an  immediate expression.  The  controlling  expressions  in  immediate 
conditional if else or  switch statements are synchronized by a  clock. The default clock is  iClock. 
Other clocks  or timers may be specified as  explained in  section 5. In all cases  any change  in the 
controlling  immediate expression, synchronized by the controlling clock, triggers  execution of the C  
statements.

2.8.1  Immediate conditional statement
immediate conditional statements use  the keyword if and optionally else. The controlling expression 
for an immediate conditional statement is an immediate bit expression. If not, it is converted from int 
to bit automatically. A  0 to 1 transition or rising edge causes  C_statement_1 to be executed. A 
1 to 0 transition or falling edge causes  C_statement_2 to be executed (if an else is coded). The 
C_statements are embedded C compound statements, not immediate statements.

%{
int a, b, c; /* C declarations in a literal block */
void reset(void); /* C function declaration */
%}

imm bit sw1, sw2, sw3; // immediate declarations

if (sw1 & sw2 | sw3) { /* imm controlling expression */
a = 1; b = 12; c = -2; /* C code executed on rising edge */

} else {
reset(); /* C code executed on falling edge */

}

2.8.2  Immediate switch statement
For the immediate switch statement, the controlling expression is an  immediate int expression. The 
C_statement is  an  embedded  compound  statement, which  has  the usual  form of a  C  switch 
statement with case labels. Any change in the controlling expression triggers the switch statement. The 
value of that expression after the change is applied to the switch and the selected case is executed. 

%{ enum Fuzzy { OFF, DIM, MEDIUM, BRIGHT }; %} // literal block
switch (brightness) { // declared and assigned above

case OFF: lightVoltage(0); break;
case DIM: lightVoltage(10); break;
case MEDIUM: lightVoltage(18); break;
case BRIGHT: lightVoltage(24); break;
default: lightVoltage(24); break;

} // end of immediate switch statement 

The immediate conditional if else and switch statements open the way to trigger the execution of short 
C  fragments  on  particular events. These  events  are either rising  or falling edges  of bit values  or 
changing arithmetic values. If more than a fragment of C  code is involved, it is good practice to code 
this  in a  C  function, and  to call that function in the  immediate statement. Very  long  immediate 
statements would make the purpose of those statements unclear. Depending on the time critical nature 
of the application, C  code should not take too long to execute, because during the execution of such C-
fragments the processing of other immediate events is held up.

2.9  Literal blocks
Literal blocks are sections of C  code enclosed in special braces  %{ and %}. They may occur before, 
between and after any  immediate statements. Literal blocks  are copied verbatim to the front of the 
generated C  output code (without the special braces). Literal blocks  are useful to declare any C  
variables, define macros and to declare and define auxiliary C  functions to support the application. Any 
C-pre-processor  statements  such  as  #include  or  #ifdef  must be  written as  %#include  or 
%#ifdef in the literal block. The %# must be written without intervening spaces. The % is dropped by 
the  iC compiler in copying the literal block to the generated C  code. This  allows  C-pre-processor 
statements for the iC sections of code which are resolved before the iC compilation.
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%{
%#include <math.h> /* special iC-pre-processor syntax */
int x, y, z; /* declarations in a literal block */
int abs(int); /* C function declaration */
%}

The run-time system will call the function iCbegin() when an  iC application is started before any 
immediate processing. This function can be provided by the user in a literal block. If it is not provided, 
an empty function iCbegin() returning 0 is provided by the system. User implementations should 
return 1. One  use  of iCbegin() is to initialise  immC variables. It may even contain a fork() call to 
spawn a child process, which will run in parallel with normal immediate processing. This opens up the 
way to build mixed applications using conventional multi-process  or multi-threaded control strategies in 
parallel with immediate C  code, which leaves a lot of CPU  time to do other things.

The  complementary function  iCend() is  called by the run-time system when an  iC application is 
terminated externally (iC applications never terminate by themselves). iCend() could be used to free 
memory allocated with malloc or new. 

%{ 
int iCbegin() { ...; return 1; } /* optional C initialisation */
int iCend() { ...; return 1; } /* optional C termination */
%}

If the code in literal blocks, or code  in C  blocks  controlled by an  immediate if else or  switch, is 
specifically C++  code, then the generated code must be compiled by a  C++  compiler. The  Code 
generated from the iC statements is pure C  code.

2.10  Comments
C  style  comments  /*  ...  */ can  be  used  anywhere  between  tokens  of  iC programs.
C++  style comments may be used at the end of iC lines. // ...

Some older C  compilers do not support C++  comments, so  their use in literal blocks and C  statement 
blocks controlled by if else or switch may lead to portability problems.

2.11  Scope of immediate statements
Immediate variables are global or static and must be declared external to all functions like other global 
variables  in C.  Moreover all  immediate statements  must also  be  placed external to functions. A 
statement in a function is only executed (made active) during the execution of that function. Immediate 
statements are active at all times. 

Consecutive  immediate statements  are  not executed in sequence. Each  immediate statement is 
independent of all other immediate statements. They can be placed in any order, without influencing 
the behaviour of the program. This is analogous  to the placement of global variables and functions in 
C. 

Immediate assignments  are  often combined with their declarations  and  look  like the initialization 
expressions of ordinary global C  variables. In C, this initialization takes place before the function main() 
is started. In iC, immediate statements simply stay active until the program is stopped. For most of the 
time the process  running the iC program waits in a select() call, which wakes up whenever an external 
input or internal timer changes. Because  the processing  required to react to such  an input is in the 
order of microseconds, this strategy ensures  that the CPU  loading of an  iC process  is minimal. This 
can be observed easily with tools like xosview under Linux. Times measured with a modern 1.8 GHz  
processor were > 100 us, which is mostly overhead to get the input process  scheduled. The time to 
even execute a chain of 10 consecutive events is of the order of 10 us. This  corresponds  to a 0.1%  
loading for a process  including a  100  ms  timer, of which 0.01%  is actually used by the immediate 
statements.

/* VERY SIMPLE WASHING MACHINE PROGRAM */
imm bit on; // switch to turn system on/off
imm bit waterLo; // water level switch
imm bit tempLo; // thermostat, turns off when hot
imm bit fill = on & waterLo; // fill with water until filled
imm bit heat = on & ~waterLo & tempLo; // heat water when filled
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2.12  Intrinsic limitations of immediate statements 
Arrays of immediate variables have been realized and will be covered in the next chapter. Structures 
containing  immediate variables  have  not been  realized in the current release, although  they are 
possible and may be implemented in a future release. Pointers to immediate variables in immediate 
expressions  are semantically indeterminate. They are therefore not implemented. This is also pointed 
out in one of the recommendations in the IEC-1131 standard, which justifies the language 'Structured 
Text' instead of C  on the grounds, that a pointer in a machine control program has  no meaning and 
could cause  disaster. The  same  limitation has  been recognized in the language  Java, which only 
recognizes references as constant pointers.

Immediate assignments, in which the left hand side variable appears in the right hand side expression 
are of very doubtful utility. Such a statement expresses  a very tight feedback loop, which will either lock 
up, or generate a high speed oscillator. For this reason  a warning message  is generated by the iC 
compiler. 

imm bit a, b;
a = a & b; // a locks up when b becomes 0
b = ~b | a; // b oscillates when a is 0
imm int j;
j = j + 1; // j never catches up with itself 

For the above reason the C  assignment operators +=, -= etc. as well as  ++ and -- cannot be used in 
immediate statements. Feedback over several statements is allowed, but oscillations are controlled so 
that the system does  not become compute bound. If  oscillations  do occur, a  runtime warning is 
produced since they are probably not intended.

Like in any programming language, it is possible to write incorrect iC  programs. It is the job of the 
programmer, to understand the model on which the execution of the iC language constructs is based, 
and  to create programs  that use  these  constructs  correctly. iC is  modelled on  hardware building 
blocks, which provides an easy starting point. 

The following was probably intended by the last statement above: 

imm bit gate, p;
imm int j; // j counts every rising edge
if (gate & p) { j++; } // of p, while gate is hi 

In this example, gate & p is an immediate expression that triggers execution of the non-immediate C  
statement j++; Assignment operators +=, -= etc. as well as ++ and -- with immediate  variables are 
allowed in embedded C  statements. The above construct is one way to implement a counters in iC. A 
better way is shown in section 4.9. 

2.13  Pragmas
Pragmas  affect the compilation phase of an iC program. Pragmas  are introduced by the keywords use 
and no. 

use turns a pragma option on
no turns it off

Currently two pragmas are implemented in immediate C: alias and strict.

use alias; // equivalent to -A command line option
no alias; // turn alias option off

use strict; // equivalent to -S command line option
no strict; // turn strict option off

1. The  alias pragma or -A  command line option forces  the compiler to generate a node for 
each alias  in the generated C-code (default is to generate no node). This  is needed in two 
circumstances:

● It is required, if an  iC source refers to an alias  in another iC source by an  extern 
reference. Since all references  to aliases  are normally removed from the compiled code, the 
C-object modules, which are generated from such  code could not be linked. With the use 
alias option, the code can be linked and the remaining aliases are resolved at start up.

● The  use alias option is  also  useful for debugging. Only when it is  set, are alias 
names displayed as active words by iClive. 
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2. The strict pragma or -S  command line option forces the compiler to expect a declaration of 
all immediate variables, before assignment. The default with no strict, is to generate an 
imm bit node for an  assignment to an  undeclared name. Similarly an  assignment to an 
undeclared name from a CLOCK() or TIMER() function call results in a default imm clock or 
imm timer variable. Such  laxness  is OK  for small single source projects, but can lead to 
problems with larger projects. I had a case in a large project, where I had declared a number 
of imm int variables and mistyped one of them, so the correct name was not declared. This 
name was then assigned - but converted to imm bit and then back to imm int when used, 
leading to incorrect arithmetic.

As  noted  earlier, C  functions  and  macros  should  be  declared  extern with their correct 
parameter ramp and return value. When  “strict” is  active, error messages  are output if an 
undeclared C  function or macro is called in an immediate C  expression.

Several options (currently only two) may be set or reset together in one pragma call:

use alias strict; // equivalent to -AS command line option
no strict alias; // turn both options off

It is recommended to write 

use alias strict;

as the first line of all production iC programs - the space overhead for extra alias nodes is insignificant 
and debugging becomes  much easier. Particularly the strict option is highly recommended anyway 
and results in no binary overhead. (Grateful acknowledgements to the designers of PERL).

The scope of these pragmas is a file. If a pragma is enabled in one file it carries over to an included iC 
header file. If on the other hand a pragma is changed in a header file, it reverts to its previous value in 
the iC file after the #include statement, which includes the header file. This makes  sure that sloppy iC 
programs, which include a header file, which uses  “strict” syntax, will not report errors, because 
they do not follow the “strict” syntax. This scope feature can only be used successfully with the use 
strict pragma, since use alias only comes into effect during C  code generation –  at this point the 
complete source has  been parsed. This  means  use alias should definitely be used  once in  iC 
programs, which consists  of several parts with extern references between them. Other single source 
iC programs  can  use alias , which produces  slightly larger code, but which can  be debugged 
without recompiling with the -A flag. 



16

3    Arrays

Arrays  in conventional instruction flow languages  are a  named collection (often of fixed length) of 
similar variables, which are accessed by an index expression, eg a[5]. Each such entity is an individual 
object, but in instruction flow languages  the index is often a variable, which is manipulated in a loop 
and references to the individual indexed entities occur sequentially, as in the following C  example:

for (n = 0; n < 4; n++) {
a[n] = b[n] * c[n];

}

3.1  Immediate Arrays 
In data flow languages  like immediate C  loops at run-time are meaningless. Each immediate variable is 
an entity, which is controlled by one assignment statement. The variable changes, when a variable in 
the expression  of the controlling statement changes  and  not when some  loop runs. It is  well to 
remember, that immediate variables and their controlling expressions  are more like IC  building blocks 
connected in a static network. In that sense immediate Arrays are like hardware registers.

Arrays may be defined in immediate C , but each entity acts individually at run-time, which means  that 
an individual immediate object must be generated for each immediate array member.

3.2  Use of immediate Arrays
Arrays  in conventional languages  as  well as  in immediate C  give programmers  extra capabilities to 
express  themselves. These fall into two distinct categories:

1. Arrays allow the writing of repeated similar statements as  one statement –  this saves  a lot of 
writing, but could also be done without arrays.

2. Additionally arrays allow the parametrisation of the array length, both within the program and 
in the command line of the program, which is probably more important. For immediate C , this 
makes  possible the writing of control programs  in which the number of control elements or 
groups  is variable and the actual number is not bound until compile time. This would not be 
possible without arrays in the language. 

NOTE:  the definition of dynamic arrays, whose sizes  change at run-time is meaningless  and 
not possible in immediate C .

An example of the usefulness  of arrays in the language would be an iC program controlling lifts in a 
building. The number of floors varies from building to building –  so do the number of parallel lifts, which 
may be required. With arrays, a single iC program can be written, which can be compiled for a different 
number of floors and a different number of parallel lifts as follows:

immac -P FLOORS=12 -P LIFTS=2 liftControl.ica

3.3  Implementation of immediate Arrays
Since each immediate array member is an individual immediate object at run time, it is important for 
debugging with iClive to be able to have a listing showing each individual array member –  not just its 
collective form, eg  a[n]. To  achieve this, an  iC program containing arrays  is  translated by the pre-
processor  immac to  iC code without arrays. This  is  a  simple text operation in which macros  are 
expanded, loops are unrolled and index expressions are evaluated.

The iC language with arrays has three additional language extensions:

1. C-style 'FOR  loops', which define a loop variable and a range.

2. Index expressions  in square brackets, which allow the definition of array variables –  usually in 
a loop.

3. Macro definitions, which are processed directly by immac - can be defined in two ways:

● in C-pre-processor style with %define instead of #define, eg
%define FLOORS 12

● in the command line, just like for a C  compiler, eg
-P FLOORS=12
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Macros will mostly be used inside the square brackets of an array variable or in the control line 
of a FOR  loop, but they can be used anywhere in the iC code or in the definition of another 
%define macro –  macros  may be nested. The above implies, that the immac pre-compiler 
could be used as a macro pre-processor for iC programs without any arrays at all.

iC programs containing the above three extensions are called iCa programs and should be written in a 
file with the extension .ica –  the immac pre-compiler translates an iCa program to an iC program with 
the extension .ic in which macros  and 'FOR  loops'  are expanded and immediate array instances  are 
converted to simple immediate variables. The following iCa snippet in file lift.ica

%define FLOORS 4

FOR (n = 0; n < FLOORS; n++) {
imm bit a[n] = b[n] & c[n];

}

expands to the following iC file lift.ic when compiled by immac:

imm bit a0 = b0 & c0;
imm bit a1 = b1 & c1;
imm bit a2 = b2 & c2;
imm bit a3 = b3 & c3;

The 'FOR  loop' is executed at compile time and generates repeated copies of the statement(s) in the 
compound statement controlled by the loop. This only makes  sense, if there are elements in the loop 
statement(s), which are modified by index operations using the control variable of the 'FOR  statement' 
–  in the above example that is the variable n. 

The translation of indices in square brackets is carried out in two steps:

1. The expression in square brackets is evaluated as an integer expression.

2. The numerical value produced replaces the square brackets and the expression it contains.

In the above example the index expressions  are simply the variable n. But the index expressions  can 
be more complex. A feature of iCa indexing may seem strange at first, but it turns out to be very useful; 
the square bracketed index expression may be placed anywhere in a word, not only at the end of a 
word. It may even be placed on its own –  in that case  the expression is evaluated and becomes  a 
suitably modified integer constant in an iC statement. The following example shows both:

FOR (n = 0; n < 10; n++) {
QB[n] = IB[n+1] * [n+2];
QX[n/8].[n%8] = IX[n/8].[n%8] & IX[10+(n/8)].[n%8]; // out: [n]

}

expands to :

QB0 = IB1 * 2;
QX0.0 = IX0.0 & IX10.0; // out: 0
QB1 = IB2 * 3;
QX0.1 = IX0.1 & IX10.1; // out: 1
QB2 = IB3 * 4;
QX0.2 = IX0.2 & IX10.2; // out: 2
QB3 = IB4 * 5;
QX0.3 = IX0.3 & IX10.3; // out: 3
QB4 = IB5 * 6;
QX0.4 = IX0.4 & IX10.4; // out: 4
QB5 = IB6 * 7;
QX0.5 = IX0.5 & IX10.5; // out: 5
QB6 = IB7 * 8;
QX0.6 = IX0.6 & IX10.6; // out: 6
QB7 = IB8 * 9;
QX0.7 = IX0.7 & IX10.7; // out: 7
QB8 = IB9 * 10;
QX1.0 = IX1.0 & IX11.0; // out: 8
QB9 = IB10 * 11;
QX1.1 = IX1.1 & IX11.1; // out: 9
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As  shown above, index expressions  may even be used in comments. This can be useful, because the 
expanded iC text must later be used for debugging with iClive –  the original text with 'FOR  loops'  and 
index expressions  is not meaningful for following the values  of actual nodes  at run-time. The above 
example already gives a hint of how much writing can be saved. The way I/O bit variables following the 
IEC-1131 standard are expanded is particularly useful.

The iCa extensions to the iC language can be embedded as additional lines in regular iC code. A FOR  
statement and a %define macro definition may not be embedded in the middle of a line of iC code –  
not even between iC statements, which have been written in one line. This limitation is similar to the 
limitations imposed by the C  pre-processor cpp on the C  language.

3.3.1  FOR  loops
'FOR  loops' follow the syntax of C  'for statements' with the difference, that the controlled iC statements 
must be enclosed in braces (which is also required for immediate switch and if else statements):

FOR (expr1; expr2; expr3) {
iC statement(s), which are repeated under control of the loop
or nested 'FOR loops'

}

Other restrictions are:

1. The controlling FOR  (;;) must be written in a single line. 

2. The opening brace may follow the FOR  (;;) on that line or must be written by itself on the next 
line.

3. The closing brace must follow any iC statement(s) on a line by itself.

4. The 'FOR  statement' line and the lines containing braces  controlled by the 'FOR  statement' 
may finish with a C  or C++  comment (a C  comment must finish on that line). There may be no 
leading or embedded comment(s). 

5. A 'FOR  statement' may only use one control variable, which is an int by default:

FOR (n = 0; n < 10; n++) or FOR (int n = 0; n < 10; n++)

The control variable is the first 'word' of expr1, which is not 'int'  followed by '='. The word 
'int' in the second form is optional and can be written to remind programmers, that the control 
variable is an integer. The control variable may not be declared anywhere else.

6. Other atoms  in the three expressions  must be either constant expressions  or expressions  
which contain control variables of the current and of outer 'FOR  loops'. All expressions  may 
contain macros, which must expand to integer constants or expressions  containing valid loop 
control variables.  Under  no  circumstances  may  immediate variables  be  used  in  these 
expressions.

7. The names of control variables must be different from any immediate variable.

8. The scope of the control variable of a 'FOR  loop' begins when the control variable is initialised 
in the 'FOR  statement' and ends with the final matching brace. The control variable is not valid 
outside of this scope.

Since  immac is  implemented as  a  Perl script, an  alternate Perl type of 'FOR  loop'  may be used, 
although its use is deprecated. For completeness it is described here.

FOR n (<Perl type list>) {
iC statement(s), which are repeated under control of the loop
or nested 'FOR loops'

}

Similar restrictions to those above apply. The variable after the 'FOR'  is the loop control variable. It 
may optionally be preceded by the word 'int'. The control variable is given each value of the 'Perl list' for 
each iteration of the loop. Some powerful manipulations are possible with this form.

FOR int n (0 .. 3) {
a[n],\

}

produces 
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a0, a1, a2, a3,

whereas the following loop

call(\
FOR n ("abc", "def", "ghi", "jkl") { // list of strings

[n],\
}\
 );

produces 

call( abc, def, ghi, jkl, );

As  shown in the two examples above, lines terminated by a back-slash (\) are output without starting a 
new line –  this make it possible to generate lists in a single line. This applies both outside and inside 
'FOR  loops'. The end of the 'FOR  loop' will terminate such a generated list, unless  the final brace of the 
'FOR  loop' is also followed by a back-slash (\) as shown in the generated function block call statement 
in the last example above. The last parameter in that generated call statement is followed by a comma, 
which is allowed in iC for parameter lists. 

Comma  separated lists in normal and extern declarations must be terminated by a semi colon. They 
may  not have  a  comma  followed by  a  semi  colon  ',;'  at the end. To  achieve  this, a  special 
characteristic of iCa index expressions  is used (see next paragraph). The value in square brackets 
may be strings  as  well as  numbers, since they are actually generated by Perl code. To generate a 
variable length  –  single line –  declaration, use the following:

%define MAX  5 // iCa macro explained in section 3.4

imm bit\
FOR (n = 0; n <= MAX; n++) {

a[n] [n < MAX ? "," : ";"]\
}

produces 

imm bit a0, a1, a2, a3, a4, a5;

Each execution of the second conditional index expression [n < MAX ? "," : ";"] in the loop for 
n < 5 produces  a single comma, which is appended –  the last execution of the index expression 
produces a semi colon. For this to work, the first string must contain a comma –  the second string can 
be any value –  even the empty string "".

The 'FOR  statement' line of both types of 'FOR  loop' and the lines containing the associated braces 
are not copied to the target except as comment lines, if the -a option is active for the immac compiler.

3.3.2  Index expressions
Index expressions  are expressions  in square brackets usually involving integer constants and loop 
control variables. Unlike in other languages  these 'index' expressions  can be placed anywhere in the 
iC code –  not just as an index of an array variable. immediate array variables cannot even be declared 
directly –  they come into existence as  simple immediate variables by evaluating the index expression 
and replacing the square brackets by the numeric or string result of that evaluation. The underlying 
simple immediate variables must of course be declared (unless  not strict) –  this is best done as 
follows:

FOR (n = 0; n < 10; n++) {
imm bit a[n];

}

Normally the square brackets are placed after a name, which then makes the array variables look like 
those  in C.  But there are special cases  where the square  bracketed index expression  is  placed 
somewhere else, as we saw in the earlier examples (computing IEC-1131 I/O variable names).

The  semantics  of index expressions  is, that the expression  in square brackets is  evaluated during 
compilation and the numerical or string result replaces  the square brackets and the expression they 
enclose. When the index expression is a simple array reference, this produces a name followed by a 
number.
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Normally index expressions  occur in iC code in a 'FOR  loop'. I deliberately say  iC code and not iC 
statements, because  'FOR  loops'  are used not only to generate lists of statements, but also  lists of 
parameters –  both for the definition and the call of function blocks, whose parameter lists can be varied 
at compile time. Another use  is varying constant parameters. Inside a 'FOR  loop' or a nest of 'FOR  
loops', the iC code usually use the 'FOR  loop' control variable(s) in the index expression(s) to make 
each repeated iC code line different.

For index expressions in immediate C  code outside of a 'FOR  loop', the expression must be a constant 
expression  –  no  variables  are  allowed (remember no  'FOR  loop'  control variables  are  in scope 
anyway). Nevertheless  an iC variable, which must be used as an indexed array variable inside a 'FOR  
loop' looks better if it follows the same syntax outside of the loop. The variable a[1] could of course 
be written as  a1 –  this is the same immediate variable. But inside a loop it must be written as  a[n] 
and only the varying value of n will produce a0 a1 etc. 

Index expressions  in embedded C  code –  either in a  literal block or in a  compound C  statement 
contolled by an immediate if else or switch statement may have index expressions, but they are 
part of the C  code and are not changed except index expressions, which contain an in-scope FOR  loop 
control variable. This  means  that the translation of constant index expressions  –  as  described in the 
previous  paragraph - are not carried out in embedded C  code. In the rare instances  where such  a 
translation is needed, it must be done manually –  write  a1 instead of a[1]. 

A special case in embedded C  code occurs, if a numerical value generated by the control variable of a  
FOR  loop must be placed inside the square brackets of a C  array reference. This  can be done by 
simply embedding the iCa index expression in the C  index expression –  eg:

if (IX0.0) {
int carray[3]; // start of embedded C code
FOR (n = 0; n < 3; n++) {

carray[[n]] = icarray[n];
}

}

produces

if (IX0.0) {
int carray[3]; // start of embedded C code
carray[0] = icarray0;
carray[1] = icarray1;
carray[2] = icarray2;

}

As  can be seen in the above example, iCa 'For loops' may be embedded in C  code –  this is the reason 
why the keyword 'FOR ' was chosen instead of 'for' –  the C  code may also contain C  for statements.

3.3.3  immediate Array syntax
To  sum  up, immediate arrays  are  not declared as  such  –  variable names  are  used  with index 
expressions in square brackets. The programmer must be aware that this generates simple immediate 
variables starting with the array name followed by a number. Such  generated variable names  cannot 
be used anywhere else –  this would show up as a multiple declaration during iC compilation. If we use 
a one-dimensional array in an  iCa program –  eg  sa, any array reference will simply have a number 
appended to the array name in the generated iC code. 

i = 2,            sa[i]    produces sa2
i = 22,           sa[i+1]  produces sa23

A special case are multi-dimensional arrays. If we use the standard C  syntax to write a multiple array 
reference, eg ma[i][j], and the immac pre-processor did not take special action, we would get the 
following compile resolution for the following pairs of index values:

i = 2,  j = 34    ma[i][j] would produce ma234 // NOT output
i = 23, j = 4     ma[i][j] would produce ma234 // NOT output

This would be unsatisfactory, because  it is ambiguous  –  therefore immac inserts a letter x between 
adjacent index expressions, producing the following output instead:

i = 2,  j = 34    ma[i][j] produces ma2x34
i = 23, j = 4     ma[i][j] produces ma23x4
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This is no longer ambiguous. Any multiple index is separated by an x, which is easily recognised in the 
generated iC code as a member of a multiple-dimensional array –  even the numerical index values can 
be recognised easily in the generated names. 

Both in C  and by analogy in immediate C  with arrays (iCa), array names  and the index expressions  in 
square brackets (and of course the expressions  in the square brackets) may be separated by spaces  
and tab's –  as follows:

i = 2,  j = 34    ma   [ i ]  [ j ]   still produces ma2x34
i = 23, j = 4     ma   [ i ]  [ j ]   still produces ma23x4

One  caveat applies for immac: such  an array name with all its subsequent square bracketed index 
expressions must be in the same line. (In C  any sort of white space is allowed).

Another case  where immac inserts an extra character are array names  which finish with a numeral. 
This could also lead to ambiguity if special action were not taken:

i = 2,            sa9  [ i ]          produces sa9y2
i = 22,           sa9  [ i+1 ]        produces sa9y23

Although the way  immac  handles  array names, which finish with a numeral avoids  ambiguity, such 
names  should be avoided, because in the generated iC code they look too much like expanded array 
names with an extra index, which could easily lead to clashes. To avoid this clash a y is inserted in this 
case.

String index expressions in square brackets, which contain a string value in parentheses, eg

[n < MAX ? "," : ";"]

are not separated from an adjacent index expression by x or y.

In  every case, the names  generated from single- and multi-dimensional array references  are well 
formed iC variables, which show their name and index value(s). The main thing to remember with array 
references is, that every array reference translates to a simple iC variable name, which shows up in the 
generated iC code, which will normally be a lot longer than the iCa code, but which must be used for 
live debugging with iClive. The mental translation between indexed array references and the resolved 
iC names is so simple, that it should not cause any problems to the user.

3.4  immac Macro facility
The pre-compiler immac provides a light weight macro facility very similar to that provided by the C  
pre-processor  cpp. Only simple word macros  may be defined, but not macro's  with parameters. The 
keyword to introduce an immac macro definition is %define not #define –  that is reserved for cpp, 
which can also be used in conjunction with the full iC compiler immcc.

%define LENGTH 4

The same macro term LENGTH could also be pre-defined in the command line with the -P option:

immac -P LENGTH=8 

Unlike cpp, the definition in the command line has precedence over the definition with a %define line 
in the program. This allows iCa programs  to define default values for macro terms, which can be re-
defined in the command  line. Macro  definitions  can  be  any sort of text, which may  also  include 
previously defined macros. For replacement as index values, they should of course reduce to numeric 
values.

%define WIDTH  (5+1) /* C comment */
%define AREA  (LENGTH * WIDTH) // C++ comment

As  shown above  %define lines may be terminated with a C  or C++  comment. As  with 'FOR  loop' 
control lines, a C  comment must finish on the %define line. Also the %define lines are not copied to 
the target except as comment lines, if the -a option is active for the immac compiler.

Macro replacements may be made in all parts of the iCa code. They are of course particularly useful to 
parametrise the termination of a  'FOR  loop'  and hence the number of blocks  of  iC code, which is 
generated by the 'FOR  loop'. 
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4    Built-in Functions

iC has  a number of built in functions, which are so  central to the operation of the system, that they 
have been made a part of the language. They are implemented as  efficient building blocks  in the 
supporting run time package. Functions, which could not be created from simpler iC statements are 
generated by the compiler –  others are defined internally as  built-in Function Blocks. All except the 
LATCH  and the FORCE  functions are 'clocked', which is analogous  to similar functionality in hardware 
IC's.

4.1  Unclocked flip-flop or LATCH
The unclocked R-S  flip-flop is the LATCH  function with the following calling sequence: 

LATCH(set, reset) 

The following truth table describes the LATCH  function: 

set reset LATCH(set,reset)

Q

0 0 Q

1 0 1

0 1 0

1 1    Q  2

The LATCH  function is particularly fast and efficient, using  only a  single gate node. It is of course 
possible to program a latch function with a pair of cross  coupled OR  gates. In iC this looks as follows:

imm bit set, reset, Q, Qbar;
Q    = set   | ~Qbar;
Qbar = reset | ~Q; 3

The disadvantage of this implementation is the fact that its function as a latch is hidden, that two gates  
are used and that Q  and Qbar are both 1, when  set and  reset are  1  (which means  that Qbar 
should never be used). LATCH  clearly shows its function.

4.2  FORCE  function
Closely related to the LATCH  function is the FORCE  function with the following calling sequence and 
truth table:

FORCE(arg1, on, off) 

arg1 on off FORCE(arg1,on,off)

0 0 0 0

1 0 0 1

X 1 0 1

X 0 1 0

0 1 1 0

1 1 1 1

The FORCE  function passes  the value of arg1 to the output if both on and off are 0 (or both are 1). 
If only on is 1 then the output is forced to 1, independent of the value of arg1. Conversely if only off 
is 1 then the output is forced to 0. This function is useful for testing.

2 Note the memory behaviour of a LATCH when both set and reset is  1
3 Note for PLC programmers: the order of the set and reset statement has no influence on the output of flip-flops and latches 
as it does in sequentially executed PLC programs - even in the case of this latch example using two gates.
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Note for deep thinkers:    the following expression  generates  a  LATCH  function from a  FORCE  
function. This  is how a LATCH  is generated by the iC compiler from the more fundamental FORCE  
function - using feedback of its own output to hold that value at its input, unless  the ‘on‘ or ‘off‘ 
inputs force the output to a different value.

(temp001 = FORCE(temp001, set, reset))

4.3  Clocked D flip-flop
The simplest clocked flip-flop is the D  flip-flop or delay memory element, a function having a single 
input, a clock input and an output equal to the input in the previous clock period. 

D(expr, c)   or   D(expr) /* default iClock used as clock */ 

The following truth table describes the D flip-flop: 

expr D(expr,c)

Dn Qn+1

0 0

1 1

The  D  flip-flop has  become  the most  commonly  used  clocked  flip-flop in  hardware  design.  Its 
application is called for, when several logic expressions  must produce synchronized outputs, so  that 
any further logic done with these outputs does  not suffer from timing races. A typical example is the 
implementation of a state machine. The D  flip-flop is also a 1 bit memory element, which can store 
information from one clock period to the next. The D flip-flop is called for in any design where feedback 
is involved. The use of the clocked D flip-flop in iC will probably fall into a similar pattern. 

Examples  of statements using D  flip-flops is the generation of a pulse on the rising edge of an input 
and of a pulse on a change of input. 

imm bit    input;
imm bit    rise   = input & ~D(input);
imm bit    change = input ^  D(input); 

The output 'rise' goes  hi when 'input' goes  hi and goes  lo again when the output of the inverted D  flip-
flop goes  lo after the next (implicit) clock pulse. The second example uses  the exclusive-or operator ^ 
to generate a pulse on both the rising and falling edge of the input. 

4.4  Clocked SR  flip-flop
The memory element that is represented in most PLC  instruction sets is the R-S  flip-flop. This flip-flop 
has two inputs. The rising edge of the set input puts the flip-flop in the "one" state and the rising edge  
of the reset input puts the flip-flop in the "zero"  state. Many  books  on switching theory describe a 
simple unclocked latch memory element by the name R-S  flip-flop. Following the usage in IEC-1131, 
and because the set parameter precedes the reset parameter in the calling sequence, the clocked Set-
Reset flip-flop was named SR  flip-flop in iC: 

SR(set, reset, c) 

The following truth table describes the SR  flip-flop: 

set reset SR(set,reset,c)

Sn Rn Qn+1

0 0 Qn

0/1 X 1

X 0/1 0

1 1 Qn

The SR  flip-flop implemented in iC differs marginally from the classical R-S  flip-flop described in the 
literature, which has the disadvantage that Qn+1 is undefined for S  and R  both "one". The design rules 
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stated that S  and R  must never be "one" together. Since this would cause unwarranted confusion the 
implementation with the above  truth table was  chosen, which gives  identical results  with designs  
following the rules of the classical R-S  flip-flop. If the rule of both inputs "one" is ignored, the results are 
still easy to interpret. For the above reasons  clocked R-S  flip-flops are rare as integrated circuits.

4.5  Clocked SRX  flip-flop
In practice the simple clocked SR  flip-flop can be difficult to control under the following conditions:

A  0/1 set transition has  occurred which sets the flip-flop and some time later a  0/1 reset transition 
occurs  which resets it, while set is still a  1. Even if reset goes  back to 0, the set input is not active 
again until it goes back to 0 and then to 1 again. This works well in many situations, but can be counter 
intuitive for which reason the SRX  flip-flop or the JK flip-flop can be used more effectively.

SRX(set, reset, c) equivalent to  SR(set & ~reset, reset & ~set, c)

The following truth table describes the SRX  flip-flop: 

set reset SRX(set,reset,c)

Sn Rn Qn+1

0 0 Qn

0/1 0 1

0 0/1 0

1 1 Qn

1\0 1 0

1 1\0 1

When both set and reset are 1, then both internal S  and R  inputs are 0. If there is a 1\0 transition on 
either set or reset, then the alternate input has a 0/1 transition, which sets or resets Q. 

4.6  Clocked JK flip-flop
Instead JK  flip-flops were made, which toggled their output on every clock pulse, when J and K  are 
both "one". In recent years even these have not been listed in the IC  data books. A  JK  flip-flop has  
been implemented in iC. : 

JK(set, reset, c) equivalent to  SR(set & ~Q, reset & Q, c) 

The following truth table describes the JK flip-flop: 

set reset JK(set,reset,c)

Jn Kn Qn+1

0 0 Qn

1 0 1

0 1 0

1 1 ~Qn

4.7  D flip-flop with Set and Reset
D  flip-flops may have an optional reset input. Another option is to have both a set and reset input as  
well as the D input. The names of these variants indicate which parameters are required:

DR(expr, reset, c)
DSR(expr, set, reset, c)

For all built in functions, each parameter may have its own clock parameter. If a clock parameter is 
supplied it applies to all parameters on its left, which do not have their own clock. If no clock parameter 
is specified, the built in iClock is used.
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4.8  Mono-Flop with optional Reset
The Mono-Flop, or SRT() function is a modified SR  flip-flop, in which the output is internally connected 
back to a reset input. This internal reset is usually clocked by a TIMER,  which is controlled by a delay 
parameter. The delay parameter may have a fixed or variable numeric value. The SRT  output is reset, 
when the number of "TIMER"  ticks corresponding to the value of "delay", when the SRT  was set, has  
occurred. An additional optional reset parameter can reset the SRT  mono-flop prematurely.

SRT(set, timer, delay)
SRT(set, reset, timer, delay)

Instead of clocking with a delay TIMER,  any clock may be used. The SRT  mono-flop is then reset on 
the next clock pulse after it has been set. When no clock is specified iClock is used, which produces 
a thin pulse, one clock period wide.

4.9  Sample and Hold
This function is a direct analogy of the clocked D  flip-flop for arithmetic values. The arithmetic output 
equals the arithmetic input in the previous clock period. 

SH(arithmeticExpr, c)

The sample and hold function can be used to sample fast changing arithmetic inputs at a constant 
clock rate. Other uses  are the implementation of many useful constructs such  as  state machines, 
counters and shift registers, to name a few.

imm int count = SH(count + 1, c); // count clock c pulses
// shift register with b as input in the least significant bit.
imm bit b; // b assigned somewhere else
imm int shift = SH((shift << 1) + b, c);

4.10  Sample and Hold with Set and Reset
The Sample and Hold function also comes  with either reset or set and reset inputs. When the reset 
input is clocked, the output is set to all 0's. By analogy when the set input is clocked the output is set to 
all  1's.  The  inputs  set and  reset are  imm  bit expressions;  whereas  the  main  input 
arithmeticExpr and the output are imm int.

SHR(arithmeticExpr, reset, c)
SHSR(arithmeticExpr, set, reset, c)

4.11  Edge detectors
It is often useful to generate a pulse on the rising edge of a logic signal or on a change of value. These  
pulses  should turn off at the next clock. In connection with the D  flip-flop, expressions  were shown 
which generate such  pulses.  Since  these  operations  are quite important, more efficient functions 
RISE(expr,c), FALL(expr, c) and CHANGE(expr,c) are implemented in iC. The following statements 
achieve the same results: 

imm bit input;
imm bit rise   = RISE(input, c); // pulse on rising edge
imm bit fall   = FALL(input, c); // pulse on falling edge 
imm bit change = CHANGE(input, c); // pulse on both edges

The  CHANGE  function is  also  implemented for arithmetic expressions  (type  int). The  output is 
nevertheless of type bit. 

imm int value;
imm bit arithmeticChange = CHANGE(value, c); 

The  bit variable arithmeticChange pulses  every time value changes, qualified by the clock c. 
The clock limits the rate at which changes  are recognized. This  is often useful with numeric values, 
which may change at a high rate, and a slower sampling rate is called for. 

The pulse outputs of all edge detectors are just long enough, so  that they catch the next clock pulse 
after the edge, but only that one clock pulse –  not more. When the output of an edge detector is used  
directly or indirectly as input of another clocked function with the same clock, correct synchronization is 
achieved.
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NOTE:  there is a significant difference between the output of the RISE  function and the output of the 
SRT  mono-flop. The output of the RISE  function turns on with the rising input signal and turns off again 
on the next clock. The output of the mono-flop turns on with the next clock after the set signal and 
turns off with the next clock after that, which is one clock pulse later, assuming the same clock is used 
for set and internal reset. When the two clocks  are different, which is usual for SRT  mono-flops, the 
case is different again.

5  Clock Signals

There are two types of Clock signal, 'clock'  and 'timer'. It is important to realize that Clock signals 
are not of the same type as  logic or numeric signals of type 'bit' or 'int'. Clock signals are declared 
as follows:

imm clock myClock;
imm timer myTimer;

Under no circumstances may clocks be interconnected with logic or numeric signals. Any attempt to do 
so  generates an error message. Clock signals  in iC are best thought of as  timeless  pulses, whose 
occurrence marks  the separation of one clock period from the next along the time axis. All clocked 
functions in iC follow the Master-Slave principle. The Master element in a D  flip-flop follows the input. 
The output of this Master gate is transferred to the Slave element during the active phase of the next 
clock pulse. The output of the Slave element is the output of the D  flip-flop. All Master-Slave transfers 
during  one  particular clock  pulse  are  completed before  more  combinatorial logic  or  arithmetic 
expressions are executed. This insures that the outputs of all functions, which are synchronized by the 
same clock, change simultaneously as far as the logic is concerned.

Clock signals can come from four different sources:

1. The built-in iClock, which is signal type imm clock

2. The CLOCK  function, which generates type imm clock 

3. The TIMER  function, which generates type imm timer 

4. The TIMER1  function, which also generates type imm timer 

5.1  Built-in immediate clock
There is a built-in immediate clock with the name iClock. This clock runs at the highest system rate. 
iClock is used as  the default clock, when no other clock is specified. It may also be specified by the 
name  iClock when no default clock is allowed by the syntax of a function call.

x = SR(a, b); // Set and Reset clocked by built-in iClock

y = SR(a, iClock, b, myClock); // clock for the Set argument
// must be named if different
// from the Reset clock
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5.2  CLOCK  function
The second source of clock signals is the CLOCK  function, which has  one or two logic inputs and an 
optional clock input. The CLOCK  function produces an output clock pulse during the active phase of 
the input clock, which follows a 0 to 1 transition of one of the logic inputs. If no clock input is specified, 
iClock is used. All CLOCK  outputs are synchronous with their input clock. 

imm clock clk = CLOCK(b); // ‘clk‘ on the rising edge of b
// clocked by next ‘iClock’(default)

imm bit   y   = D(a, clk); // D flip-flop clocked by ‘clk’ 
imm clock cl2 = CLOCK(b,~b); // clock on rising and falling edge 

// of b, clocked by ‘iClock’

5.3TIMER function
The third source of clock signals is the TIMER  function, which also has one or two logic inputs and an 
optional clock input. The output generated by the TIMER  function are of signal type imm timer and 
are generated in precisely the same  way and at the same  time as  clock pulses  from a  CLOCK  
function with the same inputs. timer pulses  differ from clock pulses  in the way they are used. Input 
parameters of type timer are followed by an optional delay parameter, which may be a constant value 
or an arithmetic expression (if missing a value of 1 is used). The current value of the delay expression 
is read on the rising edge of the associated logic input, and the result n is used to count timer pulses. 
The output is clocked by the n'th timer pulse after the rising input. If the delay value n is 0 - or on the 
falling edge of the logic input - the output is clocked immediately by iClock. For a CLOCK  generated 
clock, the output is  clocked by the first clock pulse after the rising or falling input. A  D  flip-flop 
clocked with a timer produces a function with turn on delay. If the logic input to such a delay element 
turns  off before the delay time is  up, the output never turns  on. This  is  a  very useful function to 
implement time-outs, which are notoriously difficult to implement by conventional means. 

imm timer tim = TIMER(b); // ‘tim‘ on the rising edge of b
// clocked by next ‘iClock’(default)

imm bit   z   = D(a, tim, 3);// D flip-flop clocked by ‘tim‘,
// turn on delayed by 3 ‘tim‘ pulses,
// immediate turn off clocked by ‘iClock‘ 

iClock

z

b

tim

a
tim     1        2  shortiClock offtim     1         2         3 tim     1         2         3

iClock

y

b

clk

a

iClock

y

b

clk

a

cl2
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5.4  TIMER1 function
The fourth source of clock signals is the TIMER1  function, which is very similar to the normal TIMER  
function. The signal type generated is  imm timer –  the same  as  the type generated by a normal 
TIMER.  The only difference is the way in which a 0 delay and the falling logic input is handled, when a 
timer, generated by the TIMER1  function controls a clocked function. A  0 delay is handled like a 
delay of 1 –  turn on is at the next timer pulse. On  the falling edge of the logic input the output is 
clocked on the next  timer pulse, rather than by the next  iClock, which is  the case  for TIMER  
generated  timer signals.  A  TIMER1  generated  timer, used  with a  delay of 1  (or 0), functions 
identically to a  CLOCK  generated  clock signal, except there is  a  small, but significant amount of 
overhead in handling timer signals. For this reason CLOCK  functions are to be preferred –  their use  
is  very fast. The  following diagram shows  the different turn-off handling for a  TIMER1  generated 
timer (in the shaded area):

imm timer ti1 = TIMER1(b); // ‘ti1‘ on the rising edge of b
// clocked by next ‘iClock’(default)

imm bit   z1  = D(a, ti1, 3);// D flip-flop clocked by ‘ti1‘,
// turn on delayed by 3 ‘ti1‘ pulses,
// turn off clocked by next ‘ti1‘ 

CLOCK,  TIMER  and  TIMER1  functions  have  optional clock  inputs, which may  come  from other 
CLOCK  or TIMER  functions. The cascading of these functions allows the realization of many useful 
applications. 

iClock

z1

b

ti1

a
ti1     1        2  shortti1 offti1     1         2         3 ti1     1         2         3
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6  Inputs and Outputs

6.1  Built-in Inputs
There are a number of inputs, which have such universal significance, that they are implemented in the 
run time system.

6.1.1  iClock
There is a built-in immediate clock with the name iClock. This clock runs at the highest system rate. 
The name iClock is built-in and may be used as defined above in 5.1.

Because secondary clocks either use iClock by default, or another clock that is eventually clocked by 
iClock, all clocks  (and timers) are synchronous  with iClock. The execution of immediate logic is 
triggered by some  input, which causes  evaluation of follow up statements, until no  more changes  
occur. iClock generates a clock pulse after every such burst of activity in the logic. iClock has  the 
same  significance for immediate logic as  the end of the program cycle in a conventional PLC.  The 
main difference is, that for a conventional PLC  all statements are executed for each program cycle. For 
immediate logic only the changes  triggered by one or at most a few simultaneous inputs are executed 
for each program cycle. This  typically takes  a  few microseconds  at most for a  modern processor. 
There are support tools which can measure and display this time in microseconds.

6.1.2  End of Initialization
The  rising  edge  of  TX0.0 is  guaranteed to be the first input to the system and can  be used  for 
initializing user constructs. It is high for the remainder of the program (forever as far as applications are 
concerned)

TX0.0 EOI, off during initialization, then always on

6.1.3  Timing inputs
To allow programs to work with real time, the following timing inputs have been provided: 

TX0.1 100 microseconds // requires a 10 kHz Kernel
TX0.2 1 millisecond // requires a 1 kHz Kernel
TX0.3 10 milliseconds // standard 100 Hz Linux Kernel
TX0.4 100 milliseconds // for the remaining timers
TX0.5 1 second
TX0.6 10 seconds
TX0.7 60 seconds or 1 minute

These inputs can be used to generate clocks, which are synchronous with real time. For example:

imm clock clk100m = CLOCK(TX0.4); // every 100 milliseconds

6.2  External Inputs and Outputs
Inputs  and Outputs are named  according  to the standard IEC-1131. Inputs  start with the letter I, 
outputs with the letter Q. These are followed by a second letter which defines the type of the input or 
output. X  defines a bit I/O, B a byte I/O, W  a 16 bit word I/O and L a 32 bit long word I/O variable. The  
2 capital letters are followed by a number, which defines the address  index of the variable in the I/O 
field. For bit I/O variables a full stop and a number in the range 0 to 7, marking the bit address  of the 
variable in the addressed I/O byte, follow this. The maximum address  index that can be used depends 
on the implementation of the driver and the underlying hardware. Addresses  in the I/O field may be 
used for bit, byte, word or long word I/O. If all of these are in the same physical address  space, care 
must be taken not to overlap different types  of I/O. In this case  16  and 32  bit word I/O's  the byte 
addresses  used must be on a 16 bit word or a 32 bit long word boundary respectively. The iC compiler 
can generate warnings if I/O fields overlap. In the default case, each size variable is assumed to be in 
its own address  space and the address  of each variable is simply in index into each address  space.
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6.2.1  Digital inputs
IX0.0 bit 0 of input byte 0 - pre-declared as imm bit
IX0.1 bit 1 of input byte 0
IX0.2 bit 2 of input byte 0
IX0.3 bit 3 of input byte 0
IX0.4 bit 4 of input byte 0
IX0.5 bit 5 of input byte 0
IX0.6 bit 6 of input byte 0
IX0.7 bit 7 of input byte 0

IX1.0 bit 0 of input byte 1
IX1.1 bit 1 of input byte 1
IX1.2 bit 2 of input byte 1
IX1.3 bit 3 of input byte 1
IX1.4 bit 4 of input byte 1
IX1.5 bit 5 of input byte 1
IX1.6 bit 6 of input byte 1
IX1.7 bit 7 of input byte 1
...

6.2.2  Digital outputs
QX0.0 bit 0 of output byte 0 - pre-declared as imm bit
QX0.1 bit 1 of output byte 0
QX0.2 bit 2 of output byte 0
QX0.3 bit 3 of output byte 0
QX0.4 bit 4 of output byte 0
QX0.5 bit 5 of output byte 0
QX0.6 bit 6 of output byte 0
QX0.7 bit 7 of output byte 0

QX1.0 bit 0 of output byte 1
QX1.1 bit 1 of output byte 1
QX1.2 bit 2 of output byte 1
QX1.3 bit 3 of output byte 1
QX1.4 bit 4 of output byte 1
QX1.5 bit 5 of output byte 1
QX1.6 bit 6 of output byte 1
QX1.7 bit 7 of output byte 1
...

6.2.3  Analog  inputs
IB2 input byte 2 - pre-declared as imm int (8 bit input)
IB3 input byte 3
IB4 input byte 4
IB5 input byte 5

IW6 input word 6 (16 bit input)
IW8 input word 8
IW10 input word 10
IW12 input word 12
IW14 input word 14

IL16 input long 16 (32 bit input)
IL20 input long 20
IL24 input long 24
IL28 input long 28
...
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6.2.4  Analog  outputs
QB2 output byte 2 - pre-declared as imm int (8 bit output)
QB3 output byte 3
QB4 output byte 4
QB5 output byte 5

QW6 output word 6 (16 bit output)
QW8 output word 8
QW10 output word 10
QW12 output word 12
QW14 output word 14

QL16 output long 16 (32 bit output)
QL20 output long 20
QL24 output long 24
QL28 output long 28
...

The IEC-1131 names  above define the physical addresses  of inputs and outputs in the I/O field. For 
more readable applications it is  highly recommended, that alternate descriptive names are defined for 
IEC-1131 inputs and outputs. This would normally be done in a table of alias assignments at the start 
of an  iC program. One advantage of this scheme is, that if an input or output is physically moved to 
another I/O pin, only 1 statement in the source needs to be changed.

imm bit waterLo, motorOn, heaterOn;
imm int waterTemp, motorSpeed;

waterLo = IX1.3; // these statements define aliases
waterTemp = IB2; // which produce no run-time overhead

QX10.2 = motorOn; // here the IEC-1131 names are the
QX10.3 = heaterOn; // aliases, which is appropriate
QW8 = motorSpeed; // for outputs

IEC-1131  I/O variable names  are pre-declared as  immediate variables in iC program code, but they 
are not defined in embedded C  code. Only variables declared with an  imm bit, imm int, immC 
bit or immC int statement are defined in C  code. If I/O variables must be accessed in C  code the 
declared names  must be used. This is another reason for defining descriptive aliases  for I/O variables 
early in the program design phase.
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7    User defined immediate Function Blocks

User defined immediate functions are commonly called function blocks in the PLC  world, because they 
act more like functional blocks or templates rather than functions in the instruction flow sense, where a 
function evaluates a sequence of instructions whenever it is called. An  immediate Function Block is a 
separate immediate subsystem with immediate parameters which are its inputs and outputs from other 
section of the immediate system, optional internal immediate variables, which must be declared inside 
the Function Block  and  an  optional  immediate  return value, which  may  be  used  like any  other 
immediate value  –  in an  expression  –  assigned  to an  immediate variable or  used  as  an  input 
parameter in a built in function or function block call. Only standard IEC-1131  I/O variables may be 
used in a Function Block without being declared, although they may only be used as  inputs, since any 
assignment to an  I/O variable such  as  QX0.0  inside  a  Function Block  would lead to a  multiple 
assignment, once the Function Block is used more than once. Another way to look at an immediate 
Function Block is  like a  higher level integrated circuit, which has  connections  into the system and 
provides a certain complex function with many internal components and connections.

7.1  immediate Function Block Definition
An immediate Function Block must be defined before it is used. Since the definition of a Function Block 
does not itself generate any C-Code on compilation it can be and usually is defined with its code body 
in a header file, if multiple source files are used for a project. For small projects with a single source file 
Function Blocks can be defined at the start of the source file.

immediate Function Blocks  definitions are very similar to C-functions, although there are significant 
differences in detail. The definition of an immediate Function Block consists of a return value type, a 
Function Block name, a comma separated parameter list in parentheses  and a function body in curly 
braces, e.g.

imm bit fall(bit f, clock c) { this = RISE(~f, c); }

The return value may be one of 5 types:

imm void // which means no value is returned
imm bit
imm int
imm clock
imm timer

The imm modifier is mandatory for the return type –  it identifies an immediate Function Block Definition 
syntactically. The Function Block name can be any valid name starting with a letter followed by any 
number of alphanumeric characters or underscores. A  leading underscore is possible, but should be 
avoided. The name must be distinct from all other immediate variable names in a project.

The individual formal parameters in the parameter list must be of the following 4 types:

imm bit // or simply bit
imm int // or simply int
imm clock // or simply clock
imm timer // or simply timer

The imm modifier is optional for parameters in the parameter list. The variable declared is nevertheless  
immediate. Parameters may be either input value parameters, in which case only their type is written in 
the list or the parameter may be an immediate output to which a value from the Function Block is to be 
assigned. In this case the type of the parameter must be preceded by the keyword assign.

The body of a Function Block is one or more immediate statements defining the functionality of the 
block encoded in curly braces. Immediate variables internal to the function must be declared before 
use  in the Function Block. Parameter names  and internal variable names  are in a  separate name 
space for each function, which is also separate form the global name space. If a Function Block is not 
imm void the body must contain a  return statement. The semantics of the  return statement is the 
assignment to the variable to which the Function Block is assigned, when it is called. This  variable, 
which is identified by the keyword this, may be used in other expressions  inside the Function Block. 
The preferred way to write the return statements is:

this = some + immediate + expression; // preferred return syntax

The usual C-syntax may also be used, but does not make the action as clear:
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return some + immediate + expression; // deprecated earlier syntax

The return statement need not be the last statement in the Function Block definition –  its position does  
not influence when it is executed –  that is controlled purely by changes  in the values of the variables 
making up the return statement –  something which holds for all immediate statements. This situation is 
more clearly expressed  by the assignment to  this. An  imm void Function Block  has  no  this 
variable, may not contain a return statement and may not be assigned when called. 

Each  assign parameter must be on the left side of an assignment statement in the Function Block. 
The values  of  assign parameters may be used inside the Function Block. Each  variable declared 
inside the Function Block must also  be assigned in the Function Block. Variables declared extern 
outside or inside the Function Block may not be assigned to inside the Function Block. As  is the case 
with I-O variables (which are implicitly extern) extern variables may only be used as values inside the 
Function Block. They may not be declared again as local inside the Function Block. Variables declared 
extern in a function may be declared after the definition of the Function Block in the iC code following 
the definition, to declare that the variable will be assigned in this module. A  variable with the same 
name as  an extern variable may be declared locally in another Function Block, but it is  a  different 
formal variable local to that Function Block. 

All immediate statement types –  assignments, if else, switch, Built in Functions and other user defined 
Function Block calls may be used in Function Block definitions. Function Blocks  may be nested to any 
depth as  long as  Function Blocks  are used, which have been previously defined. This  implies that 
Function Blocks  cannot be called recursively, either directly or indirectly. Function Blocks  may be very 
simple one line definitions or complex systems with hundreds of parameters. Several examples follow:

The  SRX  flip-flop is  built into the compiler, but defined in just this way during initialisation of the 
compiler. In  the latest version of the compiler, all but the most primitive built ins, are defined as  
Function Blocks.

/* SRX flip-flop defined as a function block */

imm bit srx(imm bit set, imm clock scl,
  imm bit res, imm clock rcl)

{
this = SR(set & ~res, scl, ~set & res, rcl;

}

The CountClk function adds 'increment' to 'this' for every occurrence of 'clk':

imm int CountClk(imm clock clk, imm int increment)
{

this = SH(this + increment, clk);
}

The CountBit function adds 'increment' to 'this' for every rising edge of 'step':

imm int CountBit(imm bit step, imm int increment)
{

this = CountClk(CLOCK(step), increment); // nested call
}

The SelectClk function selects either a 100 ms or a 1 second clock with variable 'second':

imm clock SelectClk(imm bit second)
{

this = CLOCK(TX0.4 & ~second | // 100 ms
   TX0.5 &  second ); // 1 second

}

The  following function block  ADConvert assigns  the conversion  of  int val to 8  assign bit 
variables b0 to b7 passed as parameters (imm is implied for value and assign parameters).
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/* Analog to digital conversion of a byte value */
imm void ADConvert(int val, // input parameter

assign bit b0, // output parameters
assign bit b1,
assign bit b2,
assign bit b3,
assign bit b4,
assign bit b5,
assign bit b6,
assign bit b7,

)
{

b0 = val & (1 << 0); // assignments to outputs
b1 = val & (1 << 1);
b2 = val & (1 << 2);
b3 = val & (1 << 3);
b4 = val & (1 << 4);
b5 = val & (1 << 5);
b6 = val & (1 << 6);
b7 = val & (1 << 7);

}

Note: the parameter list may have a trailing comma before the closing parentheses. This is generally 
the case  for comma separated lists in iC and makes  it easier to edit the lists and copy parameters 
when written vertically, which is useful for large parameter lists.

The  iC compiler builds  a  template of the Function Block, replacing each  parameter and internally 
declared variable by the name of the Function Block followed by a '@'  and the formal parameter or 
declared variable name. This strategy ensures  a private name space for each Function Block. When 
called, the template is copied, with each formal parameter replaced by its real parameter and internally 
declared variables  replaced by the formal name  with the '@'  replaced by an  underscore  '_'  and 
followed by an underscore and an instance number. The instance number scheme ensures that there 
is no clash of compiler generated variable names (even for separately compiled modules).

7.2  immediate Function Block Call
An immediate Function Block is called in a similar fashion to a C-function, again with some significant 
differences. In practice immediate Function Blocks  are not called. When  the compiler encounters a 
Function Block  call, the pre-compiled Function Block, which is  like a  template, is  copied, with all 
parameters replacing the formal parameters in the template. The resulting network of nodes  will then 
be used at run-time like the network of nodes produced from all other immediate statements.

If an imm void function is encountered it looks like a subroutine call:

ADConvert(IB1,
QX0.0, QX0.1, QX0.2, QX0.3,
QX0.4, QX0.5, QX0.6, QX0.7,

     );

This statement will assign bits 0 to 7 of IB1 to QX0.0 to QX0.7 whenever IB1 changes.

A Function Block with a return value must either be assigned to a suitable variable or else it must be 
used as a value of a suitable type in an expression or in a parameter list. An imm bit Function Block 
may be used as an imm int value and vice versa –  appropriate conversion takes place. imm clock 
and  imm timer Function Blocks  can  either be  assigned  to correctly declared  clock or  timer 
variables or else used as a clock or timer value in a parameter list.

/* count every rise of IX1.0 */
imm int count = CountBit(IX1.0, 1);

/* selects 1 sec when IX1.7 is on else 100 ms */
imm clock clk = SelectClk(IX1.7);

Real parameters of type imm int and  imm bit may be mismatched with their formal parameter 
types –  value and assign parameters in the call will be forced to their formal type. assign parameters 
of type imm clock and imm timer must match –  so  must a value parameter of type imm timer. 
The handling if formal  imm clock parameters is more complex, allowing the use of default clocks.
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Positions for formal imm clock parameters are handled as follows:

1. the position may be filled by a real imm clock parameter.

2. the position may be filled by a real imm timer parameter followed by an optional imm int delay 
(if delay is left out it will be set to 1).

3. the position may be left out altogether, in which case the next clock or timer parameter on the right 
will be replicated for the position. If there is no real clock parameter following on the right, iClock 
will be used.

Real timer parameters for formal timer parameters cannot be extended by a delay –  the delay used 
is  determined in the Function Block  with delay(s)  associated with the use  of the formal  timer 
parameter in the code of the Function Block. 

The following calls of the user defined srx() Function Block (which is identical to the built in SRX)  with 
two formal clock parameters –  one each for set and reset.

imm clock c = CLOCK(IX1.1), clk = CLOCK(IX1.2);
imm timer t = TIMER(IX1.3);
imm bit s, r;
imm bit m1 = srx(s, clk, r, c); // uses individual clocks
imm bit m2 = srx(s, t, 3, r, t, 5); // individual timer delays
imm bit m3 = srx(s, r, clk); // one clock for s and r
imm bit m4 = srx(s, r, t, 5); // one timer for s and r
imm bit m5 = srx(s, clk, r); // default iClock for r
imm bit m6 = srx(s, iClock, r, c); // must specify iClock here
imm bit m7 = srx(s, r); // default iClock for both

The following example is a controller for a full scale application which required all the space and speed 
resources of a PLC  in the mid 80's. This project for a parcel sorting system for the Australian Railways  
prompted the author to look at alternate event driven systems for machine control.

The  program  is  meant  to  control 4  high  speed  belts  moving  at  5  metres/second  generating 
independent strobe pulses  for every 15 mm movement of the belt. That means a strobe pulse every 3 
ms. Each  belt is  equipped with 32  destination gates  spaced 12  strobe pulse  apart and open for 7 
strobe pulses (in practice this must be 72 strobe pulses or more).

The implementation consists of several function blocks:

feeder() controls the insertion of the destination code onto the initial feeder segment of the 
belt.
segment() controls one of the 32 identical segments of the belt.
belt()  is  a  Function  Block  for one  belt, calling  feeder() once  and  segment() 32  times.
Finally belt() is called 4 times –  once for each belt.
tick()  is  an  auxiliary  Function  Block  generating  strobe  pulses  for  the  simulation.
Note the way tick() is called in the strobe parameter position of belt().

The compiled iC program consists of 1,944 Gate nodes, 8,642 links and 10 C  functions consisting of 1 
line of C  code each.
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/********************************************************************
 *
 * Parcel sorter for long belts
 * Author: J.E. Wulff
 * Source: Test8/sorti.ic
 *
 *******************************************************************/
/********************************************************************
 *
 * Feeder segment
 *
 *******************************************************************/

imm bit feeder( /* feeds code into feeder segment */
imm bit transfer, /* photo cell to transfer code */

 assign imm int carryOut, /* shift bit (as int) for the following segment */
imm int code, /* destination code - 0 to 31 */
imm int length, /* sets the length of the segment */
imm int width, /* width of lock frame 6 + 6 for 0x7f */
imm clock c, /* stepping clock for the belt */

    )
{
    extern imm bit reset; /* general re-initialisation */
    imm bit pip   = RISE(transfer & ~this & ~reset, c);
    imm int shift = SHR((shift << 1) + (pip * (0x41 + (code << 1))), c, reset);
    imm int mask  = 0x41 << width;
    carryOut = (shift >> length) & 0x00000001;
    this = SRX(pip, /* unlock after width steps */

       (shift & mask) == mask | reset, c);
}
/********************************************************************
 *
 * Segment
 *
 * Each segment controls one gate and may be up to 32 steps long
 *
 *******************************************************************/

imm bit segment( /* returns gate control output */
imm int carryIn, /* shift bit (as int) from the previous segment */

 assign imm int carryOut, /* shift bit (as int) for the following segment */
imm int code, /* code identifying this segment */
imm int length, /* segment length */
imm int width, /* width of the gate */
imm clock c, /* stepping clock for the belt */

    )
{
    extern imm bit reset; /* general re-initialisation */
    imm int shift = SHR((shift << 1) + carryIn, c, reset);
    imm int mask  = 0x41 << width;
    carryOut = (shift >> length) & 0x00000001;
    this = SRX((shift & 0x7f) == 0x41 + (code << 1),

       (shift & mask) == mask | reset, c);
}
/********************************************************************
 *
 * Belt
 *
 * Each belt has 32 gates
 *
 *******************************************************************/

imm int belt(
    assign imm bit lock, /* lock indicator */
    assign imm bit gate00,
    assign imm bit gate01,
    assign imm bit gate02,
    assign imm bit gate03,
    assign imm bit gate04,
    assign imm bit gate05,
    assign imm bit gate06,
    assign imm bit gate07,
    assign imm bit gate08,
    assign imm bit gate09,
    assign imm bit gate10,
    assign imm bit gate11,
    assign imm bit gate12,
    assign imm bit gate13,
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    assign imm bit gate14,
    assign imm bit gate15,
    assign imm bit gate16,
    assign imm bit gate17,
    assign imm bit gate18,
    assign imm bit gate19,
    assign imm bit gate20,
    assign imm bit gate21,
    assign imm bit gate22,
    assign imm bit gate23,
    assign imm bit gate24,
    assign imm bit gate25,
    assign imm bit gate26,
    assign imm bit gate27,
    assign imm bit gate28,
    assign imm bit gate29,
    assign imm bit gate30,
    assign imm bit gate31,

imm int code, /* gate code 0 to 31 for parcel destination */
imm bit p_cell, /* photo cell monitoring parcel onto belt */
imm bit strobe, /* strobe pulse from belt movement */

    )
{
    imm int carfd; /* carry bits */
    imm int car00, car01, car02, car03, car04, car05, car06, car07;
    imm int car08, car09, car10, car11, car12, car13, car14, car15;
    imm int car16, car17, car18, car19, car20, car21, car22, car23;
    imm int car24, car25, car26, car27, car28, car29, car30, car31;

    imm clock clk = CLOCK(strobe);

    lock   = feeder(p_cell, carfd, code, 12, 11, clk);
    gate00 = segment(carfd, car00,    0, 12,  7, clk);
    gate01 = segment(car00, car01,    1, 12,  7, clk);
    gate02 = segment(car01, car02,    2, 12,  7, clk);
    gate03 = segment(car02, car03,    3, 12,  7, clk);
    gate04 = segment(car03, car04,    4, 12,  7, clk);
    gate05 = segment(car04, car05,    5, 12,  7, clk);
    gate06 = segment(car05, car06,    6, 12,  7, clk);
    gate07 = segment(car06, car07,    7, 12,  7, clk);
    gate08 = segment(car07, car08,    8, 12,  7, clk);
    gate09 = segment(car08, car09,    9, 12,  7, clk);
    gate10 = segment(car09, car10,   10, 12,  7, clk);
    gate11 = segment(car10, car11,   11, 12,  7, clk);
    gate12 = segment(car11, car12,   12, 12,  7, clk);
    gate13 = segment(car12, car13,   13, 12,  7, clk);
    gate14 = segment(car13, car14,   14, 12,  7, clk);
    gate15 = segment(car14, car15,   15, 12,  7, clk);
    gate16 = segment(car15, car16,   16, 12,  7, clk);
    gate17 = segment(car16, car17,   17, 12,  7, clk);
    gate18 = segment(car17, car18,   18, 12,  7, clk);
    gate19 = segment(car18, car19,   19, 12,  7, clk);
    gate20 = segment(car19, car20,   20, 12,  7, clk);
    gate21 = segment(car20, car21,   21, 12,  7, clk);
    gate22 = segment(car21, car22,   22, 12,  7, clk);
    gate23 = segment(car22, car23,   23, 12,  7, clk);
    gate24 = segment(car23, car24,   24, 12,  7, clk);
    gate25 = segment(car24, car25,   25, 12,  7, clk);
    gate26 = segment(car25, car26,   26, 12,  7, clk);
    gate27 = segment(car26, car27,   27, 12,  7, clk);
    gate28 = segment(car27, car28,   28, 12,  7, clk);
    gate29 = segment(car28, car29,   29, 12,  7, clk);
    gate30 = segment(car29, car30,   30, 12,  7, clk);
    gate31 = segment(car30, car31,   31, 12,  7, clk);
    this = car31; /* allows concatenation of belts */
}
/********************************************************************
 *
 * Generate tick
 * input fast1 or fast2 cause 50 ms ticks
 * else tick for every change of manual input
 *
 *******************************************************************/

imm bit tick(bit manual, bit fast1, bit fast2) {
    imm bit fast = fast1 | fast2;
    this = CHANGE(manual & ~fast | TX0.4 & fast);
}
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/********************************************************************
 *
 * 4 belts
 *
 * Each belt has 32 gates
 *
 *******************************************************************/

imm bit reset = IX0.7; /* general re-initialisation */

QX8.0 = belt(
    QX8.1, /* lock indicator */
    QX0.0, QX0.1, QX0.2, QX0.3, QX0.4, QX0.5, QX0.6, QX0.7,
    QX1.0, QX1.1, QX1.2, QX1.3, QX1.4, QX1.5, QX1.6, QX1.7,
    QX2.0, QX2.1, QX2.2, QX2.3, QX2.4, QX2.5, QX2.6, QX2.7,
    QX3.0, QX3.1, QX3.2, QX3.3, QX3.4, QX3.5, QX3.6, QX3.7,
    IB3, /* gate code 0 to 31 for parcel destination */
    IX0.1, /* photo cell monitoring parcel onto belt */
    tick(IX0.0, IX0.6, IX0.5), /* strobe pulse from belt movement */
);

QX8.2 = belt(
    QX8.3, /* lock indicator */
    QX4.0, QX4.1, QX4.2, QX4.3, QX4.4, QX4.5, QX4.6, QX4.7,
    QX5.0, QX5.1, QX5.2, QX5.3, QX5.4, QX5.5, QX5.6, QX5.7,
    QX6.0, QX6.1, QX6.2, QX6.3, QX6.4, QX6.5, QX6.6, QX6.7,
    QX7.0, QX7.1, QX7.2, QX7.3, QX7.4, QX7.5, QX7.6, QX7.7,
    IB7, /* gate code 0 to 31 for parcel destination */
    IX4.1, /* photo cell monitoring parcel onto belt */
    tick(IX4.0, IX4.6, IX0.5), /* strobe pulse from belt movement */
);

QX8.4 = belt(
    QX8.5, /* lock indicator */
    QX10.0, QX10.1, QX10.2, QX10.3, QX10.4, QX10.5, QX10.6, QX10.7,
    QX11.0, QX11.1, QX11.2, QX11.3, QX11.4, QX11.5, QX11.6, QX11.7,
    QX12.0, QX12.1, QX12.2, QX12.3, QX12.4, QX12.5, QX12.6, QX12.7,
    QX13.0, QX13.1, QX13.2, QX13.3, QX13.4, QX13.5, QX13.6, QX13.7,
    IB13, /* gate code 0 to 31 for parcel destination */
    IX10.1, /* photo cell monitoring parcel onto belt */
    tick(IX10.0, IX10.6, IX0.5), /* strobe pulse from belt movement */
);

QX8.6 = belt(
    QX8.7, /* lock indicator */
    QX14.0, QX14.1, QX14.2, QX14.3, QX14.4, QX14.5, QX14.6, QX14.7,
    QX15.0, QX15.1, QX15.2, QX15.3, QX15.4, QX15.5, QX15.6, QX15.7,
    QX16.0, QX16.1, QX16.2, QX16.3, QX16.4, QX16.5, QX16.6, QX16.7,
    QX17.0, QX17.1, QX17.2, QX17.3, QX17.4, QX17.5, QX17.6, QX17.7,
    IB17, /* gate code 0 to 31 for parcel destination */
    IX14.1, /* photo cell monitoring parcel onto belt */
    tick(IX14.0, IX14.6, IX0.5), /* strobe pulse from belt movement */
);

The following are the 10 generated C  code fragments. The macro iC_MV() accesses  an indexed 
value on the generated link array. One can see from this that even for int nodes the execution time 
for one event is going to be no more than a few microseconds.

000 (1) return iC_MV(1)?iC_MV(2):iC_MV(3);
026 (3) return (iC_MV(1)<<1)+(iC_MV(2)*(0x41+(iC_MV(3)<<1)));
027 (4) return 0x41<<iC_MV(1);
028 (5) return (iC_MV(1)>>iC_MV(2))&1;
030 (6) return (iC_MV(1)&iC_MV(2))==iC_MV(2);
051 (7) return (iC_MV(1)<<1)+iC_MV(2);
052 (8) return 0x41<<iC_MV(1);
053 (9) return (iC_MV(1)>>iC_MV(2))&1;
055 (10) return (iC_MV(1)&iC_MV(2))==iC_MV(2);
055 (11) return (iC_MV(1)&0x7f)==0x41+(iC_MV(2)<<1);
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8  The iC run-time model

The iC compiler immcc  parses  the statements of an iC source, e.g. example.ic and produces a C  
file example.c and optionally a listing file example.lst. The C  file is compiled by a C  compiler to 
produce  example.o (example.obj under Windows), which is  linked with the  iC runtime library 
libict.a to produce an executable example (example.exe under Windows). 

********************* SOURCE example.ic *********************

imm bit a = IX0.0 & ~IX0.1 | ~IX0.0 & IX0.1;
QX0.0 = a;
imm bit b = IX0.2 ^ IX0.3;
imm bit d = ~IX0.2 & ~IX0.3;
imm bit mem = LATCH(b, d);
QX0.1 = mem; 

********************* LISTING example.lst *******************

001 imm bit a =  IX0.0 & ~IX0.1 | ~IX0.0 &  IX0.1;

a_1       ---|  a
a_2       ---|

IX0.0     ---&  a_1
IX0.1   ~ ---&

IX0.0   ~ ---&  a_2
IX0.1     ---&

002 QX0.0 = a;

a         ---|  QX0.0 X

003 imm bit b =  IX0.2 ^  IX0.3;

IX0.2     ---^  b
IX0.3     ---^

004 imm bit d = ~IX0.2 & ~IX0.3;

IX0.2   ~ ---&  d
IX0.3   ~ ---&

005 imm bit mem = LATCH(b, d);

mem       ---%  mem
b         ---%
d       ~ ---%         *

006 QX0.1 = mem;

mem       ---|  QX0.1 X

******* NET TOPOLOGY    *******

IX0.0   <    ~a_2&    a_1&
IX0.1   <     a_2&   ~a_1&
IX0.2   <     b^     ~d&
IX0.3   <     b^     ~d&
QX0.0   |  X
QX0.1   |  X
a       |     QX0.0|
a_1     &     a|
a_2     &     a|
b       ^     mem%
d       &    ~mem%  *
mem     %     mem%    QX0.1|



40

* an idiosyncrasy  of the Latch function is, that the 
reset input is inverted (by the compiler)

Fig. 1 Graph representation of the iC program example.ic

//********************* C OUTPUT CODE example.c ********************

static Gate * l_[];
/*******************************************************************
 * Gate list
 *******************************************************************/
Gate IX0_0    = { 1,  INPX,  GATE, 0, "IX0.0", 0, 0,       0      };
Gate IX0_1    = { 1,  INPX,  GATE, 0, "IX0.1", 0, 0,       &IX0_0 };
Gate IX0_2    = { 1,  INPX,  GATE, 0, "IX0.2", 0, 0,       &IX0_1 };
Gate IX0_3    = { 1,  INPX,  GATE, 0, "IX0.3", 0, 0,       &IX0_2 };
Gate QX0_0    = { 1,  OR,    OUTX, 0, "QX0.0", 0, &l_[0],  &IX0_3 };
Gate QX0_1    = { 1,  OR,    OUTX, 0, "QX0.1", 0, &l_[3],  &QX0_0 };
Gate a        = { 1,  OR,    GATE, 0, "a",     0, &l_[6],  &QX0_1 };
Gate a_1      = { 1,  AND,   GATE, 0, "a_1",   0, &l_[10], &a     };
Gate a_2      = { 1,  AND,   GATE, 0, "a_2",   0, &l_[14], &a_1   };
Gate b        = { 1,  XOR,   GATE, 0, "b",     0, &l_[18], &a_2   };
Gate d        = { 1,  AND,   GATE, 0, "d",     0, &l_[22], &b     };
Gate mem      = { 1,  LATCH, GATE, 0, "mem",   0, &l_[26], &d     };
/*******************************************************************
 * Connection lists
 *******************************************************************/
static Gate * l_[] = {
/* QX0.0 */ &a, 0, 0,
/* QX0.1 */ &mem, 0, 0,
/* a */ &a_2, &a_1, 0, 0,
/* a_1 */ &IX0_0, 0, &IX0_1, 0,
/* a_2 */ &IX0_1, 0, &IX0_0, 0,
/* b */ &IX0_3, &IX0_2, 0, 0,
/* d */ 0, &IX0_3, &IX0_2, 0,
/* mem */ &mem, &b, 0, &d, 0,
};

IX0.0
INPX
GATE
0

a_1
AND
GATE
0

a
OR
GATE
1

IX0.1
INPX
GATE
1

a_2
AND
GATE
1

  a_1

~a_2

~a_1

  a_2

  a

  a

IX0.2
INPX
GATE
1

b
XOR
GATE
1

mem
LATCH
GATE
0

IX0.3
INPX
GATE
1

d
AND
GATE
0

   b

~d

   b

~d

  mem

~mem

QX0.0
OR
OUTX
1

QX0.0

set

* reset

QX0.1
OR
OUTX
1

QX0.1

  mem

Ex
te

rn
al

 d
ig

ita
l i

np
ut

s

Ex
te

rn
al

 d
ig

ita
l o

ut
pu

ts

internal latch feedback



41

All this is fairly conventional, except for the immcc  compiler. The C  output it produces consists mainly 
of initialised data definitions, which describe a directed graph of vertices or nodes  and edges  joining 
the nodes. Each node of this graph corresponds to an expression in the iC program - they are called 
Expression nodes. The graph produced by the compiler is directed towards the inputs, which are called 
sources  in graph theory (see Fig 1 above). This means  that a list of the inputs to each Expression is 
associated with a  particular Expression  node. These  are  the edges  of the graph. This  direction 
represents the way in which expressions are usually evaluated by a flow of instructions in a computer –  
consecutive instructions read the values of all input variables of an expression and arithmetic or logic 
operators, acting on adjacent operands, determine the result. One is used to think about expressions  
this way and the (optional) listing file represents all Expression nodes generated by the compiler in this 
way (see LISTING  above).

For  immediate C , this graph, whose  edges  point towards  the inputs of each  node, is  loaded into 
memory and  as  a  first step, all edges  are reversed. This  means,  that each  Expression  node  is 
associated with a list of follow on Expression nodes, for which the current Expression result is an input. 
What this means is, that when a particular Expression node changes  its value, then all the expressions 
for the Expression nodes on its output list should be re-evaluated (see NET  TOPOLOGY  above)

8.1  Combinatorial actions
Combinatorial actions are the evaluation of arithmetic or logical expressions, which excludes  the full 
evaluation  of  any  embedded  clocked  functions.  Expressions  contain  variables  combined  with 
operators, which describe  a  (possibly) changed  result when  an  input variable to the expression 
changes. Although the evaluation of an expression takes a certain (small) amount of time –  both for 
hardware IC's  and for iC expressions, conceptually we are dealing with a  mathematical statement, 
whose  evaluation describes  a change of state –  an operation, which does  not necessarily take any 
time.  One  completed  scan  of  the  Combinatorial  action  list  is  such  a  conceptually  timeless  
combinatorial set of state-changing actions.

To implement this scheme, the iC run-time uses  Expression nodes, which can be linked into action 
lists and which store the old value of the node –  that is the value before the expression is re-evaluated 
- as well as the new value after re-evaluation. If these values are equal after a change of input and re-
evaluation, no further action is taken –  follow on nodes will not change either, because of this particular 
change of input. If the new value is different from the old value, the Expression node is said to “fire” (a 
term borrowed from Petri Nets). When this happens, The Expression node is linked to the end of an 
action list. While on an action list, the old and new values are kept in the node. There are four types of 
action list to which Expression nodes may be linked when they “fire” during the combinatorial scan:

1. o_list, to which logical expression nodes are linked.

2. a_list, to which arithmetic expression nodes are linked.

3. A Clock list, to which clocked function Master nodes are linked.

4. s_list, to which external output expression nodes are linked.

To  simplify the description, o_list  and  a_list  are discussed  here as  a  single  Combinatorial 
action list. For the combinatorial scan, the Expression node at the head of the Combinatorial action list 
is taken and the output list of that node is scanned. Every Expression node on that output list is re-
evaluated, using the new value of the Expression node just taken from the Combinatorial action list, 
with the result that some Expression nodes on the output list may change and “fire”. These nodes are 
also linked to the end of an appropriate action list. The old value of the original Expression node is 
assigned the new value at this time and it is unlinked from the head of the Combinatorial action list –  
that node is  now no longer active. The  combinatorial scan  is  continued with the new head of the 
Combinatorial action list until the list is empty.

There is another possibility. The target Expression  node is already somewhere on some  action list, 
which means  its value has  recently changed, but the new value has  not yet been transmitted to any 
follow on  nodes.  Now  another Expression  node  acts  on  this  particular Expression  node  and  re-
evaluation changes  its value a second time. There are two possibilities:

1. The latest value is still different from the old value (the value it had when its output list was last 
scanned and follow on nodes  were re-evaluated). In this case  the Expression node is left on 
the action list with a (possibly) changed new value.
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2. Re-evaluation changes  the new value back to the old value again. This  situation is called a 
“glitch”. The Expression node is now unlinked from the action list and becomes inactive, before 
it acts  on  any follow on  nodes. The  reasoning  behind this strategy is, that any temporary 
change, which occurs through one path of the graph, which is immediately undone by some 
expression on another path, should not influence the output.

Initially nodes can only get on the Combinatorial action list due to changes  of external inputs (sources) 
of the graph. Normally such a change will percolate through paths of the graph to one or more external 
output nodes (sinks). At this stage the Combinatorial action list is usually empty. 

Cycles are allowed in the graph –  they occur when there is feedback in the iC program. Such feedback 
is often necessary for implementing designs, but the designer should control it. Feedback may result in 
situations, where continuous oscillations occur. When this happens, certain nodes will change to a new 
value –  act on some follow on node(s), which will then change the original node back to the old value 
after it has acted on other nodes. This means the action list will never get empty. If nothing were done 
about this, the iC program would lock up the processor. 

Continuous oscillations at the Expression node level should not be part of a design and this situation 
results in a warning message  at run-time. Nevertheless  for testing purposes, such a program should 
be able to run without locking up the processor. To achieve this, a strategy is used, where the number 
of times a particular node may be re-evaluated in one scan  is limited –  usually to three. This  is the 
maximum oscillator count, which may be changed with the -n <count> command-line switch. If the 
maximum oscillator count is  exceeded after re-evaluation of a  node, that node is  not linked to the 
normal Combinatorial action list, but to an Alternate action list. This  way the current Combinatorial 
action list will always  get empty within a finite number of actions. At the end of the scan, when the 
Combinatorial action list does  become empty, the current Combinatorial action list and the Alternate 
action list are swapped. At this point in time the iC run-time process  goes  to sleep, waiting for new 
input.

When a new external input interrupts the system, the associated input node is linked to the now current 
swapped Combinatorial action list and triggers a new scan. Together with the new input and its follow 
up events, the oscillating nodes, which were linked to the (then alternate) list during the previous scan, 
will be evaluated again. This  way the oscillations do get re-evaluated over and over –  but at a rate 
which does  not block the processor. This  is similar to the way oscillations manifest themselves  in a 
hardware IC  circuit –  a large but finite number of oscillations will occur between any two consecutive 
external input events. In iC programs, this number has  been reduced to three, which does not change 
the way these oscillations affect other parts of the program. In practice it has  been found useful to 
make this an odd number, so that rising and falling edges alternate for digital oscillations.

All this takes  care of what is  called “combinatorial logic” for digital systems.  Sequencing  requires 
different mechanisms and they are provided in the iC language by clocking and clocked functions. 

8.2  Clocked actions
As  mentioned before, Clock signals  in iC are best thought of as  timeless  pulses, whose  occurrence 
marks the separation of one clock period from the next along the time axis. For these purposes  actions 
in the iC run-time occur in two phases  –  combinatorial actions, which were described in the previous 
section and  clocked actions, which are always  master-slave actions, which occur during the Clock 
phase.

Clocked functions contain one or more Master nodes  and exactly one Slave node. Master nodes  are 
Expression nodes  –  just like the ones  described in the previous section, except their output does  not 
act directly on follow on Expression nodes  and therefore are not linked to the current Combinatorial 
action list when they “fire”. There is a Master Node for every non-clock input parameter to a function. 
Associated with each such non-clock parameter is a clock parameter. If it is not mentioned explicitly in 
the parameter list, it has a default value –  usually iClock. Master nodes which “fire”, are linked to the 
Clock list associated with the clock parameter for the particular Master node.

Clock lists are similar to action lists –  they may be empty or have one or more Expression nodes linked 
to them. Clock lists are associated with the Slave node of a Clock function or “driver”. There is one 
special Clock list called c_list, which is associated with the default iClock and which is scanned 
every time a  combinatorial scan  completes  unless  c_list  is  empty. This  Clock  scan  marks  the 
occurrence of iClock. In other words  combinatorial scans  and clock scans  alternate until both the 
current Combinatorial action list and  c_list  are empty. For  the purpose  of synchronisation, it is 
important to remember that during the combinatorial scan new nodes are evaluated and linked to one 
of the following:
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1. the Combinatorial action list –  described in the previous section.

2. c_list or another Clock list –  which receive Master nodes of clocked functions.

3. s_list –  which receives those Expression nodes whose action is external output.

During the clock scan only c_list is scanned. There are several different clock actions, but they only 
involve the value  of a  Master  node  modifying  the value  of a  Slave  node  and  some  side  effect 
associated with the clocked function. The different clock actions are:

1. Clocking of a logical or arithmetic function –  the new value of the Slave node is determined 
according to the truth-table of the function. As  a side effect the Slave  node is linked to the 
current Combinatorial action list if its value has  changed –  it then becomes  a new logical or 
arithmetic input, which will not have any effect until after the current clock scan has completed.

2. Clocking of a CLOCK  or TIMER  driver function –  the Clock action nodes  linked to the the 
Clock list associated with the CLOCK  or TIMER  function Slave node are all linked to c_list 
immediately. This means, that the CLOCK  or TIMER  function has “fired” and the clock actions, 
which have accumulated on its Clock list will also be executed during the current clock scan, 
since they are now on c_list, which is currently being scanned.

3. Clocking  of a  conditional  if else  or  switch  statement function. Since  these  functions 
execute  C  code  embedded  in  the  iC program,  which  may  involve  modifying  logical  or 
arithmetic immediate variables, the actual execution of the C  code must be deferred until after 
completion of the clock scan. For this purpose the Slave nodes of any conditional if else or 
switch statement function is  linked to another action list –  namely  f_list. The  scan  of 
c_list is always finite, since no new Master actions are added to any Clock list during the 
scan. When  the clock scan  terminates a single scan  of f_list follows, unless  f_list is 
empty. This  f_list  scan  marks  the end of a  Clock  phase  and the beginning of a  new 
combinatorial phase. 

After a completed clock scan the combinatorial scan is repeated, because both Clock actions and the 
f_list scan may have generated new Combinatorial actions.

8.3  Output actions
Finally, when both the current Combinatorial action list and  c_list are empty, a scan  of  s_list 
follows. During that scan the actual external output is performed. Binary outputs are first distributed to 
an output byte and then the output bytes, words and long words which have changed since the last 
cycle are transmitted to iCserver, which distributes them to their final output destinations, where they 
act physically. 

8.4  Input actions
External inputs come from physical input device drivers and are transmitted as  bytes, words or long 
words via iCserver, using the same protocol as the output. 

TCP/IP is used as the transport protocol from and to the iC run-time system and the final physical input 
and output device(s) in the current implementation. This ensures, that no input or output is lost during 
transmission. Other safe transmission systems  can be used –  only the actual input and output driver 
software needs to be changed.

The run-time system also recognises  internal inputs which are mainly interrupts from the processors  
real-time-clock. These are described in 6.1.3.

External and  internal inputs  interrupt the run-time system. Initially the source  of the interrupt is 
analysed and Input nodes  are “fired” for every changed input and these are linked immediately to the 
Combinatorial action list. Then a new cycle is initiated starting with a scan of the current Combinatorial 
action list.
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8.5  Input/Output network
The network clients around  iCserver can comprise one or more  iC applications and any number of 
iCboxes, which simulate real I/O in the current implementation. Input and output can be transmitted 
not only to and from iC applications and iCboxes  but also between iC applications. Since all of these 
elements  can  run on  any  processor  in a  LAN  or even  in the Internet, this  opens  up  interesting 
possibilities for the iC system.

Fig. 2 Input/output network
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9    Compiler and Run-time system

9.1  Compiler 
The iC compiler immcc  generates C  code with the extension .c from iC source files with the extension 
.ic, which is suggested for iC sources. It is also suggested, that iC header files have the extension 
.ih For larger projects, several .ic files may be compiled to .c files, which are then compiled by cc 
to  .o files and linked with the library  libict.a, which contains  the run-time code. This  produces  a 
finished application, which can be run in an environment compatible with the features of the run-time 
library.

The iCa pre-compiler immac generates iC source files with the extension .ic from iC with arrays (iCa) 
source files with the extension .ica. The shell script iCmake executes all these steps automatically –  it 
makes a complete iC application from one or more iC and/or iCa sources.

9.2  Run-time libraries 
There are several versions of the run time library, depending on the hardware interfaces available for 
Input and Output. The Demonstration library libict.a communicates its Input and Output via TCP/IP, 
which provides a turnaround time of an input change to the arrival of the corresponding output change 
in a lightly loaded network of less  than 2 millisecond (measured on a Pentium 166). The uncertainty of 
load occurring in such  a  network forces  one  to look  at specialized bus  systems  for high  speed 
applications.  Currently  libict.a is  a  static library. For  production purposes  a  dynamic  library is 
envisaged.

Other libraries have been built for industrial field bus systems. The library for InterBus-S  is complete 
and has  been extensively tested with InterBus-S  I/O modules. A  library for a proprietary high speed 
field bus system was used for early tests and provided turnaround times of under a 100 microseconds 
on a 386 8 MHz processor. A CAN-Bus  library is planned and could be implemented at short notice.

9.3  Run-time environment and system
For any applications where hard real time constraints are not a problem, the TCP/IP run-time system 
provides a very flexible and easy to configure environment where Input and Output may be distributed 
over a number of computers in a local area network. The system consists of a server called iCserver 
and a number of clients for which iCserver is the hub. An iC application linked with the libict.a library 
is  one type of client, providing control in the system. The  other client types  are Input and Output 
modules (or combined I/O modules) and debugging tools.

iCserver has been implemented in Perl, which is very flexible and fast enough to keep up with TCP/IP 
traffic generated in a  local area  network. A  faster C  implementation of  iCserver is  possible. The 
program iCbox simulates Input/Output modules as  Perl/Tk dialog boxes  for digital and analog inputs 
and outputs. For real inputs and outputs iCbox can serve as  a program template. Only the translation 
of the I/O signals to a short network message  for transmission to the iCserver is necessary to port an 
I/O device. A simple and very compact protocol for passing messages  to and from the iCserver has 
been defined.

The  program  iClive provides  an  IDE  for editing and  debugging  iC programs.  It provides  an  edit 
window, in which program text can be displayed and optionally edited, searched, saved, made into 
runnable code, run and stopped. When running and debugging an  iC   program, iClive is a client of 
iCserver and indirectly of the running iC program. iClive colours words in the program text according 
to the state of the node named by a word –  green/black for bit 0,  yellow/red for bit 1 and  blue for 
arithmetic variables. The  value of a  node is  also  displayed when the cursor  is  on  a  word. To  be 
effective, the displayed text must be either the source of the running iC program or a text derived from 
that source, such as  the compiler generated listing, which shows  all compiler generated extra nodes. 
With this colour coded display of the statements of the iC program, it is easy to follow the progress  of 
execution and the related logic at run time. "Live displays"  are commonly used in programming units 
for PLC's  in industrial control environments to provide debugging support.
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Fig. 3 iCbox as IO for “sorti” - IX0.0, QX0.2 and QX8.1 are “on” - the rest are “off”.

Fig. 4 iClive in LIVE  mode - QX8.1, QX0.2 and IX0.0 are “on” - the rest are “off”. 
“sorti” is  running.  –  it can  be  stopped  by  pressing  the  “Stop” button  or  switched
to Edit mode by pressing the “Edit”  button (see Fig. 5).
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Fig. 5 iClive in EDIT  mode with a search for IX0.5 shown. The application “sorti” is not running –  
press  “Run” and then “Live” to get to Fig. 4. “Help” to get the following:

Fig. 6 iCman showing the start of the man-page for iClive. A search for “Text” is shown.

For command line use, a shell script iCmake builds one or more applications from iC sources  using 
the static library libict.a. The compiler immcc, the programs  iCserver, iCbox, iClive and  iCmake as 
well as  each compiled and linked  iC application provide a generous  help output with the -h switch 
option. Each of these programs also has a full man page which may be viewed with 'man' in a Unix like 
environment or with iCman, a man page viewer with interesting search and Hyperlink features.
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11    The Author

John E. Wulff studied Electrical Engineering at the University of New South Wales in Sydney, Australia. 
His  first professional experience was  in the Telephone industry, developing switching circuits with 
electro-mechanical relays  but also  with vacuum tubes, cold cathode tubes  and very soon  with the 
emerging transistors. In 1964  he spent 6 months in England, getting know-how on a new family of 
switching circuits using germanium diodes  and transistors, but which already supported clocked flip-
flops. These  had been developed at the BICC  research laboratory near Hampton Court, where John 
Sparkes  had invented the principle of clocking a few years earlier. With this experience, he was chief 
designer for a  special purpose  computer with 100  kilobytes  of magnetic drum memory, 1  million 
transistors, 2.5 million diodes for logic and 100,000 silicon controlled rectifiers for power output drivers, 
switching up to 5 Amps. This machine controlled a letter sorting system with 150 input consoles and a 
throughput of 5 million letters a day. This system worked reliably for 25 years.

Experience with logic design based on integrated circuits followed. The availability of mini computers 
led to an interest in programming. A Master of Engineering Science Degree in Information Science at 
the University of New South Wales  provided a solid foundation for future work as a Software Engineer. 
The design and implementation of a Real Time Operating System (or Monitor, as  it was then called), 
which provided a task context switch in 15 machine instructions was the content of his Masters Thesis  
[Wulff72], and later provided the basis for some very fast industrial machine control systems.

In  the  mid  80's  John  Wulff  came  in  contact with PLC's.  He  was  asked  to help  during  the 
commissioning  of a  PLC-system, controlling a  parcel sorting complex consisting  of 100  standard 
conveyor systems  and 4 high speed conveyors which had mechanical gates along its length, to divert 
parcels. These high speed belts needed a control resolution of 15 milliseconds, in which time a parcel 
had moved 3 cm. Unfortunately the function blocks  for the standard conveyors, executed 100 times, 
once for each of the conveyors, brought the total cycle time to over 1 second!! What to do?  Fortunately 
the PLC  had just enough  (8) interrupt inputs, to allow the implementation of an event driven sub-
system based on the assembler instruction set of the PLC. This saved the company a lot of liquidated 
damages. 

This  experience spawned the idea for an event driven PLC, which resulted in the current iC system. 
Although  this  system  is  demonstrably faster than a  PLC  with the same  memory speed  for any 
reasonable application one can think of, it is  difficult to compute a guaranteed maximum response  
time. Since this is a requirement for hard real time applications, iC was  never accepted for industrial 
use. For a PLC  the maximum response  time is simply the time to execute all instructions making up 
the program, which is  the cycle time of the program. For  an  iC program  this  time can  also  be 
computed. For a 10 MHz  PC  the execution time is about 2 microseconds  per gate node processed. 
The total number of gate nodes is provided in the listing produced by the compiler. An iC program with 
10,000 gate nodes, which corresponds  to a PLC  program of approx. 32 kilobytes would thus have a 
maximum response  time of 20  milliseconds, if all nodes  were somehow fired simultaneously. This 
would be a good response time for a PLC. In practice this can never happen and a maximum response  
times of < 200 microseconds  was measured on such a 10 MHz  machine. This corresponds to events 
which cause  100 follow up nodes  to fire. The typical number of follow up events is 7. Assuming this 
figure is Poisson distributed the above assumption is not unreasonable.

Current plans  are, to publish the complete system under an Open Source License and to see  if the 
Open  Source  Community can make a  go  of it. With the current emphasis  on Linux in embedded 
Systems, I see great scope here. 

Id: iC.odt 1.30  2008/09/06
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Appendix A    README

 immediate C, iC rev 1.122

    Copyright (C) 1985-2008, John E. Wulff
    All rights reserved.

    This program is free software; you can redistribute it and/or modify
    it under the terms of either:

a)  the GNU  General Public License as published by the Free
    Software Foundation; either version 2, or (at your option)
    any later version,
 OR

b)  the "Artistic License" which comes with this Kit.

    This program is distributed in the hope that it will be useful, but
    WITHOUT  ANY  WARRANTY;  without even the implied warranty of
    MERCHANTABILITY  or FITNESS  FOR  A PARTICULAR  PURPOSE.
    See  either the GNU  General Public License or the Artistic License for
     more details.

    You should have received a copy of the Artistic License with this
    Kit, in the file named "Artistic". If not, I'll be glad to provide one.

    You should also have received a copy of the GNU  General Public License
    along with this program; if not, write to the Free Software Foundation,
    Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.

    For those of you that choose to use the GNU  General Public License,
    my interpretation of the GNU  General Public License is that no iC
    source falls under the terms of the GPL  unless  you explicitly put
    said source under the terms of the GPL  yourself.  Furthermore, any
    object code linked with iC does not automatically fall under the
    terms of the GPL, provided such object code only adds definitions
    of subroutines and variables, and does not otherwise impair the
    resulting interpreter from executing any standard iC source.  I
    consider linking in C subroutines in this manner to be the moral
    equivalent of defining subroutines in the iC language itself.  You
    may sell such an object file as proprietary provided that you provide
    or offer to provide the iC source, as  specified by the GNU  General
    Public License.  (This is merely an alternate way of specifying input
    to the program.)  You may also sell a binary produced by compiling an
    iC source that belongs to you with the iC compiler and linking it with
    the iC runtime library, provided that you provide or offer to provide
    the iC source as specified by the GPL. (The fact that the iC runtime
    library and your code are in the same binary file is, in this case,
    a form of mere aggregation.) This is my interpretation of the GPL.
    If you still have concerns or difficulties understanding my intent,
    feel free to contact me at <ic@je-wulff.de>.

    Of course, the Artistic License spells all this out for your protection,
    so you may prefer to use that.

    Acknowledgements to Larry Wall, whose README  I used as a template.
    and for Perl - which is just GREAT.

    Acknowledgements to Nick Ing-Simmons  for Perl/Tk - which is SMOOTH.

    Acknowledgements to Linus Torvalds and the Open-Software community
    for Linux(R) - which is SOMETHING  ELSE.  

--------------------------------------------------------------------------
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    Notes for the installation of iC rev 1.122

    1) Pre-requisites. You need the following on your system:

    C  compiler # tested with gcc, MSC  and Borland
    Perl, Perl/Tk and Time::HiRes # to build iC applications

    1) Unpack the iC-archive in a suitable working directory with:

    tar -xvzf icc_1.122.tgz
    cd icc_1.122/src

    2) Excute the following:

    configure     OR   ./configure # if super user (depricated)
To make a Debug version do
    makeAll -gcl  OR   makeAll -qgcl  # to supress  intermediate output
OR  to make a Release version do
    make          OR   make quiet # to supress  intermediate output

this should build the files
    immcc # the iC to C compiler
    libict.a # the run-time library
without any errors

    3) To compile and compare the test iC files in Test0 execute:

    make test

    4) To use the Perl support programs, it is mandatory that you install the
Perl packages  Tk800.024 or later and Time::HiRes  unless  they are already
installed on your system.  Both are included with this distribution.
This can be checked by executing the following at this point:

    iClive -h

Skip to point 8) if you get a help output and no error message.
The last line tells you which version of Perl/Tk you are using.

    5) Unpack build and install the Time::HiRes  archive in a suitable
working directory with:

    tar -xvzf Time-HiRes-01.20.tar.gz
    cd Time-HiRes-01.20
    perl Makefile.PL
    make
    make test
    su ### Password  ###
    make install
    exit ### IMPORTANT  ###
    cd ..
    rm -rf Time-HiRes-01.20 # unless  you want to keep it

    6) Perl/Tk is usually contained in Linux distributions and will
be installed automatically when the package is selected.
If not, unpack, build and install Tk-800.024.tar.gz (or later).
Follow the instructions in the README.xxx and INSTALL  files.
For Cygwin under WinXP  a special binary distribution of Tk800.023
is included, which works fine.

    7) Return to the immediate C  installtion

    cd icc_1.122/src # or the correct iC src directory

    8) To install the iC-compiler, library and scripts execute the
following as super user:

    su ### Password  ###
    make install
    exit ### IMPORTANT  ###

this copies the essential executables to /usr/local/bin
it also copies the include file icg.h to /usr/local/include
libict.a to /usr/local/lib and Msg.pm to /usr/lib/perl5/site...

    (make uninstall as  su will remove all these files)
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    9) To build and run the very simple iC application "hello.ic" do

    iClive hello.ic # starts the IDE  with hell0.ic
    press  Build > Build executable # displays 'hello' successfully built
    press  Run # opens an iCbox with 1 button IX0.0
    press  button IX0.0 in iCbox # button turns HI (input is green)

# 'Hello! world' is output in the window iClive was started from
    press  Live

# The word IX0.0 (the only immediate variable in hello.ic)
# is coloured yellow/red, because IX0.0 is HI.
# When IX0.0 is pressed again to LO, the colour in the live
# display changes  to green/black, indicating LO.

    press  File > Quit # 'hello' and iCbox are terminated

    10) A slightly bigger application is "simple.ic". Build and run it with iClive.
An iCbox with 16 inputs and 8 outputs is started automatically.
Explore the logic of the statements by changing inputs and following
the outputs in iCbox and the live display in iClive.

    11) The application "bar.ic" uses  flip flops to produce a bar of running lights.
The application also explores the use of programmable time delays, giving
some idea of the scope of the iC language.

Running 'iClive bar.ic' as  a separate process, while 'bar' is running,
will display the source listing (in the edit window), connects to iCServer
as an auxiliary client to receive updates of all variables from the running
iC program (bar). These updates will change the colours of all words,
which are immediate variables.  (green/black = 0, yellow/red = 1)
This "live display" shows the current state of logical relationships in
visible statements of the iC program. Arithmetic variables are displayed
in a balloon, when the cursor rests on a variable.
(Arithmetic variables have a blue background).

In 'Live' mode, when a "live display" is shown, the text is read only.
When the 'Edit' button is pressed 'iClive' is a full featured editor.
The edit facilities of this program are described in the iClive man page
under the Heading 'KEYBOARD  BINDINGS'  (press  Help button in 'iClive').

'iClive' can use the Tk::TextUndo package, an extension of Tk::Text. This
allows undoing changes  with the Ctrl-u key. (Control-u is <<Undo>>)
This is achieved by starting iClive with the -u option. Use this option
only for editing. In 'Live' mode the display is very jerky with -u active.

    12) Applications can of course be run without iClive. They do need iCserver
though, which is a hub server for the TCP/IP packets exchanged between
iC applications, I/O apllications (currently only iCbox) and optionally
iClive.

    iCserver & # server runs on the background
    iCbox IX0 & # start IX0 manually
    hello # start application

    ctrl-C # terminate application
    iCstop iCserver # kill iCserver and iCbox

A better way is to start iCserver with the -a (auto-vivify) option,
which will start simulated I/O iCbox, every time an iC application
is started. Otherwise these must be started manually, which can be
tedious for larger applications.

    iCserver -a & # auto-vivify iCbox for application
    simple # iCbox with 3 sets of I/O starts

If iClive is started first, it does all this automatically. It then kills
iCserver automatically when it quits. When iCserver quits it kills all
registered applications and I/O's.

    13) I have included a script called 'iCstop' from my private toolkit.
It can be used effectively to kill iCserver when it is executing
in the background, which is appropriate for a server.

    iCserver &
    .....
    ../iCstop iCserver # local copy of 'iCstop'

I have tried to use 'kill' with named processes  as described in
the 'kill' manpage, but it does not seem to work, even called as
'command kill iCserver'.
You will have to install 'iCstop' manually in a PATH  directory to
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use it anywhere in your system. (see 'iCstop -h' for help)

    14) To make executable applications from iC sources, use the script iCmake.
iCmake is a shell script to compile iC sources into C sources using the
'immcc' compiler.  These in turn are compiled and linked into an
executable iC applications (currently using gcc - this can be changed).
Various options allow partial compilation and generation of listings.

    iCmake -h  OR   iCman iCmake # gives a lot of help

    15) The OpenOffice 2.2 document doc/iC.odt (or doc/iC.pdf, doc/iC.html)
is the handbook for the iC Programming Language. It opens the way to
use "immediate C"  fully.

    16) There is a generous help output for every tool in the 'iC Project'
initiated with the -h option. Each generated iC application also
has a help output:

    hello -h # list available options

These options allow connecting to iCserver on another computer in a
LAN  - or with a differnt port number. Very detailed debugging output,
showing the change of state of every event in the system is available
for the Debug version of the iC system. (Supressed for Release version)

    17) There are 'man' pages for all the tools used in the 'iC Project'.
These can be viewed with the normal 'man' command under Linux or with
'iCman'.  The man page viewer 'iCman' has some nifty web-browser
features to view and search man pages  - try it with 'iCman iCman'.

    
    Lots of success

    John E. Wulff   2008.08.08     <ic@je-wulff.de>

    I currently use SuSE  Linux 9.3 with Tk800.024. I have tested the
    distribution with Cygwin under WinXP  and a special binary distribution
    of Tk800.023 (in the kit).  Perl under Windows Vista will not execute
    forked processes, so the iC support programs don't work.

    A test with Tk804.027 under MAC-OSX  1.3 and SuSE  Linux 10.2 both work,
    but live updates in iClive are noticably slow in both systems (about 10x).
    Tag-handling in Tk::Text is much slower under Tk804.27 than under
    Tk800.024 with Linux.  Therefore I suggest staying with Tk800.024.

    I have now switched to openSUSE  11.0, which brings along Tk804.28,
    which provides fast live updates in iClive again. They seem to be as
    fast as with Tk800.24. This was only judged by observation - at least
    the performance is now subjectively good and I suggest you get Tk804.28.

    A Test with Knoppix and Tk804.25, which is still available for Debian
    also provided good performance with fast live updates in iClive.

mailto:ic@je-wulff.de?subject=Enquiry from iC 1.120 README
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Appendix B     Type Definition Table
The following table defines  function types  and output types  of Gate nodes  used  in the iC run-time 
system. In particular the abbreviation symbol columns  'os'  and 'fos'  are useful when interpreting the 
compiler generated listings. Others help to interpret iC source code.

Define function type
type [0] [1] [2] [3]

0 UDF . UDFA YYERRC. pass1 pass2 gate3 pass4
1 ARNC - ARITH AVARC pass1 pass2 gate3 pass4
2 ARNF + ARITH YYERRC. pass1 pass2 gate3 pass4
3 ARN + ARITH YYERRC. pass1 pass2 gate3 pass4
4 LOGC „ GATE LVARC pass1 pass2 gate3 pass4
5 XOR ^ MIN_GT GATE YYERRC. pass1 pass2 gate3 pass4
6 AND & GATE YYERRC. pass1 pass2 gate3 pass4
7 OR | GATE YYERRC. pass1 pass2 gate3 pass4
8 LATCH % GATE YYERRC. pass1 pass2 gate3 pass4
9 SH * MAX_GT D_SH YYERRC. pass1 pass2 pass4
10 FF # D_FF YYERRC. pass1 pass2 pass4
11 EF / RI_BIT YYERRC. pass1 pass2 pass4
12 VF > CH_BIT YYERRC. pass1 pass2 pass4
13 SW ( F_SW YYERRC. pass1 pass2 pass4
14 CF { F_CF YYERRC. pass1 pass2 pass4
15 NCONST  = ARITH YYERRC. pass1 pass2 pass4
16 INPB ] OUTX YYERRC. pass1 pass2 pass4
17 INPW [ ARITH YYERRC. pass1 pass2 pass4
18 INPX < TRAB YYERRC. pass1 pass2 pass4
19       CLK : MAX_LV CLCK YYERRC. pass1 null1 null1
20      TIM ! TIMR YYERRC. pass1 null1 null1
21 ALIAS @ MAX_OP GATE YYERRC. pass1 null1 null1
22 ERR ? GATE YYERRC. pass1 null1 null1
23 KEYW ; MAX_LS 24 CTYPE 25 CWORD 26 IFUNCT    31 TM

Define output type Functp2 Functp2 Functp2
types init2 bit2

0 UDFA U UDF UNDEF null1 0
1 ARITH A ARN AVAR gate2 INPT_M
2 GATE  MAX_AR OR LVAR gate2 INPT_M
3 GATEX  _ OR LVAR gate2 INPT_M
4 RI_BIT E MIN_ACT EF YYERRC. link_c RI_B_M
5 S_SH  s SH YYERRC. link_c S_SH_M
6 R_SH  r SH YYERRC. link_c R_SH_M
7 D_SH H SH YYERRC. D_SH_M
8 CH_BIT V VF YYERRC. CH_B_M
9 S_FF S 1001 FF YYERRC. link_c S_FF_M
10 R_FF R 1010 FF YYERRC. link_c R_FF_M
11 D_FF D 1011 FF YYERRC. link_c D_FF_M
12 F_SW I SW YYERRC. null1 F_CW_M
13 F_CF F CF YYERRC. link_c null1 F_CF_M
14 F_CE G CF YYERRC. link_c null1 F_CF_M
15 CLCK C CLK YYERRC. link_c CLCK_M
16 TIMR T TIM YYERRC. link_c TIMR_M
17 TRAB B MAX_ACT INPX YYERRC. null1 0
18 OUTW W ARN AOUT null1 OUTP_M
19 OUTX X AND LOUT null1 0
20 CLCKL : ERR CVAR null1 0
21 TIMRL ! ERR TVAR null1 0
22 F_ERR  e MAX_FTY ERR YYERRC. null1 0
23 ARITH_ALIAS  arithmetic input  arithmetic output
24 GATE_ALIAS  a These values are only used  logic input       arithmetic output
25 GATEX_ALIAS   a_  arithmetic input  logic output
26 INV_ALIAS ~ of alias nodes correctly  others: logic input and output
27 INVX_ALIAS   ~_
42 CLCKL_ALIAS  a:
43 TIMRL_ALIAS  a!

Functp* Functp Functp Functp Functp
os -gt_ini ftypes yacc token i_lists

gate_i
gate_i
gate_i
gate_i
gate_i
gate_i
gate_i
gate_i
gate_i
ff_i i_ff3
ff_i i_ff3
ff_i i_ff3
ff_i i_ff3
ff_i i_ff3
ff_i i_ff3
ff_i i_ff3
ff_i i_ff3
ff_i i_ff3
ff_i i_ff3

clock_i i_ff3
clock_i i_ff3
clock_i i_ff3
clock_i i_ff3

Functp uint
ftype fos gt_fni yacc token initAct masterAct slaveAct

err_fn err_fn err_fn
arithMa arithMa err_fn
link_ol link_ol err_fn
link_ol link_ol err_fn

riMbit riSbit i_ff2
sMsh sSsh i_ff2
rMsh rSsh i_ff2

dMsh dMsh dSsh i_ff2
chMbit chMbit chSbit i_ff2

sMff sSff i_ff2
rMff rSff i_ff2
dMff dSff i_ff2

fMsw fMsw fSsw
fMcf fScf
fMce fScf
fMfn clockSfn i_ff2
fMfn timerSfn i_ff2

err_fn err_fn err_fn
outMw outMw err_fn
outMx outMx err_fn
err_fn err_fn err_fn
err_fn err_fn err_fn
err_fn err_fn err_fn

aA   Live display

in iClive to colour names 

    icc.ods  1.19     2008/07/30
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