
The Programming Language " immediate C"

John E. Wulff, B.E., M. Eng. Sc.

Abstract

immediate C - iC for short - is an extension of the language C. It utilizes the syntax of C to give
meaning to statements that have no semantic support in C. In addition to standard variables, which are
modified by the flow of instructions, iC provides so called 'immediate' variables, whose values are
updated, whenever a change of input calls for an immediate change in output. An efficient Data Flow
technique implements this strategy.

iC provides programmers with built in operators, whose function is closely modelled on integrated
circuits. The name iC is a reminder of this fact. Logical AND , OR , EXCLUSIVE- OR and NOT as well as
D flip-flops, SR flip-flops and many others are implemented in such a way, that their use follows the
same design rules, which apply to their hardware counterparts. These rules have led to a well-
developed hardware technology, whose effectiveness is demonstrated by the success of today's
complex computer hardware. Particularly the concept of clocked functions plays an important role in
the language iC. It gives the same protection against timing races in iC programs, as it provides for
hardware IC designs.

Writing programs in the language iC has the added quality, that many simple ideas and relationships,
which should result in direct actions, can be written down immediately in one line. The coding of call
back routines and other overhead is not required. It was this thought, which also prompted the name
"immediate C ".

Copyright (C) 1985-2008 John E. Wulff

You may copy and distribute this document under the terms of either the
GNU General Public License or the Artistic License, as specified in the README file.

For more information about this program, or for information on how
to contact the author, see Appendix A README or visit

http://je-wulff.de or contact ic@je-wulff.de

mailto:ic@je-wulff.de?subject=Enquiry from iC Handbook 1.120
http://je-wulff.de/

2

Zusammenfassung

immediate C - kurz iC - ist eine Erweiterung der Sprache C. Sie basiert auf der Syntax von C und gibt
vielen Befehlen Bedeutung, die keine semantische Unterstützung in C haben. Zu den einfachen
Variablen, die im normalen Programmfluss verändert werden, kommen in iC so genannte 'immediate'
oder 'sofort' Variablen, dessen Wert sofort verändert wird, wenn eine Eingangsänderung, die sofortige
Änderung eines Ausgangs zur Folge hat. Um dies zu erreichen, wird eine effiziente Datenfluss-Technik
eingesetzt.

iC stellt Programmierern eingebaute Operatoren zur Verfügung, deren Arbeitsweise die Funktionen
von IC-Bausteinen modelliert. Der Name iC soll an diese Tatsache erinnern. Logisches UND , ODER,
EXCLUSIV-ODER und NICHT sowie D flip-flops, SR flip-flops und viele mehr sind so implementiert,
dass deren Anwendung den gleichen Entwurfsregeln entspricht, wie die der entsprechenden IC-
Bausteine. Diese Regeln haben zu einer ausgereiften Technik geführt, deren Wirksamkeit durch
unsere heutige komplexe Computertechnik belegt ist. Besonders das Konzept von getakteten
(clocked) Funktionen spielt in der Sprache iC eine wichtige Rolle. Damit wird derselbe Schutz gegen
Laufzeitprobleme in iC-Programmen erreicht, der damit in IC-Schaltkreisen bewirkt wird.

Programme die in iC geschrieben werden, haben das zusätzliche Merkmal, dass viele einfache Ideen
und Zusammenhänge, die zu direkten Aktionen führen sollen, sofort in einer Zeile niedergeschrieben
werden können. Callback-Routinen sind nicht notwendig. Auch dieser Gedanke ist im Namen
"immediate C " enthalten.

3

Table of Contents
Abstract...1

Zusammenfassung..2

1 Introduction..6

1.1 Relationship to Object Orientation...6

1.2 Relationship to Instruction Flow Languages ..6

1.3 Programmable Logic Controllers...6

1.4 Relationship to Integrated Circuits...7

1.5 Summary..7

2 Language description..8

2.1 Immediate Variables ..8

2.2 Immediate Types...8

2.2.1 Immediate declarations..8

2.2.2 extern immediate declarations...8

2.3 Immediate Expressions ...8

2.4 Operators in immediate expressions..8

2.4.1 Arithmetic and Relational Operators...9

2.4.2 Bitwise and Bit Operators...9

2.4.3 Logical Operators..9

2.4.4 Conditional Operators...9

2.5 Function and macro calls..10

2.6 Parentheses ..10

2.7 Immediate statements...11

2.7.1 Immediate Assignments ..11

2.7.2 Aliases ...11

2.7.3 The single assignment rule ...11

2.8 Immediate control statements...11

2.8.1 Immediate conditional statement...12

2.8.2 Immediate switch statement..12

2.9 Literal blocks..12

2.10 Comments...13

2.11 Scope of immediate statements...13

2.12 Intrinsic limitations of immediate statements ..14

2.13 Pragmas..14

3 Arrays...16

3.1 Immediate Arrays ..16

4

3.2 Use of immediate Arrays...16

3.3 Implementation of immediate Arrays...16

3.3.1 FOR loops...18

3.3.2 Index expressions..19

3.3.3 immediate Array syntax..20

3.4 immac Macro facility..21

4 Built-in Functions..22

4.1 Unclocked flip-flop or LATCH ...22

4.2 FORCE function..22

4.3 Clocked D flip-flop..23

4.4 Clocked SR flip-flop..23

4.5 Clocked SRX flip-flop...24

4.6 Clocked JK flip-flop...24

4.7 D flip-flop with Set and Reset...24

4.8 Mono-Flop with optional Reset..25

4.9 Sample and Hold...25

4.10 Sample and Hold with Set and Reset...25

4.11 Edge detectors..25

5 Clock Signals..26

5.1 Built-in immediate clock..26

5.2 CLOCK function...27

5.3TIMER function...27

5.4 TIMER1 function..28

6 Inputs and Outputs...29

6.1 Built-in Inputs..29

6.1.1 iClock...29

6.1.2 End of Initialization..29

6.1.3 Timing inputs..29

6.2 External Inputs and Outputs...29

6.2.1 Digital inputs...30

6.2.2 Digital outputs...30

6.2.3 Analog inputs..30

6.2.4 Analog outputs..31

7 User defined immediate Function Blocks..32

7.1 immediate Function Block Definition...32

7.2 immediate Function Block Call..34

8 The iC run-time model...39

8.1 Combinatorial actions..41

8.2 Clocked actions...42

8.3 Output actions...43

8.4 Input actions...43

8.5 Input/Output network...44

5

9 Compiler and Run-time system..45

9.1 Compiler ..45

9.2 Run-time libraries ..45

9.3 Run-time environment and system...45

10 Bibliography..48

11 The Author..49

Appendix A README ...50

Appendix B Type Definition Table...54

6

1 Introduction

immediate C - iC for short - is an extension of the language C. It utilizes the syntax of C to give
meaning to statements that have no semantic support in C. In addition to standard variables, which are
modified by the flow of instructions, iC provides so called 'immediate' variables, whose values are
updated, whenever a change of input calls for an immediate change in output. An efficient Data Flow
technique implements this strategy.

1.1 Relationship to Object Orientation
immediate C uses the OO-paradigm in its concept. Each immediate variable is an independent object,
which acts on other immediate variables by a number of methods. These methods are expressed in a
number of functions and overloaded on to the logical and arithmetic operators. In conventional OO
languages like Smalltalk or C++, a method is an action which acts on the object owning the method.
Conceptually descriptions of Object Orientation talk of methods being actions or messages sent from
one object to another. It is in this sense that iC immediate variable objects interact with each other by
the use of Data Flow techniques.

1.2 Relationship to Instruction Flow Languages
Traditional High Level Languages such as FORTRAN, Pascal or C are called Instruction Flow
Languages, because they express instruction sequences for abstract machines, which are closely
modelled on the underlying, instruction driven machine. By being independent of the actual machine,
these languages have helped to hide unessential details of the hardware, to make programs portable
and to focus the programmer's attention on the problem to be solved. The overwhelming usefulness of
these instruction flow languages to express precise algorithms is recognized in iC, by including the
whole of C or C++ as a subset, for dealing with algorithmic problems in established ways. Learning of
the language iC should therefore be very easy for C and C++ programmers.

Many of the undesirable characteristics of the underlying hardware are reflected in today's High Level
Languages. These characteristics make it difficult to express a large number of everyday problems
briefly and clearly. Particularly the manipulation of events is not easy to integrate into programs written
in traditional High Level Languages. Yet events play an increasing role in today's interactive, mouse
driven programs. Many different functions must be ready to execute as a result of external or user
generated events, which occur at unpredictable times. The instruction driven computer only executes a
particular instruction, when the flow of instructions in a program gets around to executing that
instruction. This statement may sound pedantic, but much of the complexity of modern programs is a
direct result of this fundamental truism. How does one organize a program, so that it can respond
quickly to many and varied external events? iC provides answers to this question.

The interrupt mechanism, designed to tackle such problems at a system level, is intractable for the
average programmer and is not supported in a general way by most High Level Languages. iC
harnesses interrupts and hides their complexity.

1.3 Programmable Logic Controllers
The situation is even more critical in systems that deal with a large number of external inputs. In the
early 1980's a completely new class of computer was developed to deal with such problems in the
environment of factories and machine control. These are the "Programmable Logic Controllers" or
"PLC" for short. (SPS or Speicher-Programmierbare Steuerung in German) Conventional PLC's have a
standard instruction driven architecture. They differ from conventional computers in two main areas:

• They provide fast bit instructions and data access to individual bits on top of the more conventional
instructions to manipulate data words.

• They have a built in operating system, which runs the stored program over and over. Inputs are
automatically polled at reasonably short intervals and Boolean and arithmetic expressions making
up the stored program are re-evaluated continuously. This is necessary, because outputs and
intermediate values in a PLC are assumed to reflect an immediate transformation of the inputs, as
carried out by the expressions of the stored program.

This organization of PLC's has two very serious drawbacks, which are direct consequences of the
differences mentioned:

• Conventional PLC's require a special CPU, which can never be as cheap as a mass produced
microprocessor chip, or they emulate the PLC instruction set, in which case they are slow.

7

• The cyclic execution of the stored program sets very real limits to the length of possible programs.
The longer the program, the longer the cycle time, which is the time interval at which inputs are
polled. If this time gets too long, the response of the PLC is no longer acceptable for many
applications.

PLC's are facing a crisis on two fronts:

• Traditionally PLC program memories were measured in kilobytes. Today megabytes of memory are
available at low cost. This 1000 fold increase in potential program size cannot be utilized with the
cyclic execution strategy of conventional PLC's. Even with a 10 fold increase in speed, these
machines would be too slow.

• The second crisis is the lack of a High Level Language for PLC's. Most PLC programs are
developed with antiquated tools that support semi graphical languages for Boolean logic and
assembly programming for numerical subsystems. The international standard IEC-1131 is
attempting to fill this vacuum by specifying such a language. Unfortunately this standard simply
freezes current programming practice, by incorporating five different languages, four of which are
the semi graphical and assembly languages in common use today. For algorithmic programming it
introduces a completely new High Level Language called 'Structured Text', which will require a
large learning effort by programmers and whose utility in the limited area of PLC's seems doubtful.
IEC-1131 makes no attempt to confront the fundamental speed problems facing PLC users.

Because PLC's are completely compute bound, the type of program organization they use is
unacceptable for standard computers. Nevertheless many programmers designing event controlled
applications on standard computers resort to polling schemes, despite the drawbacks involved. The
High Level Languages they use do not give them any simple alternatives.

The language iC can be used to program standard computer systems and PLC's in a uniform way. iC
is fast, because it responds immediately to any changes in input, and does not waste time evaluating
expressions, whose input operands have not changed. The extensions which iC offers over the
algorithmic language C, can also be coded graphically, using current CAD packages for IC design. For
factory staff, who require very simple programming methods, the use of Ladder Diagram (LD) or
Function Block Diagram (FBD) in conformity with IEC-1131, using suitable front ends is possible.

1.4 Relationship to Integrated Circuits
iC provides programmers with built in operators, whose function is closely modelled on integrated
circuits. The name iC is a reminder of this fact. Logical AND , OR , EXCLUSIVE- OR and NOT are the
basic functions implemented using a very fast data-flow algorithm. The full range of arithmetic
operators is also available. These are not normally considered as hardware components, although
once they formed the basis of the very important “Analog Computer”. They can be used for
implementing control algorithms, fuzzy logic – the possibilities are endless. Also implemented as
efficient built in functions are the D flip-flop, SR flip-flop, JK flip-flop, shift register and many other
popular integrated circuit types, which are implemented in such a way, that their use in iC programs
follows the same design rules, which apply to their hardware counterparts. These rules have led to a
well-developed hardware technology, whose effectiveness is demonstrated by the success of today's
complex computer hardware. Particularly the concept of clocked functions plays an important role in
the language iC. It gives the same protection against timing races in iC programs, as it provides for
hardware IC designs.

Another idea taken from integrated circuits is Large-Scale-Integration. User defined Function Blocks
emulate LSI circuits and produce complex sub-units with a known functionality and a well defined
external interface, which can be re-used without regard to the internals. IC hardware design may not
be part of the average programmers repertoire, but there is much literature on the subject. The run-
time code is not meant to be just a simulation of IC hardware – the generated code is extremely fast,
because of the data-flow techniques used and can provide useful control programs.

1.5 Summary
Writing programs in the language iC has the added quality, that many simple ideas and relationships,
which should result in direct actions, can be written down immediately in one line.

if (IX0.0) { printf(”Hello! world\n”); }

This is a complete runnable iC program. IX0.0 is an external immediate bit input in IEC-1131
notation, which generates an event when it changes state. The coding of call back routines and other
overhead is not required. It was this thought, which also prompted the name "immediate C ".

8

2 Language description

2.1 Immediate Variables
An immediate variable is a data object that has a value, but which also has the ability to transmit any
change in its value as an event. This event triggers the re-calculation of all expressions that contain
the immediate variable. The fundamental assumption is, that the value of an expression only
changes, if one of the variables making up the expression changes . Thus it is only necessary to
re-calculate an expression, if one of the variables making up the expression changes. Conversely, if an
expression is re-calculated whenever one of its variables changes, and all unnecessary recalculations
of expressions are left out, the value of all expressions will be up to date within a very short time.
Immediate variables provide the mechanism to make this strategy possible.

2.2 Immediate Types
iC introduces the type modifier imm to declare immediate variables of the basic data types int in C
and the basic data type bit, which is a new data type in iC. Type bit declares variables capable of
holding the values 0 and 1. Unless the C or C++ compiler, used to translate the generated code, itself
supports bit as a basic data type, the use of type bit is restricted to imm bit. The word 'boolean' was
avoided deliberately, because it has a different semantic bias in languages where it is used. (Truth of a
test rather than single bit objects). Both imm int and imm bit are value types.

iC also has clocking types imm clock and imm timer, which can only be used as function
parameters. These will be discussed later.

2.2.1 Immediate declarations
An immediate declaration declares an immediate variable to be either of type imm int, imm bit, imm
clock or imm timer, using syntax similar to declarations in C. Any value type variable not declared
before it is used is assumed to be of type imm bit. Undeclared clocking type variables inherit the type
from the assigning function. Calling the immcc compiler with the strict option -S makes declarations
mandatory for all imm variables – this is highly recommended. All variables in a declaration may be
assigned directly.

imm int fader, colour; // declaration only
imm int brightness = fader * colour; // decl and assignment

2.2.2 extern immediate declarations
Just like in C, several iC sources may be compiled separately and linked into a single application.
When immediate variables declared and assigned in one source are referenced in another source,
they must be declared with an extern declaration, before they can be used in an expression.

extern imm int fader, colour;
extern imm int brightness;

2.3 Immediate Expressions
Immediate expressions are arithmetic or bit expressions external to all functions, which contain at least
one immediate value variable. Immediate arithmetic expressions may also contain constant
expressions. An immediate expression is re-calculated whenever the value of one of the immediate
variables it contains has changed. If an expression consists only of constants and no immediate
variables it is a constant expression evaluated once during initialisation.

2.4 Operators in immediate expressions
Most operators available in C may be used with immediate variables. The precedence of the operators
is the same as in C. Some C operators are not valid for immediate expressions, because the
semantics are different. These are the increment and decrement operators ++ and --, as well as
structure and pointer operators -> .(dot) &(address of) and *(pointer dereference). Assignment
expressions += etc. are also not allowed. These restrictions do not apply to embedded C code in
literal blocks and immediate if else or switch statements, which will be introduced later.

Array variables and index expressions using [] are available with the Array extension of the language
using the pre-compiler immac (called automatically). See section section 3.

9

2.4.1 Arithmetic and Relational Operators
The binary arithmetic operators + - * /, the modulo operator %, as well as unary - and + operate on
numeric values and yield numeric results of type imm int. The same applies to the shift operators <<
and >>. If an operand of the wrong type is used with one of these operators, automatic type conversion
takes place. Values of type imm bit are converted to the int values 0 or 1 corresponding to the
values of the bit. The relational and equality operators <, <=, >, >=, ==, != also have numeric
operands, but these operators yield imm bit results by default.

2.4.2 Bitwise and Bit Operators
If both operands of the binary operators &, |, ^ or the single operand of operator ~ are of type imm
int, these operators carry out bitwise manipulation on their integer operands – just like in C. The
result is an imm int. Immediate arithmetic, relational and bitwise logical expressions with numeric
operands may contain constants, as well as immediate operands.

If one of the operands of the binary operators &, |, ^ or the single operand of operator ~ are of type
imm bit, these operators carry out the bit manipulation operations and, or, exclusive-or and not on
imm bit objects. The result is an imm bit. Any operands of type imm int are converted to imm
bit. The numeric value 0 converts to 0 (false), any other arithmetic value converts to 1 (true).
The bit operators are used frequently in immediate C , since bit manipulation is very common in event
driven systems – more so than in algorithmic programs written in conventional languages like C, which
does not even provide a type bit. Such logical bit expressions in immediate C may not contain any
constants or non-immediate values. Constants in immediate bit expressions do not make much sense.
They either do not change a variable (a & 1, b | 0) or they produce another constant (c & 0, d |
1, ~1).

2.4.3 Logical Operators
The logical connectives && and || are executed as arithmetic expressions, when one of the
operands is of type imm int. Evaluation is from left to right, and evaluation stops when the truth or
falsehood of the result is known – just like in C. The result is of type imm bit by default. The unary
complement operator !, operating on an imm int produces an imm bit result.

The operators &&, || and ! with only imm bit operands are interpreted by the compiler exactly like
the logical operators &, | and ~. There is little sense converting such bit operands to integers,
evaluating the arithmetic expression and then converting back to a bit. Since evaluation of && and ||
in bit expressions is not from left to right as expected, but depends on which operands in the
expression change, their use and the use of ! in expressions where all operands are imm bit is
deprecated and causes a warning.

2.4.4 Conditional Operators
The operators ? : implement conditional expressions, which are evaluated as a whole in an
arithmetic context. The conditional expression

expression_1 ? expression_2 : expression_3

is a valid immediate arithmetic expression, which is triggered by a change in any immediate variable in
any of the three sub-expressions. An alternate form of conditional expression, which leaves out the
middle expression is allowed by modern C compilers, particularly by gcc and is allowed in iC (if the C
compiler used supports the construct)

expression_1 ? : expression_3

The following excerpt from 'info gcc' explains the advantages and use of the construct:

5.8 Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted. Then if the first operand is non-zero, its value is the
value of the conditional expression.

 Therefore, the expression

 x ? : y

has the value of x̀' if that is non-zero; otherwise, the value of ỳ'.

 This example is perfectly equivalent to

 x ? x : y

10

In this simple case, the ability to omit the middle operand is not especially useful. When it becomes useful is when
the first operand does, or may (if it is a macro argument), contain a side effect. Then repeating the operand in the
middle would perform the side effect twice. Omitting the middle operand uses the value already computed without
the undesirable effects of recomputing it.

2.5 Function and macro calls
Immediate expressions may contain function calls for several types of functions and macros. All of
these look very similar to C function calls. The differences will be discussed in later chapters. These
can be:

1. Built in iC function calls. The parameter ramps and return values are pre-defined.

2. User defined iC function block calls. These must be defined by the user before they are called.

3. C function calls.

4. C pre-processor macro calls.

C function and macros called in immediate expressions may only have int parameters (if any) and an
int return value. They should be declared as follows to evoke an error message if the function name
is mistyped or the parameter ramp or return value is wrong:

extern int rand(); // C function with no parameters
extern int rand(void); // alternative syntax
extern int abs(int); // C function with 1 parameter
extern int min(int, int); // macro with 2 parameters

When 'strict' is active, any C functions or macros, which are called in immediate expressions must be
declared in the iC code. If 'strict' is not active, mistyped function names with any type of parameter
ramp look like C function calls and will be compiled as such without error. This error is not discovered
until link time. With an extern declaration, a clean error message is produced and the extra effort is
not great. When a pre-declared C function or macro is called in an immediate expression, a check is
made, that the number of parameters is correct. Otherwise an error message is issued.

If declared a second time, the following will evoke a warning if 'strict'

extern bit rand(); // wrong return type – converted to int

If declared a second time, the following will evoke an error if 'strict'

extern int rand; // not used as a function
extern clock rand(); // absolutely wrong return type
extern timer rand(); // absolutely wrong return type

No check is made for C function calls in C fragments controlled by if else or switch statements or
other literal C code, since the compilation is handled by the follow up C compiler. Note: built in iC
functions and iC function blocks can not be called in such C fragments under any circumstances.

2.6 Parentheses
In immediate C it is possible to write mixed arithmetic and bit expressions, nested to any depth using
the usual precedence rules and parentheses.

Immediate arithmetic expressions are evaluated as a whole C expression, every time one of their
component immediate variables changes – but only then. To improve execution speed, it is sometimes
more efficient to break up very long immediate arithmetic expressions with many operands into several
sub-expressions – particularly if each sub-expression is triggered by different operands. In this case
not all the sub-expressions are executed. On the other hand there is a certain amount of overhead for
triggering each new node and execution of a compiled C expression is fast, even if it has many
operands.

Immediate bit expressions are compiled into a network of forward looking nodes, one for each different
bit operand and execute even more efficiently. There is no need to break up a complex immediate bit
expression into sub-expressions – the compiler does this already. Immediate bit expressions
embedded in an arithmetic expression are compiled into separate sub-expressions and only the type
converted arithmetic result is used in the arithmetic expression.

11

2.7 Immediate statements
Most immediate statements are immediate declarations or immediate assignments terminated by a
semicolon. Immediate declarations and assignments may be combined.

2.7.1 Immediate Assignments
Immediate assignments are assignments of immediate expressions to immediate variables external to
all functions. Value changes to an immediate variable are detected in the assignment and this event
triggers the re-calculation of follow on expressions. Like in C, an immediate assignment is also an
immediate expression, which means that assignments embedded in expressions are allowed. As noted
earlier, immediate assignments can be combined with the declarations of immediate variables.

2.7.2 Aliases
Immediate arithmetic and bit assignments, in which the right hand expression consists of only a single
immediate variable are accepted by the iC compiler, but produce no code. This type of statement is
called an alias. The alias name on the left hand side is simply an alternative name for the immediate
variable on the right hand side. Any reference to the alias will be substituted by the right hand side
variable, whose value is always the correct immediate value of the intended assignment. Bit aliases
may be either normal or inverting. The bit not operator ~ does not produce any code when used on an
imm bit operand. All ~x sub-expressions are implemented as inverting aliases of x. Thus the direct
assignment of ~x to another imm bit variable is also an (inverting) alias.

imm bit a, b; b = a; // b is an alias for a (normal)
imm bit x, nx; nx = ~x; // nx is an alias for ~x (inverting)
imm int j, k; k = j; // k is an alias for j
imm int two; two = 2; // two is an alias for 2

2.7.3 The single assignment rule
Immediate assignments must obey the single assignment rule, a rule which applies generally for data
flow systems 1. Any immediate variable may only be assigned in one immediate assignment. The value
of an immediate variable is the value of the expression, from which it is assigned, at all times. A
second assignment to the same immediate variable would force different values on that variable,
causing a conflict. The immediate variable being assigned cannot hold different values simultaneously.
The single assignment rule is monitored by the iC compiler. An error message is generated if it is
broken.

Expressions that occur in C code triggered by immediate conditional if else or switch statements or in
C functions in literal blocks may contain immediate variables. These expressions are not immediate
expressions and are not triggered by those variables. When such an expression is executed in the C
code, the current value of any immediate variable is used.

Immediate variables may even be assigned in C code embedded in immediate conditional if else or
switch statements and in literal blocks. Such an assignment is not an immediate assignment – the
value is changed when the C statement is executed. Nevertheless any change in the immediate
variable assigned in the C code will trigger immediate expressions that contain that variable. Several
such assignments to the same immediate variable may be made inside different sections of C code.
Every new assignment changes the variable in accordance with the intended algorithm. Immediate
variables used in C code must be declared as immC bit or immC int in an iC code section. An
immediate variable that is assigned in C code may not also be assigned in an immediate assignment.

2.8 Immediate control statements
An immediate conditional if else statement and an immediate switch statement are the only control
constructs available in iC. The syntax of both statement types is similar to their C counterpart, except
that braces around the C statements are mandatory. In particular an else if is not allowed, since the if
after the else would have been part of the C statement controlled by the else part of the whole
immediate if statement, which would be very confusing.

if (imm_bit_expression) { C_statement_1 }
if (imm_bit_expression) { C_statement_1 } else { C_statement_2 }
switch (imm_int_expression) { C_statement }

1 see Werner Kluge: The organization of Reduction, Data Flow, and Control Flow Systems - pp. 317.
 The MIT Press 1992. [Kluge92]

12

These are valid immediate statements when they occur external to any function and when the
controlling expression is an immediate expression. The controlling expressions in immediate
conditional if else or switch statements are synchronized by a clock. The default clock is iClock.
Other clocks or timers may be specified as explained in section 5. In all cases any change in the
controlling immediate expression, synchronized by the controlling clock, triggers execution of the C
statements.

2.8.1 Immediate conditional statement
immediate conditional statements use the keyword if and optionally else. The controlling expression
for an immediate conditional statement is an immediate bit expression. If not, it is converted from int
to bit automatically. A 0 to 1 transition or rising edge causes C_statement_1 to be executed. A
1 to 0 transition or falling edge causes C_statement_2 to be executed (if an else is coded). The
C_statements are embedded C compound statements, not immediate statements.

%{
int a, b, c; /* C declarations in a literal block */
void reset(void); /* C function declaration */
%}

imm bit sw1, sw2, sw3; // immediate declarations

if (sw1 & sw2 | sw3) { /* imm controlling expression */
a = 1; b = 12; c = -2; /* C code executed on rising edge */

} else {
reset(); /* C code executed on falling edge */

}

2.8.2 Immediate switch statement
For the immediate switch statement, the controlling expression is an immediate int expression. The
C_statement is an embedded compound statement, which has the usual form of a C switch
statement with case labels. Any change in the controlling expression triggers the switch statement. The
value of that expression after the change is applied to the switch and the selected case is executed.

%{ enum Fuzzy { OFF, DIM, MEDIUM, BRIGHT }; %} // literal block
switch (brightness) { // declared and assigned above

case OFF: lightVoltage(0); break;
case DIM: lightVoltage(10); break;
case MEDIUM: lightVoltage(18); break;
case BRIGHT: lightVoltage(24); break;
default: lightVoltage(24); break;

} // end of immediate switch statement

The immediate conditional if else and switch statements open the way to trigger the execution of short
C fragments on particular events. These events are either rising or falling edges of bit values or
changing arithmetic values. If more than a fragment of C code is involved, it is good practice to code
this in a C function, and to call that function in the immediate statement. Very long immediate
statements would make the purpose of those statements unclear. Depending on the time critical nature
of the application, C code should not take too long to execute, because during the execution of such C-
fragments the processing of other immediate events is held up.

2.9 Literal blocks
Literal blocks are sections of C code enclosed in special braces %{ and %}. They may occur before,
between and after any immediate statements. Literal blocks are copied verbatim to the front of the
generated C output code (without the special braces). Literal blocks are useful to declare any C
variables, define macros and to declare and define auxiliary C functions to support the application. Any
C-pre-processor statements such as #include or #ifdef must be written as %#include or
%#ifdef in the literal block. The %# must be written without intervening spaces. The % is dropped by
the iC compiler in copying the literal block to the generated C code. This allows C-pre-processor
statements for the iC sections of code which are resolved before the iC compilation.

13

%{
%#include <math.h> /* special iC-pre-processor syntax */
int x, y, z; /* declarations in a literal block */
int abs(int); /* C function declaration */
%}

The run-time system will call the function iCbegin() when an iC application is started before any
immediate processing. This function can be provided by the user in a literal block. If it is not provided,
an empty function iCbegin() returning 0 is provided by the system. User implementations should
return 1. One use of iCbegin() is to initialise immC variables. It may even contain a fork() call to
spawn a child process, which will run in parallel with normal immediate processing. This opens up the
way to build mixed applications using conventional multi-process or multi-threaded control strategies in
parallel with immediate C code, which leaves a lot of CPU time to do other things.

The complementary function iCend() is called by the run-time system when an iC application is
terminated externally (iC applications never terminate by themselves). iCend() could be used to free
memory allocated with malloc or new.

%{
int iCbegin() { ...; return 1; } /* optional C initialisation */
int iCend() { ...; return 1; } /* optional C termination */
%}

If the code in literal blocks, or code in C blocks controlled by an immediate if else or switch, is
specifically C++ code, then the generated code must be compiled by a C++ compiler. The Code
generated from the iC statements is pure C code.

2.10 Comments
C style comments /* ... */ can be used anywhere between tokens of iC programs.
C++ style comments may be used at the end of iC lines. // ...

Some older C compilers do not support C++ comments, so their use in literal blocks and C statement
blocks controlled by if else or switch may lead to portability problems.

2.11 Scope of immediate statements
Immediate variables are global or static and must be declared external to all functions like other global
variables in C. Moreover all immediate statements must also be placed external to functions. A
statement in a function is only executed (made active) during the execution of that function. Immediate
statements are active at all times.

Consecutive immediate statements are not executed in sequence. Each immediate statement is
independent of all other immediate statements. They can be placed in any order, without influencing
the behaviour of the program. This is analogous to the placement of global variables and functions in
C.

Immediate assignments are often combined with their declarations and look like the initialization
expressions of ordinary global C variables. In C, this initialization takes place before the function main()
is started. In iC, immediate statements simply stay active until the program is stopped. For most of the
time the process running the iC program waits in a select() call, which wakes up whenever an external
input or internal timer changes. Because the processing required to react to such an input is in the
order of microseconds, this strategy ensures that the CPU loading of an iC process is minimal. This
can be observed easily with tools like xosview under Linux. Times measured with a modern 1.8 GHz
processor were > 100 us, which is mostly overhead to get the input process scheduled. The time to
even execute a chain of 10 consecutive events is of the order of 10 us. This corresponds to a 0.1%
loading for a process including a 100 ms timer, of which 0.01% is actually used by the immediate
statements.

/* VERY SIMPLE WASHING MACHINE PROGRAM */
imm bit on; // switch to turn system on/off
imm bit waterLo; // water level switch
imm bit tempLo; // thermostat, turns off when hot
imm bit fill = on & waterLo; // fill with water until filled
imm bit heat = on & ~waterLo & tempLo; // heat water when filled

14

2.12 Intrinsic limitations of immediate statements
Arrays of immediate variables have been realized and will be covered in the next chapter. Structures
containing immediate variables have not been realized in the current release, although they are
possible and may be implemented in a future release. Pointers to immediate variables in immediate
expressions are semantically indeterminate. They are therefore not implemented. This is also pointed
out in one of the recommendations in the IEC-1131 standard, which justifies the language 'Structured
Text' instead of C on the grounds, that a pointer in a machine control program has no meaning and
could cause disaster. The same limitation has been recognized in the language Java, which only
recognizes references as constant pointers.

Immediate assignments, in which the left hand side variable appears in the right hand side expression
are of very doubtful utility. Such a statement expresses a very tight feedback loop, which will either lock
up, or generate a high speed oscillator. For this reason a warning message is generated by the iC
compiler.

imm bit a, b;
a = a & b; // a locks up when b becomes 0
b = ~b | a; // b oscillates when a is 0
imm int j;
j = j + 1; // j never catches up with itself

For the above reason the C assignment operators +=, -= etc. as well as ++ and -- cannot be used in
immediate statements. Feedback over several statements is allowed, but oscillations are controlled so
that the system does not become compute bound. If oscillations do occur, a runtime warning is
produced since they are probably not intended.

Like in any programming language, it is possible to write incorrect iC programs. It is the job of the
programmer, to understand the model on which the execution of the iC language constructs is based,
and to create programs that use these constructs correctly. iC is modelled on hardware building
blocks, which provides an easy starting point.

The following was probably intended by the last statement above:

imm bit gate, p;
imm int j; // j counts every rising edge
if (gate & p) { j++; } // of p, while gate is hi

In this example, gate & p is an immediate expression that triggers execution of the non-immediate C
statement j++; Assignment operators +=, -= etc. as well as ++ and -- with immediate variables are
allowed in embedded C statements. The above construct is one way to implement a counters in iC. A
better way is shown in section 4.9.

2.13 Pragmas
Pragmas affect the compilation phase of an iC program. Pragmas are introduced by the keywords use
and no.

use turns a pragma option on
no turns it off

Currently two pragmas are implemented in immediate C: alias and strict.

use alias; // equivalent to -A command line option
no alias; // turn alias option off

use strict; // equivalent to -S command line option
no strict; // turn strict option off

1. The alias pragma or -A command line option forces the compiler to generate a node for
each alias in the generated C-code (default is to generate no node). This is needed in two
circumstances:

● It is required, if an iC source refers to an alias in another iC source by an extern
reference. Since all references to aliases are normally removed from the compiled code, the
C-object modules, which are generated from such code could not be linked. With the use
alias option, the code can be linked and the remaining aliases are resolved at start up.

● The use alias option is also useful for debugging. Only when it is set, are alias
names displayed as active words by iClive.

15

2. The strict pragma or -S command line option forces the compiler to expect a declaration of
all immediate variables, before assignment. The default with no strict, is to generate an
imm bit node for an assignment to an undeclared name. Similarly an assignment to an
undeclared name from a CLOCK() or TIMER() function call results in a default imm clock or
imm timer variable. Such laxness is OK for small single source projects, but can lead to
problems with larger projects. I had a case in a large project, where I had declared a number
of imm int variables and mistyped one of them, so the correct name was not declared. This
name was then assigned - but converted to imm bit and then back to imm int when used,
leading to incorrect arithmetic.

As noted earlier, C functions and macros should be declared extern with their correct
parameter ramp and return value. When “strict” is active, error messages are output if an
undeclared C function or macro is called in an immediate C expression.

Several options (currently only two) may be set or reset together in one pragma call:

use alias strict; // equivalent to -AS command line option
no strict alias; // turn both options off

It is recommended to write

use alias strict;

as the first line of all production iC programs - the space overhead for extra alias nodes is insignificant
and debugging becomes much easier. Particularly the strict option is highly recommended anyway
and results in no binary overhead. (Grateful acknowledgements to the designers of PERL).

The scope of these pragmas is a file. If a pragma is enabled in one file it carries over to an included iC
header file. If on the other hand a pragma is changed in a header file, it reverts to its previous value in
the iC file after the #include statement, which includes the header file. This makes sure that sloppy iC
programs, which include a header file, which uses “strict” syntax, will not report errors, because
they do not follow the “strict” syntax. This scope feature can only be used successfully with the use
strict pragma, since use alias only comes into effect during C code generation – at this point the
complete source has been parsed. This means use alias should definitely be used once in iC
programs, which consists of several parts with extern references between them. Other single source
iC programs can use alias , which produces slightly larger code, but which can be debugged
without recompiling with the -A flag.

16

3 Arrays

Arrays in conventional instruction flow languages are a named collection (often of fixed length) of
similar variables, which are accessed by an index expression, eg a[5]. Each such entity is an individual
object, but in instruction flow languages the index is often a variable, which is manipulated in a loop
and references to the individual indexed entities occur sequentially, as in the following C example:

for (n = 0; n < 4; n++) {
a[n] = b[n] * c[n];

}

3.1 Immediate Arrays
In data flow languages like immediate C loops at run-time are meaningless. Each immediate variable is
an entity, which is controlled by one assignment statement. The variable changes, when a variable in
the expression of the controlling statement changes and not when some loop runs. It is well to
remember, that immediate variables and their controlling expressions are more like IC building blocks
connected in a static network. In that sense immediate Arrays are like hardware registers.

Arrays may be defined in immediate C , but each entity acts individually at run-time, which means that
an individual immediate object must be generated for each immediate array member.

3.2 Use of immediate Arrays
Arrays in conventional languages as well as in immediate C give programmers extra capabilities to
express themselves. These fall into two distinct categories:

1. Arrays allow the writing of repeated similar statements as one statement – this saves a lot of
writing, but could also be done without arrays.

2. Additionally arrays allow the parametrisation of the array length, both within the program and
in the command line of the program, which is probably more important. For immediate C , this
makes possible the writing of control programs in which the number of control elements or
groups is variable and the actual number is not bound until compile time. This would not be
possible without arrays in the language.

NOTE: the definition of dynamic arrays, whose sizes change at run-time is meaningless and
not possible in immediate C .

An example of the usefulness of arrays in the language would be an iC program controlling lifts in a
building. The number of floors varies from building to building – so do the number of parallel lifts, which
may be required. With arrays, a single iC program can be written, which can be compiled for a different
number of floors and a different number of parallel lifts as follows:

immac -P FLOORS=12 -P LIFTS=2 liftControl.ica

3.3 Implementation of immediate Arrays
Since each immediate array member is an individual immediate object at run time, it is important for
debugging with iClive to be able to have a listing showing each individual array member – not just its
collective form, eg a[n]. To achieve this, an iC program containing arrays is translated by the pre-
processor immac to iC code without arrays. This is a simple text operation in which macros are
expanded, loops are unrolled and index expressions are evaluated.

The iC language with arrays has three additional language extensions:

1. C-style 'FOR loops', which define a loop variable and a range.

2. Index expressions in square brackets, which allow the definition of array variables – usually in
a loop.

3. Macro definitions, which are processed directly by immac - can be defined in two ways:

● in C-pre-processor style with %define instead of #define, eg
%define FLOORS 12

● in the command line, just like for a C compiler, eg
-P FLOORS=12

17

Macros will mostly be used inside the square brackets of an array variable or in the control line
of a FOR loop, but they can be used anywhere in the iC code or in the definition of another
%define macro – macros may be nested. The above implies, that the immac pre-compiler
could be used as a macro pre-processor for iC programs without any arrays at all.

iC programs containing the above three extensions are called iCa programs and should be written in a
file with the extension .ica – the immac pre-compiler translates an iCa program to an iC program with
the extension .ic in which macros and 'FOR loops' are expanded and immediate array instances are
converted to simple immediate variables. The following iCa snippet in file lift.ica

%define FLOORS 4

FOR (n = 0; n < FLOORS; n++) {
imm bit a[n] = b[n] & c[n];

}

expands to the following iC file lift.ic when compiled by immac:

imm bit a0 = b0 & c0;
imm bit a1 = b1 & c1;
imm bit a2 = b2 & c2;
imm bit a3 = b3 & c3;

The 'FOR loop' is executed at compile time and generates repeated copies of the statement(s) in the
compound statement controlled by the loop. This only makes sense, if there are elements in the loop
statement(s), which are modified by index operations using the control variable of the 'FOR statement'
– in the above example that is the variable n.

The translation of indices in square brackets is carried out in two steps:

1. The expression in square brackets is evaluated as an integer expression.

2. The numerical value produced replaces the square brackets and the expression it contains.

In the above example the index expressions are simply the variable n. But the index expressions can
be more complex. A feature of iCa indexing may seem strange at first, but it turns out to be very useful;
the square bracketed index expression may be placed anywhere in a word, not only at the end of a
word. It may even be placed on its own – in that case the expression is evaluated and becomes a
suitably modified integer constant in an iC statement. The following example shows both:

FOR (n = 0; n < 10; n++) {
QB[n] = IB[n+1] * [n+2];
QX[n/8].[n%8] = IX[n/8].[n%8] & IX[10+(n/8)].[n%8]; // out: [n]

}

expands to :

QB0 = IB1 * 2;
QX0.0 = IX0.0 & IX10.0; // out: 0
QB1 = IB2 * 3;
QX0.1 = IX0.1 & IX10.1; // out: 1
QB2 = IB3 * 4;
QX0.2 = IX0.2 & IX10.2; // out: 2
QB3 = IB4 * 5;
QX0.3 = IX0.3 & IX10.3; // out: 3
QB4 = IB5 * 6;
QX0.4 = IX0.4 & IX10.4; // out: 4
QB5 = IB6 * 7;
QX0.5 = IX0.5 & IX10.5; // out: 5
QB6 = IB7 * 8;
QX0.6 = IX0.6 & IX10.6; // out: 6
QB7 = IB8 * 9;
QX0.7 = IX0.7 & IX10.7; // out: 7
QB8 = IB9 * 10;
QX1.0 = IX1.0 & IX11.0; // out: 8
QB9 = IB10 * 11;
QX1.1 = IX1.1 & IX11.1; // out: 9

18

As shown above, index expressions may even be used in comments. This can be useful, because the
expanded iC text must later be used for debugging with iClive – the original text with 'FOR loops' and
index expressions is not meaningful for following the values of actual nodes at run-time. The above
example already gives a hint of how much writing can be saved. The way I/O bit variables following the
IEC-1131 standard are expanded is particularly useful.

The iCa extensions to the iC language can be embedded as additional lines in regular iC code. A FOR
statement and a %define macro definition may not be embedded in the middle of a line of iC code –
not even between iC statements, which have been written in one line. This limitation is similar to the
limitations imposed by the C pre-processor cpp on the C language.

3.3.1 FOR loops
'FOR loops' follow the syntax of C 'for statements' with the difference, that the controlled iC statements
must be enclosed in braces (which is also required for immediate switch and if else statements):

FOR (expr1; expr2; expr3) {
iC statement(s), which are repeated under control of the loop
or nested 'FOR loops'

}

Other restrictions are:

1. The controlling FOR (;;) must be written in a single line.

2. The opening brace may follow the FOR (;;) on that line or must be written by itself on the next
line.

3. The closing brace must follow any iC statement(s) on a line by itself.

4. The 'FOR statement' line and the lines containing braces controlled by the 'FOR statement'
may finish with a C or C++ comment (a C comment must finish on that line). There may be no
leading or embedded comment(s).

5. A 'FOR statement' may only use one control variable, which is an int by default:

FOR (n = 0; n < 10; n++) or FOR (int n = 0; n < 10; n++)

The control variable is the first 'word' of expr1, which is not 'int' followed by '='. The word
'int' in the second form is optional and can be written to remind programmers, that the control
variable is an integer. The control variable may not be declared anywhere else.

6. Other atoms in the three expressions must be either constant expressions or expressions
which contain control variables of the current and of outer 'FOR loops'. All expressions may
contain macros, which must expand to integer constants or expressions containing valid loop
control variables. Under no circumstances may immediate variables be used in these
expressions.

7. The names of control variables must be different from any immediate variable.

8. The scope of the control variable of a 'FOR loop' begins when the control variable is initialised
in the 'FOR statement' and ends with the final matching brace. The control variable is not valid
outside of this scope.

Since immac is implemented as a Perl script, an alternate Perl type of 'FOR loop' may be used,
although its use is deprecated. For completeness it is described here.

FOR n (<Perl type list>) {
iC statement(s), which are repeated under control of the loop
or nested 'FOR loops'

}

Similar restrictions to those above apply. The variable after the 'FOR' is the loop control variable. It
may optionally be preceded by the word 'int'. The control variable is given each value of the 'Perl list' for
each iteration of the loop. Some powerful manipulations are possible with this form.

FOR int n (0 .. 3) {
a[n],\

}

produces

19

a0, a1, a2, a3,

whereas the following loop

call(\
FOR n ("abc", "def", "ghi", "jkl") { // list of strings

[n],\
}\
);

produces

call(abc, def, ghi, jkl,);

As shown in the two examples above, lines terminated by a back-slash (\) are output without starting a
new line – this make it possible to generate lists in a single line. This applies both outside and inside
'FOR loops'. The end of the 'FOR loop' will terminate such a generated list, unless the final brace of the
'FOR loop' is also followed by a back-slash (\) as shown in the generated function block call statement
in the last example above. The last parameter in that generated call statement is followed by a comma,
which is allowed in iC for parameter lists.

Comma separated lists in normal and extern declarations must be terminated by a semi colon. They
may not have a comma followed by a semi colon ',;' at the end. To achieve this, a special
characteristic of iCa index expressions is used (see next paragraph). The value in square brackets
may be strings as well as numbers, since they are actually generated by Perl code. To generate a
variable length – single line – declaration, use the following:

%define MAX 5 // iCa macro explained in section 3.4

imm bit\
FOR (n = 0; n <= MAX; n++) {

a[n] [n < MAX ? "," : ";"]\
}

produces

imm bit a0, a1, a2, a3, a4, a5;

Each execution of the second conditional index expression [n < MAX ? "," : ";"] in the loop for
n < 5 produces a single comma, which is appended – the last execution of the index expression
produces a semi colon. For this to work, the first string must contain a comma – the second string can
be any value – even the empty string "".

The 'FOR statement' line of both types of 'FOR loop' and the lines containing the associated braces
are not copied to the target except as comment lines, if the -a option is active for the immac compiler.

3.3.2 Index expressions
Index expressions are expressions in square brackets usually involving integer constants and loop
control variables. Unlike in other languages these 'index' expressions can be placed anywhere in the
iC code – not just as an index of an array variable. immediate array variables cannot even be declared
directly – they come into existence as simple immediate variables by evaluating the index expression
and replacing the square brackets by the numeric or string result of that evaluation. The underlying
simple immediate variables must of course be declared (unless not strict) – this is best done as
follows:

FOR (n = 0; n < 10; n++) {
imm bit a[n];

}

Normally the square brackets are placed after a name, which then makes the array variables look like
those in C. But there are special cases where the square bracketed index expression is placed
somewhere else, as we saw in the earlier examples (computing IEC-1131 I/O variable names).

The semantics of index expressions is, that the expression in square brackets is evaluated during
compilation and the numerical or string result replaces the square brackets and the expression they
enclose. When the index expression is a simple array reference, this produces a name followed by a
number.

20

Normally index expressions occur in iC code in a 'FOR loop'. I deliberately say iC code and not iC
statements, because 'FOR loops' are used not only to generate lists of statements, but also lists of
parameters – both for the definition and the call of function blocks, whose parameter lists can be varied
at compile time. Another use is varying constant parameters. Inside a 'FOR loop' or a nest of 'FOR
loops', the iC code usually use the 'FOR loop' control variable(s) in the index expression(s) to make
each repeated iC code line different.

For index expressions in immediate C code outside of a 'FOR loop', the expression must be a constant
expression – no variables are allowed (remember no 'FOR loop' control variables are in scope
anyway). Nevertheless an iC variable, which must be used as an indexed array variable inside a 'FOR
loop' looks better if it follows the same syntax outside of the loop. The variable a[1] could of course
be written as a1 – this is the same immediate variable. But inside a loop it must be written as a[n]
and only the varying value of n will produce a0 a1 etc.

Index expressions in embedded C code – either in a literal block or in a compound C statement
contolled by an immediate if else or switch statement may have index expressions, but they are
part of the C code and are not changed except index expressions, which contain an in-scope FOR loop
control variable. This means that the translation of constant index expressions – as described in the
previous paragraph - are not carried out in embedded C code. In the rare instances where such a
translation is needed, it must be done manually – write a1 instead of a[1].

A special case in embedded C code occurs, if a numerical value generated by the control variable of a
FOR loop must be placed inside the square brackets of a C array reference. This can be done by
simply embedding the iCa index expression in the C index expression – eg:

if (IX0.0) {
int carray[3]; // start of embedded C code
FOR (n = 0; n < 3; n++) {

carray[[n]] = icarray[n];
}

}

produces

if (IX0.0) {
int carray[3]; // start of embedded C code
carray[0] = icarray0;
carray[1] = icarray1;
carray[2] = icarray2;

}

As can be seen in the above example, iCa 'For loops' may be embedded in C code – this is the reason
why the keyword 'FOR ' was chosen instead of 'for' – the C code may also contain C for statements.

3.3.3 immediate Array syntax
To sum up, immediate arrays are not declared as such – variable names are used with index
expressions in square brackets. The programmer must be aware that this generates simple immediate
variables starting with the array name followed by a number. Such generated variable names cannot
be used anywhere else – this would show up as a multiple declaration during iC compilation. If we use
a one-dimensional array in an iCa program – eg sa, any array reference will simply have a number
appended to the array name in the generated iC code.

i = 2, sa[i] produces sa2
i = 22, sa[i+1] produces sa23

A special case are multi-dimensional arrays. If we use the standard C syntax to write a multiple array
reference, eg ma[i][j], and the immac pre-processor did not take special action, we would get the
following compile resolution for the following pairs of index values:

i = 2, j = 34 ma[i][j] would produce ma234 // NOT output
i = 23, j = 4 ma[i][j] would produce ma234 // NOT output

This would be unsatisfactory, because it is ambiguous – therefore immac inserts a letter x between
adjacent index expressions, producing the following output instead:

i = 2, j = 34 ma[i][j] produces ma2x34
i = 23, j = 4 ma[i][j] produces ma23x4

21

This is no longer ambiguous. Any multiple index is separated by an x, which is easily recognised in the
generated iC code as a member of a multiple-dimensional array – even the numerical index values can
be recognised easily in the generated names.

Both in C and by analogy in immediate C with arrays (iCa), array names and the index expressions in
square brackets (and of course the expressions in the square brackets) may be separated by spaces
and tab's – as follows:

i = 2, j = 34 ma [i] [j] still produces ma2x34
i = 23, j = 4 ma [i] [j] still produces ma23x4

One caveat applies for immac: such an array name with all its subsequent square bracketed index
expressions must be in the same line. (In C any sort of white space is allowed).

Another case where immac inserts an extra character are array names which finish with a numeral.
This could also lead to ambiguity if special action were not taken:

i = 2, sa9 [i] produces sa9y2
i = 22, sa9 [i+1] produces sa9y23

Although the way immac handles array names, which finish with a numeral avoids ambiguity, such
names should be avoided, because in the generated iC code they look too much like expanded array
names with an extra index, which could easily lead to clashes. To avoid this clash a y is inserted in this
case.

String index expressions in square brackets, which contain a string value in parentheses, eg

[n < MAX ? "," : ";"]

are not separated from an adjacent index expression by x or y.

In every case, the names generated from single- and multi-dimensional array references are well
formed iC variables, which show their name and index value(s). The main thing to remember with array
references is, that every array reference translates to a simple iC variable name, which shows up in the
generated iC code, which will normally be a lot longer than the iCa code, but which must be used for
live debugging with iClive. The mental translation between indexed array references and the resolved
iC names is so simple, that it should not cause any problems to the user.

3.4 immac Macro facility
The pre-compiler immac provides a light weight macro facility very similar to that provided by the C
pre-processor cpp. Only simple word macros may be defined, but not macro's with parameters. The
keyword to introduce an immac macro definition is %define not #define – that is reserved for cpp,
which can also be used in conjunction with the full iC compiler immcc.

%define LENGTH 4

The same macro term LENGTH could also be pre-defined in the command line with the -P option:

immac -P LENGTH=8

Unlike cpp, the definition in the command line has precedence over the definition with a %define line
in the program. This allows iCa programs to define default values for macro terms, which can be re-
defined in the command line. Macro definitions can be any sort of text, which may also include
previously defined macros. For replacement as index values, they should of course reduce to numeric
values.

%define WIDTH (5+1) /* C comment */
%define AREA (LENGTH * WIDTH) // C++ comment

As shown above %define lines may be terminated with a C or C++ comment. As with 'FOR loop'
control lines, a C comment must finish on the %define line. Also the %define lines are not copied to
the target except as comment lines, if the -a option is active for the immac compiler.

Macro replacements may be made in all parts of the iCa code. They are of course particularly useful to
parametrise the termination of a 'FOR loop' and hence the number of blocks of iC code, which is
generated by the 'FOR loop'.

22

4 Built-in Functions

iC has a number of built in functions, which are so central to the operation of the system, that they
have been made a part of the language. They are implemented as efficient building blocks in the
supporting run time package. Functions, which could not be created from simpler iC statements are
generated by the compiler – others are defined internally as built-in Function Blocks. All except the
LATCH and the FORCE functions are 'clocked', which is analogous to similar functionality in hardware
IC's.

4.1 Unclocked flip-flop or LATCH
The unclocked R-S flip-flop is the LATCH function with the following calling sequence:

LATCH(set, reset)

The following truth table describes the LATCH function:

set reset LATCH(set,reset)

Q

0 0 Q

1 0 1

0 1 0

1 1 Q 2

The LATCH function is particularly fast and efficient, using only a single gate node. It is of course
possible to program a latch function with a pair of cross coupled OR gates. In iC this looks as follows:

imm bit set, reset, Q, Qbar;
Q = set | ~Qbar;
Qbar = reset | ~Q; 3

The disadvantage of this implementation is the fact that its function as a latch is hidden, that two gates
are used and that Q and Qbar are both 1, when set and reset are 1 (which means that Qbar
should never be used). LATCH clearly shows its function.

4.2 FORCE function
Closely related to the LATCH function is the FORCE function with the following calling sequence and
truth table:

FORCE(arg1, on, off)

arg1 on off FORCE(arg1,on,off)

0 0 0 0

1 0 0 1

X 1 0 1

X 0 1 0

0 1 1 0

1 1 1 1

The FORCE function passes the value of arg1 to the output if both on and off are 0 (or both are 1).
If only on is 1 then the output is forced to 1, independent of the value of arg1. Conversely if only off
is 1 then the output is forced to 0. This function is useful for testing.

2 Note the memory behaviour of a LATCH when both set and reset is 1
3 Note for PLC programmers: the order of the set and reset statement has no influence on the output of flip-flops and latches
as it does in sequentially executed PLC programs - even in the case of this latch example using two gates.

23

Note for deep thinkers: the following expression generates a LATCH function from a FORCE
function. This is how a LATCH is generated by the iC compiler from the more fundamental FORCE
function - using feedback of its own output to hold that value at its input, unless the ‘on‘ or ‘off‘
inputs force the output to a different value.

(temp001 = FORCE(temp001, set, reset))

4.3 Clocked D flip-flop
The simplest clocked flip-flop is the D flip-flop or delay memory element, a function having a single
input, a clock input and an output equal to the input in the previous clock period.

D(expr, c) or D(expr) /* default iClock used as clock */

The following truth table describes the D flip-flop:

expr D(expr,c)

Dn Qn+1

0 0

1 1

The D flip-flop has become the most commonly used clocked flip-flop in hardware design. Its
application is called for, when several logic expressions must produce synchronized outputs, so that
any further logic done with these outputs does not suffer from timing races. A typical example is the
implementation of a state machine. The D flip-flop is also a 1 bit memory element, which can store
information from one clock period to the next. The D flip-flop is called for in any design where feedback
is involved. The use of the clocked D flip-flop in iC will probably fall into a similar pattern.

Examples of statements using D flip-flops is the generation of a pulse on the rising edge of an input
and of a pulse on a change of input.

imm bit input;
imm bit rise = input & ~D(input);
imm bit change = input ^ D(input);

The output 'rise' goes hi when 'input' goes hi and goes lo again when the output of the inverted D flip-
flop goes lo after the next (implicit) clock pulse. The second example uses the exclusive-or operator ^
to generate a pulse on both the rising and falling edge of the input.

4.4 Clocked SR flip-flop
The memory element that is represented in most PLC instruction sets is the R-S flip-flop. This flip-flop
has two inputs. The rising edge of the set input puts the flip-flop in the "one" state and the rising edge
of the reset input puts the flip-flop in the "zero" state. Many books on switching theory describe a
simple unclocked latch memory element by the name R-S flip-flop. Following the usage in IEC-1131,
and because the set parameter precedes the reset parameter in the calling sequence, the clocked Set-
Reset flip-flop was named SR flip-flop in iC:

SR(set, reset, c)

The following truth table describes the SR flip-flop:

set reset SR(set,reset,c)

Sn Rn Qn+1

0 0 Qn

0/1 X 1

X 0/1 0

1 1 Qn

The SR flip-flop implemented in iC differs marginally from the classical R-S flip-flop described in the
literature, which has the disadvantage that Qn+1 is undefined for S and R both "one". The design rules

24

stated that S and R must never be "one" together. Since this would cause unwarranted confusion the
implementation with the above truth table was chosen, which gives identical results with designs
following the rules of the classical R-S flip-flop. If the rule of both inputs "one" is ignored, the results are
still easy to interpret. For the above reasons clocked R-S flip-flops are rare as integrated circuits.

4.5 Clocked SRX flip-flop
In practice the simple clocked SR flip-flop can be difficult to control under the following conditions:

A 0/1 set transition has occurred which sets the flip-flop and some time later a 0/1 reset transition
occurs which resets it, while set is still a 1. Even if reset goes back to 0, the set input is not active
again until it goes back to 0 and then to 1 again. This works well in many situations, but can be counter
intuitive for which reason the SRX flip-flop or the JK flip-flop can be used more effectively.

SRX(set, reset, c) equivalent to SR(set & ~reset, reset & ~set, c)

The following truth table describes the SRX flip-flop:

set reset SRX(set,reset,c)

Sn Rn Qn+1

0 0 Qn

0/1 0 1

0 0/1 0

1 1 Qn

1\0 1 0

1 1\0 1

When both set and reset are 1, then both internal S and R inputs are 0. If there is a 1\0 transition on
either set or reset, then the alternate input has a 0/1 transition, which sets or resets Q.

4.6 Clocked JK flip-flop
Instead JK flip-flops were made, which toggled their output on every clock pulse, when J and K are
both "one". In recent years even these have not been listed in the IC data books. A JK flip-flop has
been implemented in iC. :

JK(set, reset, c) equivalent to SR(set & ~Q, reset & Q, c)

The following truth table describes the JK flip-flop:

set reset JK(set,reset,c)

Jn Kn Qn+1

0 0 Qn

1 0 1

0 1 0

1 1 ~Qn

4.7 D flip-flop with Set and Reset
D flip-flops may have an optional reset input. Another option is to have both a set and reset input as
well as the D input. The names of these variants indicate which parameters are required:

DR(expr, reset, c)
DSR(expr, set, reset, c)

For all built in functions, each parameter may have its own clock parameter. If a clock parameter is
supplied it applies to all parameters on its left, which do not have their own clock. If no clock parameter
is specified, the built in iClock is used.

25

4.8 Mono-Flop with optional Reset
The Mono-Flop, or SRT() function is a modified SR flip-flop, in which the output is internally connected
back to a reset input. This internal reset is usually clocked by a TIMER, which is controlled by a delay
parameter. The delay parameter may have a fixed or variable numeric value. The SRT output is reset,
when the number of "TIMER" ticks corresponding to the value of "delay", when the SRT was set, has
occurred. An additional optional reset parameter can reset the SRT mono-flop prematurely.

SRT(set, timer, delay)
SRT(set, reset, timer, delay)

Instead of clocking with a delay TIMER, any clock may be used. The SRT mono-flop is then reset on
the next clock pulse after it has been set. When no clock is specified iClock is used, which produces
a thin pulse, one clock period wide.

4.9 Sample and Hold
This function is a direct analogy of the clocked D flip-flop for arithmetic values. The arithmetic output
equals the arithmetic input in the previous clock period.

SH(arithmeticExpr, c)

The sample and hold function can be used to sample fast changing arithmetic inputs at a constant
clock rate. Other uses are the implementation of many useful constructs such as state machines,
counters and shift registers, to name a few.

imm int count = SH(count + 1, c); // count clock c pulses
// shift register with b as input in the least significant bit.
imm bit b; // b assigned somewhere else
imm int shift = SH((shift << 1) + b, c);

4.10 Sample and Hold with Set and Reset
The Sample and Hold function also comes with either reset or set and reset inputs. When the reset
input is clocked, the output is set to all 0's. By analogy when the set input is clocked the output is set to
all 1's. The inputs set and reset are imm bit expressions; whereas the main input
arithmeticExpr and the output are imm int.

SHR(arithmeticExpr, reset, c)
SHSR(arithmeticExpr, set, reset, c)

4.11 Edge detectors
It is often useful to generate a pulse on the rising edge of a logic signal or on a change of value. These
pulses should turn off at the next clock. In connection with the D flip-flop, expressions were shown
which generate such pulses. Since these operations are quite important, more efficient functions
RISE(expr,c), FALL(expr, c) and CHANGE(expr,c) are implemented in iC. The following statements
achieve the same results:

imm bit input;
imm bit rise = RISE(input, c); // pulse on rising edge
imm bit fall = FALL(input, c); // pulse on falling edge
imm bit change = CHANGE(input, c); // pulse on both edges

The CHANGE function is also implemented for arithmetic expressions (type int). The output is
nevertheless of type bit.

imm int value;
imm bit arithmeticChange = CHANGE(value, c);

The bit variable arithmeticChange pulses every time value changes, qualified by the clock c.
The clock limits the rate at which changes are recognized. This is often useful with numeric values,
which may change at a high rate, and a slower sampling rate is called for.

The pulse outputs of all edge detectors are just long enough, so that they catch the next clock pulse
after the edge, but only that one clock pulse – not more. When the output of an edge detector is used
directly or indirectly as input of another clocked function with the same clock, correct synchronization is
achieved.

26

NOTE: there is a significant difference between the output of the RISE function and the output of the
SRT mono-flop. The output of the RISE function turns on with the rising input signal and turns off again
on the next clock. The output of the mono-flop turns on with the next clock after the set signal and
turns off with the next clock after that, which is one clock pulse later, assuming the same clock is used
for set and internal reset. When the two clocks are different, which is usual for SRT mono-flops, the
case is different again.

5 Clock Signals

There are two types of Clock signal, 'clock' and 'timer'. It is important to realize that Clock signals
are not of the same type as logic or numeric signals of type 'bit' or 'int'. Clock signals are declared
as follows:

imm clock myClock;
imm timer myTimer;

Under no circumstances may clocks be interconnected with logic or numeric signals. Any attempt to do
so generates an error message. Clock signals in iC are best thought of as timeless pulses, whose
occurrence marks the separation of one clock period from the next along the time axis. All clocked
functions in iC follow the Master-Slave principle. The Master element in a D flip-flop follows the input.
The output of this Master gate is transferred to the Slave element during the active phase of the next
clock pulse. The output of the Slave element is the output of the D flip-flop. All Master-Slave transfers
during one particular clock pulse are completed before more combinatorial logic or arithmetic
expressions are executed. This insures that the outputs of all functions, which are synchronized by the
same clock, change simultaneously as far as the logic is concerned.

Clock signals can come from four different sources:

1. The built-in iClock, which is signal type imm clock

2. The CLOCK function, which generates type imm clock

3. The TIMER function, which generates type imm timer

4. The TIMER1 function, which also generates type imm timer

5.1 Built-in immediate clock
There is a built-in immediate clock with the name iClock. This clock runs at the highest system rate.
iClock is used as the default clock, when no other clock is specified. It may also be specified by the
name iClock when no default clock is allowed by the syntax of a function call.

x = SR(a, b); // Set and Reset clocked by built-in iClock

y = SR(a, iClock, b, myClock); // clock for the Set argument
// must be named if different
// from the Reset clock

27

5.2 CLOCK function
The second source of clock signals is the CLOCK function, which has one or two logic inputs and an
optional clock input. The CLOCK function produces an output clock pulse during the active phase of
the input clock, which follows a 0 to 1 transition of one of the logic inputs. If no clock input is specified,
iClock is used. All CLOCK outputs are synchronous with their input clock.

imm clock clk = CLOCK(b); // ‘clk‘ on the rising edge of b
// clocked by next ‘iClock’(default)

imm bit y = D(a, clk); // D flip-flop clocked by ‘clk’
imm clock cl2 = CLOCK(b,~b); // clock on rising and falling edge

// of b, clocked by ‘iClock’

5.3TIMER function
The third source of clock signals is the TIMER function, which also has one or two logic inputs and an
optional clock input. The output generated by the TIMER function are of signal type imm timer and
are generated in precisely the same way and at the same time as clock pulses from a CLOCK
function with the same inputs. timer pulses differ from clock pulses in the way they are used. Input
parameters of type timer are followed by an optional delay parameter, which may be a constant value
or an arithmetic expression (if missing a value of 1 is used). The current value of the delay expression
is read on the rising edge of the associated logic input, and the result n is used to count timer pulses.
The output is clocked by the n'th timer pulse after the rising input. If the delay value n is 0 - or on the
falling edge of the logic input - the output is clocked immediately by iClock. For a CLOCK generated
clock, the output is clocked by the first clock pulse after the rising or falling input. A D flip-flop
clocked with a timer produces a function with turn on delay. If the logic input to such a delay element
turns off before the delay time is up, the output never turns on. This is a very useful function to
implement time-outs, which are notoriously difficult to implement by conventional means.

imm timer tim = TIMER(b); // ‘tim‘ on the rising edge of b
// clocked by next ‘iClock’(default)

imm bit z = D(a, tim, 3);// D flip-flop clocked by ‘tim‘,
// turn on delayed by 3 ‘tim‘ pulses,
// immediate turn off clocked by ‘iClock‘

iClock

z

b

tim

a
tim 1 2 shortiClock offtim 1 2 3 tim 1 2 3

iClock

y

b

clk

a

iClock

y

b

clk

a

cl2

28

5.4 TIMER1 function
The fourth source of clock signals is the TIMER1 function, which is very similar to the normal TIMER
function. The signal type generated is imm timer – the same as the type generated by a normal
TIMER. The only difference is the way in which a 0 delay and the falling logic input is handled, when a
timer, generated by the TIMER1 function controls a clocked function. A 0 delay is handled like a
delay of 1 – turn on is at the next timer pulse. On the falling edge of the logic input the output is
clocked on the next timer pulse, rather than by the next iClock, which is the case for TIMER
generated timer signals. A TIMER1 generated timer, used with a delay of 1 (or 0), functions
identically to a CLOCK generated clock signal, except there is a small, but significant amount of
overhead in handling timer signals. For this reason CLOCK functions are to be preferred – their use
is very fast. The following diagram shows the different turn-off handling for a TIMER1 generated
timer (in the shaded area):

imm timer ti1 = TIMER1(b); // ‘ti1‘ on the rising edge of b
// clocked by next ‘iClock’(default)

imm bit z1 = D(a, ti1, 3);// D flip-flop clocked by ‘ti1‘,
// turn on delayed by 3 ‘ti1‘ pulses,
// turn off clocked by next ‘ti1‘

CLOCK, TIMER and TIMER1 functions have optional clock inputs, which may come from other
CLOCK or TIMER functions. The cascading of these functions allows the realization of many useful
applications.

iClock

z1

b

ti1

a
ti1 1 2 shortti1 offti1 1 2 3 ti1 1 2 3

29

6 Inputs and Outputs

6.1 Built-in Inputs
There are a number of inputs, which have such universal significance, that they are implemented in the
run time system.

6.1.1 iClock
There is a built-in immediate clock with the name iClock. This clock runs at the highest system rate.
The name iClock is built-in and may be used as defined above in 5.1.

Because secondary clocks either use iClock by default, or another clock that is eventually clocked by
iClock, all clocks (and timers) are synchronous with iClock. The execution of immediate logic is
triggered by some input, which causes evaluation of follow up statements, until no more changes
occur. iClock generates a clock pulse after every such burst of activity in the logic. iClock has the
same significance for immediate logic as the end of the program cycle in a conventional PLC. The
main difference is, that for a conventional PLC all statements are executed for each program cycle. For
immediate logic only the changes triggered by one or at most a few simultaneous inputs are executed
for each program cycle. This typically takes a few microseconds at most for a modern processor.
There are support tools which can measure and display this time in microseconds.

6.1.2 End of Initialization
The rising edge of TX0.0 is guaranteed to be the first input to the system and can be used for
initializing user constructs. It is high for the remainder of the program (forever as far as applications are
concerned)

TX0.0 EOI, off during initialization, then always on

6.1.3 Timing inputs
To allow programs to work with real time, the following timing inputs have been provided:

TX0.1 100 microseconds // requires a 10 kHz Kernel
TX0.2 1 millisecond // requires a 1 kHz Kernel
TX0.3 10 milliseconds // standard 100 Hz Linux Kernel
TX0.4 100 milliseconds // for the remaining timers
TX0.5 1 second
TX0.6 10 seconds
TX0.7 60 seconds or 1 minute

These inputs can be used to generate clocks, which are synchronous with real time. For example:

imm clock clk100m = CLOCK(TX0.4); // every 100 milliseconds

6.2 External Inputs and Outputs
Inputs and Outputs are named according to the standard IEC-1131. Inputs start with the letter I,
outputs with the letter Q. These are followed by a second letter which defines the type of the input or
output. X defines a bit I/O, B a byte I/O, W a 16 bit word I/O and L a 32 bit long word I/O variable. The
2 capital letters are followed by a number, which defines the address index of the variable in the I/O
field. For bit I/O variables a full stop and a number in the range 0 to 7, marking the bit address of the
variable in the addressed I/O byte, follow this. The maximum address index that can be used depends
on the implementation of the driver and the underlying hardware. Addresses in the I/O field may be
used for bit, byte, word or long word I/O. If all of these are in the same physical address space, care
must be taken not to overlap different types of I/O. In this case 16 and 32 bit word I/O's the byte
addresses used must be on a 16 bit word or a 32 bit long word boundary respectively. The iC compiler
can generate warnings if I/O fields overlap. In the default case, each size variable is assumed to be in
its own address space and the address of each variable is simply in index into each address space.

30

6.2.1 Digital inputs
IX0.0 bit 0 of input byte 0 - pre-declared as imm bit
IX0.1 bit 1 of input byte 0
IX0.2 bit 2 of input byte 0
IX0.3 bit 3 of input byte 0
IX0.4 bit 4 of input byte 0
IX0.5 bit 5 of input byte 0
IX0.6 bit 6 of input byte 0
IX0.7 bit 7 of input byte 0

IX1.0 bit 0 of input byte 1
IX1.1 bit 1 of input byte 1
IX1.2 bit 2 of input byte 1
IX1.3 bit 3 of input byte 1
IX1.4 bit 4 of input byte 1
IX1.5 bit 5 of input byte 1
IX1.6 bit 6 of input byte 1
IX1.7 bit 7 of input byte 1
...

6.2.2 Digital outputs
QX0.0 bit 0 of output byte 0 - pre-declared as imm bit
QX0.1 bit 1 of output byte 0
QX0.2 bit 2 of output byte 0
QX0.3 bit 3 of output byte 0
QX0.4 bit 4 of output byte 0
QX0.5 bit 5 of output byte 0
QX0.6 bit 6 of output byte 0
QX0.7 bit 7 of output byte 0

QX1.0 bit 0 of output byte 1
QX1.1 bit 1 of output byte 1
QX1.2 bit 2 of output byte 1
QX1.3 bit 3 of output byte 1
QX1.4 bit 4 of output byte 1
QX1.5 bit 5 of output byte 1
QX1.6 bit 6 of output byte 1
QX1.7 bit 7 of output byte 1
...

6.2.3 Analog inputs
IB2 input byte 2 - pre-declared as imm int (8 bit input)
IB3 input byte 3
IB4 input byte 4
IB5 input byte 5

IW6 input word 6 (16 bit input)
IW8 input word 8
IW10 input word 10
IW12 input word 12
IW14 input word 14

IL16 input long 16 (32 bit input)
IL20 input long 20
IL24 input long 24
IL28 input long 28
...

31

6.2.4 Analog outputs
QB2 output byte 2 - pre-declared as imm int (8 bit output)
QB3 output byte 3
QB4 output byte 4
QB5 output byte 5

QW6 output word 6 (16 bit output)
QW8 output word 8
QW10 output word 10
QW12 output word 12
QW14 output word 14

QL16 output long 16 (32 bit output)
QL20 output long 20
QL24 output long 24
QL28 output long 28
...

The IEC-1131 names above define the physical addresses of inputs and outputs in the I/O field. For
more readable applications it is highly recommended, that alternate descriptive names are defined for
IEC-1131 inputs and outputs. This would normally be done in a table of alias assignments at the start
of an iC program. One advantage of this scheme is, that if an input or output is physically moved to
another I/O pin, only 1 statement in the source needs to be changed.

imm bit waterLo, motorOn, heaterOn;
imm int waterTemp, motorSpeed;

waterLo = IX1.3; // these statements define aliases
waterTemp = IB2; // which produce no run-time overhead

QX10.2 = motorOn; // here the IEC-1131 names are the
QX10.3 = heaterOn; // aliases, which is appropriate
QW8 = motorSpeed; // for outputs

IEC-1131 I/O variable names are pre-declared as immediate variables in iC program code, but they
are not defined in embedded C code. Only variables declared with an imm bit, imm int, immC
bit or immC int statement are defined in C code. If I/O variables must be accessed in C code the
declared names must be used. This is another reason for defining descriptive aliases for I/O variables
early in the program design phase.

32

7 User defined immediate Function Blocks

User defined immediate functions are commonly called function blocks in the PLC world, because they
act more like functional blocks or templates rather than functions in the instruction flow sense, where a
function evaluates a sequence of instructions whenever it is called. An immediate Function Block is a
separate immediate subsystem with immediate parameters which are its inputs and outputs from other
section of the immediate system, optional internal immediate variables, which must be declared inside
the Function Block and an optional immediate return value, which may be used like any other
immediate value – in an expression – assigned to an immediate variable or used as an input
parameter in a built in function or function block call. Only standard IEC-1131 I/O variables may be
used in a Function Block without being declared, although they may only be used as inputs, since any
assignment to an I/O variable such as QX0.0 inside a Function Block would lead to a multiple
assignment, once the Function Block is used more than once. Another way to look at an immediate
Function Block is like a higher level integrated circuit, which has connections into the system and
provides a certain complex function with many internal components and connections.

7.1 immediate Function Block Definition
An immediate Function Block must be defined before it is used. Since the definition of a Function Block
does not itself generate any C-Code on compilation it can be and usually is defined with its code body
in a header file, if multiple source files are used for a project. For small projects with a single source file
Function Blocks can be defined at the start of the source file.

immediate Function Blocks definitions are very similar to C-functions, although there are significant
differences in detail. The definition of an immediate Function Block consists of a return value type, a
Function Block name, a comma separated parameter list in parentheses and a function body in curly
braces, e.g.

imm bit fall(bit f, clock c) { this = RISE(~f, c); }

The return value may be one of 5 types:

imm void // which means no value is returned
imm bit
imm int
imm clock
imm timer

The imm modifier is mandatory for the return type – it identifies an immediate Function Block Definition
syntactically. The Function Block name can be any valid name starting with a letter followed by any
number of alphanumeric characters or underscores. A leading underscore is possible, but should be
avoided. The name must be distinct from all other immediate variable names in a project.

The individual formal parameters in the parameter list must be of the following 4 types:

imm bit // or simply bit
imm int // or simply int
imm clock // or simply clock
imm timer // or simply timer

The imm modifier is optional for parameters in the parameter list. The variable declared is nevertheless
immediate. Parameters may be either input value parameters, in which case only their type is written in
the list or the parameter may be an immediate output to which a value from the Function Block is to be
assigned. In this case the type of the parameter must be preceded by the keyword assign.

The body of a Function Block is one or more immediate statements defining the functionality of the
block encoded in curly braces. Immediate variables internal to the function must be declared before
use in the Function Block. Parameter names and internal variable names are in a separate name
space for each function, which is also separate form the global name space. If a Function Block is not
imm void the body must contain a return statement. The semantics of the return statement is the
assignment to the variable to which the Function Block is assigned, when it is called. This variable,
which is identified by the keyword this, may be used in other expressions inside the Function Block.
The preferred way to write the return statements is:

this = some + immediate + expression; // preferred return syntax

The usual C-syntax may also be used, but does not make the action as clear:

33

return some + immediate + expression; // deprecated earlier syntax

The return statement need not be the last statement in the Function Block definition – its position does
not influence when it is executed – that is controlled purely by changes in the values of the variables
making up the return statement – something which holds for all immediate statements. This situation is
more clearly expressed by the assignment to this. An imm void Function Block has no this
variable, may not contain a return statement and may not be assigned when called.

Each assign parameter must be on the left side of an assignment statement in the Function Block.
The values of assign parameters may be used inside the Function Block. Each variable declared
inside the Function Block must also be assigned in the Function Block. Variables declared extern
outside or inside the Function Block may not be assigned to inside the Function Block. As is the case
with I-O variables (which are implicitly extern) extern variables may only be used as values inside the
Function Block. They may not be declared again as local inside the Function Block. Variables declared
extern in a function may be declared after the definition of the Function Block in the iC code following
the definition, to declare that the variable will be assigned in this module. A variable with the same
name as an extern variable may be declared locally in another Function Block, but it is a different
formal variable local to that Function Block.

All immediate statement types – assignments, if else, switch, Built in Functions and other user defined
Function Block calls may be used in Function Block definitions. Function Blocks may be nested to any
depth as long as Function Blocks are used, which have been previously defined. This implies that
Function Blocks cannot be called recursively, either directly or indirectly. Function Blocks may be very
simple one line definitions or complex systems with hundreds of parameters. Several examples follow:

The SRX flip-flop is built into the compiler, but defined in just this way during initialisation of the
compiler. In the latest version of the compiler, all but the most primitive built ins, are defined as
Function Blocks.

/* SRX flip-flop defined as a function block */

imm bit srx(imm bit set, imm clock scl,
 imm bit res, imm clock rcl)

{
this = SR(set & ~res, scl, ~set & res, rcl;

}

The CountClk function adds 'increment' to 'this' for every occurrence of 'clk':

imm int CountClk(imm clock clk, imm int increment)
{

this = SH(this + increment, clk);
}

The CountBit function adds 'increment' to 'this' for every rising edge of 'step':

imm int CountBit(imm bit step, imm int increment)
{

this = CountClk(CLOCK(step), increment); // nested call
}

The SelectClk function selects either a 100 ms or a 1 second clock with variable 'second':

imm clock SelectClk(imm bit second)
{

this = CLOCK(TX0.4 & ~second | // 100 ms
 TX0.5 & second); // 1 second

}

The following function block ADConvert assigns the conversion of int val to 8 assign bit
variables b0 to b7 passed as parameters (imm is implied for value and assign parameters).

34

/* Analog to digital conversion of a byte value */
imm void ADConvert(int val, // input parameter

assign bit b0, // output parameters
assign bit b1,
assign bit b2,
assign bit b3,
assign bit b4,
assign bit b5,
assign bit b6,
assign bit b7,

)
{

b0 = val & (1 << 0); // assignments to outputs
b1 = val & (1 << 1);
b2 = val & (1 << 2);
b3 = val & (1 << 3);
b4 = val & (1 << 4);
b5 = val & (1 << 5);
b6 = val & (1 << 6);
b7 = val & (1 << 7);

}

Note: the parameter list may have a trailing comma before the closing parentheses. This is generally
the case for comma separated lists in iC and makes it easier to edit the lists and copy parameters
when written vertically, which is useful for large parameter lists.

The iC compiler builds a template of the Function Block, replacing each parameter and internally
declared variable by the name of the Function Block followed by a '@' and the formal parameter or
declared variable name. This strategy ensures a private name space for each Function Block. When
called, the template is copied, with each formal parameter replaced by its real parameter and internally
declared variables replaced by the formal name with the '@' replaced by an underscore '_' and
followed by an underscore and an instance number. The instance number scheme ensures that there
is no clash of compiler generated variable names (even for separately compiled modules).

7.2 immediate Function Block Call
An immediate Function Block is called in a similar fashion to a C-function, again with some significant
differences. In practice immediate Function Blocks are not called. When the compiler encounters a
Function Block call, the pre-compiled Function Block, which is like a template, is copied, with all
parameters replacing the formal parameters in the template. The resulting network of nodes will then
be used at run-time like the network of nodes produced from all other immediate statements.

If an imm void function is encountered it looks like a subroutine call:

ADConvert(IB1,
QX0.0, QX0.1, QX0.2, QX0.3,
QX0.4, QX0.5, QX0.6, QX0.7,

);

This statement will assign bits 0 to 7 of IB1 to QX0.0 to QX0.7 whenever IB1 changes.

A Function Block with a return value must either be assigned to a suitable variable or else it must be
used as a value of a suitable type in an expression or in a parameter list. An imm bit Function Block
may be used as an imm int value and vice versa – appropriate conversion takes place. imm clock
and imm timer Function Blocks can either be assigned to correctly declared clock or timer
variables or else used as a clock or timer value in a parameter list.

/* count every rise of IX1.0 */
imm int count = CountBit(IX1.0, 1);

/* selects 1 sec when IX1.7 is on else 100 ms */
imm clock clk = SelectClk(IX1.7);

Real parameters of type imm int and imm bit may be mismatched with their formal parameter
types – value and assign parameters in the call will be forced to their formal type. assign parameters
of type imm clock and imm timer must match – so must a value parameter of type imm timer.
The handling if formal imm clock parameters is more complex, allowing the use of default clocks.

35

Positions for formal imm clock parameters are handled as follows:

1. the position may be filled by a real imm clock parameter.

2. the position may be filled by a real imm timer parameter followed by an optional imm int delay
(if delay is left out it will be set to 1).

3. the position may be left out altogether, in which case the next clock or timer parameter on the right
will be replicated for the position. If there is no real clock parameter following on the right, iClock
will be used.

Real timer parameters for formal timer parameters cannot be extended by a delay – the delay used
is determined in the Function Block with delay(s) associated with the use of the formal timer
parameter in the code of the Function Block.

The following calls of the user defined srx() Function Block (which is identical to the built in SRX) with
two formal clock parameters – one each for set and reset.

imm clock c = CLOCK(IX1.1), clk = CLOCK(IX1.2);
imm timer t = TIMER(IX1.3);
imm bit s, r;
imm bit m1 = srx(s, clk, r, c); // uses individual clocks
imm bit m2 = srx(s, t, 3, r, t, 5); // individual timer delays
imm bit m3 = srx(s, r, clk); // one clock for s and r
imm bit m4 = srx(s, r, t, 5); // one timer for s and r
imm bit m5 = srx(s, clk, r); // default iClock for r
imm bit m6 = srx(s, iClock, r, c); // must specify iClock here
imm bit m7 = srx(s, r); // default iClock for both

The following example is a controller for a full scale application which required all the space and speed
resources of a PLC in the mid 80's. This project for a parcel sorting system for the Australian Railways
prompted the author to look at alternate event driven systems for machine control.

The program is meant to control 4 high speed belts moving at 5 metres/second generating
independent strobe pulses for every 15 mm movement of the belt. That means a strobe pulse every 3
ms. Each belt is equipped with 32 destination gates spaced 12 strobe pulse apart and open for 7
strobe pulses (in practice this must be 72 strobe pulses or more).

The implementation consists of several function blocks:

feeder() controls the insertion of the destination code onto the initial feeder segment of the
belt.
segment() controls one of the 32 identical segments of the belt.
belt() is a Function Block for one belt, calling feeder() once and segment() 32 times.
Finally belt() is called 4 times – once for each belt.
tick() is an auxiliary Function Block generating strobe pulses for the simulation.
Note the way tick() is called in the strobe parameter position of belt().

The compiled iC program consists of 1,944 Gate nodes, 8,642 links and 10 C functions consisting of 1
line of C code each.

36

/**
 *
 * Parcel sorter for long belts
 * Author: J.E. Wulff
 * Source: Test8/sorti.ic
 *
 ***/
/**
 *
 * Feeder segment
 *
 ***/

imm bit feeder(/* feeds code into feeder segment */
imm bit transfer, /* photo cell to transfer code */

 assign imm int carryOut, /* shift bit (as int) for the following segment */
imm int code, /* destination code - 0 to 31 */
imm int length, /* sets the length of the segment */
imm int width, /* width of lock frame 6 + 6 for 0x7f */
imm clock c, /* stepping clock for the belt */

)
{
 extern imm bit reset; /* general re-initialisation */
 imm bit pip = RISE(transfer & ~this & ~reset, c);
 imm int shift = SHR((shift << 1) + (pip * (0x41 + (code << 1))), c, reset);
 imm int mask = 0x41 << width;
 carryOut = (shift >> length) & 0x00000001;
 this = SRX(pip, /* unlock after width steps */

 (shift & mask) == mask | reset, c);
}
/**
 *
 * Segment
 *
 * Each segment controls one gate and may be up to 32 steps long
 *
 ***/

imm bit segment(/* returns gate control output */
imm int carryIn, /* shift bit (as int) from the previous segment */

 assign imm int carryOut, /* shift bit (as int) for the following segment */
imm int code, /* code identifying this segment */
imm int length, /* segment length */
imm int width, /* width of the gate */
imm clock c, /* stepping clock for the belt */

)
{
 extern imm bit reset; /* general re-initialisation */
 imm int shift = SHR((shift << 1) + carryIn, c, reset);
 imm int mask = 0x41 << width;
 carryOut = (shift >> length) & 0x00000001;
 this = SRX((shift & 0x7f) == 0x41 + (code << 1),

 (shift & mask) == mask | reset, c);
}
/**
 *
 * Belt
 *
 * Each belt has 32 gates
 *
 ***/

imm int belt(
 assign imm bit lock, /* lock indicator */
 assign imm bit gate00,
 assign imm bit gate01,
 assign imm bit gate02,
 assign imm bit gate03,
 assign imm bit gate04,
 assign imm bit gate05,
 assign imm bit gate06,
 assign imm bit gate07,
 assign imm bit gate08,
 assign imm bit gate09,
 assign imm bit gate10,
 assign imm bit gate11,
 assign imm bit gate12,
 assign imm bit gate13,

37

 assign imm bit gate14,
 assign imm bit gate15,
 assign imm bit gate16,
 assign imm bit gate17,
 assign imm bit gate18,
 assign imm bit gate19,
 assign imm bit gate20,
 assign imm bit gate21,
 assign imm bit gate22,
 assign imm bit gate23,
 assign imm bit gate24,
 assign imm bit gate25,
 assign imm bit gate26,
 assign imm bit gate27,
 assign imm bit gate28,
 assign imm bit gate29,
 assign imm bit gate30,
 assign imm bit gate31,

imm int code, /* gate code 0 to 31 for parcel destination */
imm bit p_cell, /* photo cell monitoring parcel onto belt */
imm bit strobe, /* strobe pulse from belt movement */

)
{
 imm int carfd; /* carry bits */
 imm int car00, car01, car02, car03, car04, car05, car06, car07;
 imm int car08, car09, car10, car11, car12, car13, car14, car15;
 imm int car16, car17, car18, car19, car20, car21, car22, car23;
 imm int car24, car25, car26, car27, car28, car29, car30, car31;

 imm clock clk = CLOCK(strobe);

 lock = feeder(p_cell, carfd, code, 12, 11, clk);
 gate00 = segment(carfd, car00, 0, 12, 7, clk);
 gate01 = segment(car00, car01, 1, 12, 7, clk);
 gate02 = segment(car01, car02, 2, 12, 7, clk);
 gate03 = segment(car02, car03, 3, 12, 7, clk);
 gate04 = segment(car03, car04, 4, 12, 7, clk);
 gate05 = segment(car04, car05, 5, 12, 7, clk);
 gate06 = segment(car05, car06, 6, 12, 7, clk);
 gate07 = segment(car06, car07, 7, 12, 7, clk);
 gate08 = segment(car07, car08, 8, 12, 7, clk);
 gate09 = segment(car08, car09, 9, 12, 7, clk);
 gate10 = segment(car09, car10, 10, 12, 7, clk);
 gate11 = segment(car10, car11, 11, 12, 7, clk);
 gate12 = segment(car11, car12, 12, 12, 7, clk);
 gate13 = segment(car12, car13, 13, 12, 7, clk);
 gate14 = segment(car13, car14, 14, 12, 7, clk);
 gate15 = segment(car14, car15, 15, 12, 7, clk);
 gate16 = segment(car15, car16, 16, 12, 7, clk);
 gate17 = segment(car16, car17, 17, 12, 7, clk);
 gate18 = segment(car17, car18, 18, 12, 7, clk);
 gate19 = segment(car18, car19, 19, 12, 7, clk);
 gate20 = segment(car19, car20, 20, 12, 7, clk);
 gate21 = segment(car20, car21, 21, 12, 7, clk);
 gate22 = segment(car21, car22, 22, 12, 7, clk);
 gate23 = segment(car22, car23, 23, 12, 7, clk);
 gate24 = segment(car23, car24, 24, 12, 7, clk);
 gate25 = segment(car24, car25, 25, 12, 7, clk);
 gate26 = segment(car25, car26, 26, 12, 7, clk);
 gate27 = segment(car26, car27, 27, 12, 7, clk);
 gate28 = segment(car27, car28, 28, 12, 7, clk);
 gate29 = segment(car28, car29, 29, 12, 7, clk);
 gate30 = segment(car29, car30, 30, 12, 7, clk);
 gate31 = segment(car30, car31, 31, 12, 7, clk);
 this = car31; /* allows concatenation of belts */
}
/**
 *
 * Generate tick
 * input fast1 or fast2 cause 50 ms ticks
 * else tick for every change of manual input
 *
 ***/

imm bit tick(bit manual, bit fast1, bit fast2) {
 imm bit fast = fast1 | fast2;
 this = CHANGE(manual & ~fast | TX0.4 & fast);
}

38

/**
 *
 * 4 belts
 *
 * Each belt has 32 gates
 *
 ***/

imm bit reset = IX0.7; /* general re-initialisation */

QX8.0 = belt(
 QX8.1, /* lock indicator */
 QX0.0, QX0.1, QX0.2, QX0.3, QX0.4, QX0.5, QX0.6, QX0.7,
 QX1.0, QX1.1, QX1.2, QX1.3, QX1.4, QX1.5, QX1.6, QX1.7,
 QX2.0, QX2.1, QX2.2, QX2.3, QX2.4, QX2.5, QX2.6, QX2.7,
 QX3.0, QX3.1, QX3.2, QX3.3, QX3.4, QX3.5, QX3.6, QX3.7,
 IB3, /* gate code 0 to 31 for parcel destination */
 IX0.1, /* photo cell monitoring parcel onto belt */
 tick(IX0.0, IX0.6, IX0.5), /* strobe pulse from belt movement */
);

QX8.2 = belt(
 QX8.3, /* lock indicator */
 QX4.0, QX4.1, QX4.2, QX4.3, QX4.4, QX4.5, QX4.6, QX4.7,
 QX5.0, QX5.1, QX5.2, QX5.3, QX5.4, QX5.5, QX5.6, QX5.7,
 QX6.0, QX6.1, QX6.2, QX6.3, QX6.4, QX6.5, QX6.6, QX6.7,
 QX7.0, QX7.1, QX7.2, QX7.3, QX7.4, QX7.5, QX7.6, QX7.7,
 IB7, /* gate code 0 to 31 for parcel destination */
 IX4.1, /* photo cell monitoring parcel onto belt */
 tick(IX4.0, IX4.6, IX0.5), /* strobe pulse from belt movement */
);

QX8.4 = belt(
 QX8.5, /* lock indicator */
 QX10.0, QX10.1, QX10.2, QX10.3, QX10.4, QX10.5, QX10.6, QX10.7,
 QX11.0, QX11.1, QX11.2, QX11.3, QX11.4, QX11.5, QX11.6, QX11.7,
 QX12.0, QX12.1, QX12.2, QX12.3, QX12.4, QX12.5, QX12.6, QX12.7,
 QX13.0, QX13.1, QX13.2, QX13.3, QX13.4, QX13.5, QX13.6, QX13.7,
 IB13, /* gate code 0 to 31 for parcel destination */
 IX10.1, /* photo cell monitoring parcel onto belt */
 tick(IX10.0, IX10.6, IX0.5), /* strobe pulse from belt movement */
);

QX8.6 = belt(
 QX8.7, /* lock indicator */
 QX14.0, QX14.1, QX14.2, QX14.3, QX14.4, QX14.5, QX14.6, QX14.7,
 QX15.0, QX15.1, QX15.2, QX15.3, QX15.4, QX15.5, QX15.6, QX15.7,
 QX16.0, QX16.1, QX16.2, QX16.3, QX16.4, QX16.5, QX16.6, QX16.7,
 QX17.0, QX17.1, QX17.2, QX17.3, QX17.4, QX17.5, QX17.6, QX17.7,
 IB17, /* gate code 0 to 31 for parcel destination */
 IX14.1, /* photo cell monitoring parcel onto belt */
 tick(IX14.0, IX14.6, IX0.5), /* strobe pulse from belt movement */
);

The following are the 10 generated C code fragments. The macro iC_MV() accesses an indexed
value on the generated link array. One can see from this that even for int nodes the execution time
for one event is going to be no more than a few microseconds.

000 (1) return iC_MV(1)?iC_MV(2):iC_MV(3);
026 (3) return (iC_MV(1)<<1)+(iC_MV(2)*(0x41+(iC_MV(3)<<1)));
027 (4) return 0x41<<iC_MV(1);
028 (5) return (iC_MV(1)>>iC_MV(2))&1;
030 (6) return (iC_MV(1)&iC_MV(2))==iC_MV(2);
051 (7) return (iC_MV(1)<<1)+iC_MV(2);
052 (8) return 0x41<<iC_MV(1);
053 (9) return (iC_MV(1)>>iC_MV(2))&1;
055 (10) return (iC_MV(1)&iC_MV(2))==iC_MV(2);
055 (11) return (iC_MV(1)&0x7f)==0x41+(iC_MV(2)<<1);

39

8 The iC run-time model

The iC compiler immcc parses the statements of an iC source, e.g. example.ic and produces a C
file example.c and optionally a listing file example.lst. The C file is compiled by a C compiler to
produce example.o (example.obj under Windows), which is linked with the iC runtime library
libict.a to produce an executable example (example.exe under Windows).

********************* SOURCE example.ic *********************

imm bit a = IX0.0 & ~IX0.1 | ~IX0.0 & IX0.1;
QX0.0 = a;
imm bit b = IX0.2 ^ IX0.3;
imm bit d = ~IX0.2 & ~IX0.3;
imm bit mem = LATCH(b, d);
QX0.1 = mem;

********************* LISTING example.lst *******************

001 imm bit a = IX0.0 & ~IX0.1 | ~IX0.0 & IX0.1;

a_1 ---| a
a_2 ---|

IX0.0 ---& a_1
IX0.1 ~ ---&

IX0.0 ~ ---& a_2
IX0.1 ---&

002 QX0.0 = a;

a ---| QX0.0 X

003 imm bit b = IX0.2 ^ IX0.3;

IX0.2 ---^ b
IX0.3 ---^

004 imm bit d = ~IX0.2 & ~IX0.3;

IX0.2 ~ ---& d
IX0.3 ~ ---&

005 imm bit mem = LATCH(b, d);

mem ---% mem
b ---%
d ~ ---% *

006 QX0.1 = mem;

mem ---| QX0.1 X

******* NET TOPOLOGY *******

IX0.0 < ~a_2& a_1&
IX0.1 < a_2& ~a_1&
IX0.2 < b^ ~d&
IX0.3 < b^ ~d&
QX0.0 | X
QX0.1 | X
a | QX0.0|
a_1 & a|
a_2 & a|
b ^ mem%
d & ~mem% *
mem % mem% QX0.1|

40

* an idiosyncrasy of the Latch function is, that the
reset input is inverted (by the compiler)

Fig. 1 Graph representation of the iC program example.ic

//********************* C OUTPUT CODE example.c ********************

static Gate * l_[];
/***
 * Gate list
 ***/
Gate IX0_0 = { 1, INPX, GATE, 0, "IX0.0", 0, 0, 0 };
Gate IX0_1 = { 1, INPX, GATE, 0, "IX0.1", 0, 0, &IX0_0 };
Gate IX0_2 = { 1, INPX, GATE, 0, "IX0.2", 0, 0, &IX0_1 };
Gate IX0_3 = { 1, INPX, GATE, 0, "IX0.3", 0, 0, &IX0_2 };
Gate QX0_0 = { 1, OR, OUTX, 0, "QX0.0", 0, &l_[0], &IX0_3 };
Gate QX0_1 = { 1, OR, OUTX, 0, "QX0.1", 0, &l_[3], &QX0_0 };
Gate a = { 1, OR, GATE, 0, "a", 0, &l_[6], &QX0_1 };
Gate a_1 = { 1, AND, GATE, 0, "a_1", 0, &l_[10], &a };
Gate a_2 = { 1, AND, GATE, 0, "a_2", 0, &l_[14], &a_1 };
Gate b = { 1, XOR, GATE, 0, "b", 0, &l_[18], &a_2 };
Gate d = { 1, AND, GATE, 0, "d", 0, &l_[22], &b };
Gate mem = { 1, LATCH, GATE, 0, "mem", 0, &l_[26], &d };
/***
 * Connection lists
 ***/
static Gate * l_[] = {
/* QX0.0 */ &a, 0, 0,
/* QX0.1 */ &mem, 0, 0,
/* a */ &a_2, &a_1, 0, 0,
/* a_1 */ &IX0_0, 0, &IX0_1, 0,
/* a_2 */ &IX0_1, 0, &IX0_0, 0,
/* b */ &IX0_3, &IX0_2, 0, 0,
/* d */ 0, &IX0_3, &IX0_2, 0,
/* mem */ &mem, &b, 0, &d, 0,
};

IX0.0
INPX
GATE
0

a_1
AND
GATE
0

a
OR
GATE
1

IX0.1
INPX
GATE
1

a_2
AND
GATE
1

 a_1

~a_2

~a_1

 a_2

 a

 a

IX0.2
INPX
GATE
1

b
XOR
GATE
1

mem
LATCH
GATE
0

IX0.3
INPX
GATE
1

d
AND
GATE
0

 b

~d

 b

~d

 mem

~mem

QX0.0
OR
OUTX
1

QX0.0

set

* reset

QX0.1
OR
OUTX
1

QX0.1

 mem

Ex
te

rn
al

 d
ig

ita
l i

np
ut

s

Ex
te

rn
al

 d
ig

ita
l o

ut
pu

ts

internal latch feedback

41

All this is fairly conventional, except for the immcc compiler. The C output it produces consists mainly
of initialised data definitions, which describe a directed graph of vertices or nodes and edges joining
the nodes. Each node of this graph corresponds to an expression in the iC program - they are called
Expression nodes. The graph produced by the compiler is directed towards the inputs, which are called
sources in graph theory (see Fig 1 above). This means that a list of the inputs to each Expression is
associated with a particular Expression node. These are the edges of the graph. This direction
represents the way in which expressions are usually evaluated by a flow of instructions in a computer –
consecutive instructions read the values of all input variables of an expression and arithmetic or logic
operators, acting on adjacent operands, determine the result. One is used to think about expressions
this way and the (optional) listing file represents all Expression nodes generated by the compiler in this
way (see LISTING above).

For immediate C , this graph, whose edges point towards the inputs of each node, is loaded into
memory and as a first step, all edges are reversed. This means, that each Expression node is
associated with a list of follow on Expression nodes, for which the current Expression result is an input.
What this means is, that when a particular Expression node changes its value, then all the expressions
for the Expression nodes on its output list should be re-evaluated (see NET TOPOLOGY above)

8.1 Combinatorial actions
Combinatorial actions are the evaluation of arithmetic or logical expressions, which excludes the full
evaluation of any embedded clocked functions. Expressions contain variables combined with
operators, which describe a (possibly) changed result when an input variable to the expression
changes. Although the evaluation of an expression takes a certain (small) amount of time – both for
hardware IC's and for iC expressions, conceptually we are dealing with a mathematical statement,
whose evaluation describes a change of state – an operation, which does not necessarily take any
time. One completed scan of the Combinatorial action list is such a conceptually timeless
combinatorial set of state-changing actions.

To implement this scheme, the iC run-time uses Expression nodes, which can be linked into action
lists and which store the old value of the node – that is the value before the expression is re-evaluated
- as well as the new value after re-evaluation. If these values are equal after a change of input and re-
evaluation, no further action is taken – follow on nodes will not change either, because of this particular
change of input. If the new value is different from the old value, the Expression node is said to “fire” (a
term borrowed from Petri Nets). When this happens, The Expression node is linked to the end of an
action list. While on an action list, the old and new values are kept in the node. There are four types of
action list to which Expression nodes may be linked when they “fire” during the combinatorial scan:

1. o_list, to which logical expression nodes are linked.

2. a_list, to which arithmetic expression nodes are linked.

3. A Clock list, to which clocked function Master nodes are linked.

4. s_list, to which external output expression nodes are linked.

To simplify the description, o_list and a_list are discussed here as a single Combinatorial
action list. For the combinatorial scan, the Expression node at the head of the Combinatorial action list
is taken and the output list of that node is scanned. Every Expression node on that output list is re-
evaluated, using the new value of the Expression node just taken from the Combinatorial action list,
with the result that some Expression nodes on the output list may change and “fire”. These nodes are
also linked to the end of an appropriate action list. The old value of the original Expression node is
assigned the new value at this time and it is unlinked from the head of the Combinatorial action list –
that node is now no longer active. The combinatorial scan is continued with the new head of the
Combinatorial action list until the list is empty.

There is another possibility. The target Expression node is already somewhere on some action list,
which means its value has recently changed, but the new value has not yet been transmitted to any
follow on nodes. Now another Expression node acts on this particular Expression node and re-
evaluation changes its value a second time. There are two possibilities:

1. The latest value is still different from the old value (the value it had when its output list was last
scanned and follow on nodes were re-evaluated). In this case the Expression node is left on
the action list with a (possibly) changed new value.

42

2. Re-evaluation changes the new value back to the old value again. This situation is called a
“glitch”. The Expression node is now unlinked from the action list and becomes inactive, before
it acts on any follow on nodes. The reasoning behind this strategy is, that any temporary
change, which occurs through one path of the graph, which is immediately undone by some
expression on another path, should not influence the output.

Initially nodes can only get on the Combinatorial action list due to changes of external inputs (sources)
of the graph. Normally such a change will percolate through paths of the graph to one or more external
output nodes (sinks). At this stage the Combinatorial action list is usually empty.

Cycles are allowed in the graph – they occur when there is feedback in the iC program. Such feedback
is often necessary for implementing designs, but the designer should control it. Feedback may result in
situations, where continuous oscillations occur. When this happens, certain nodes will change to a new
value – act on some follow on node(s), which will then change the original node back to the old value
after it has acted on other nodes. This means the action list will never get empty. If nothing were done
about this, the iC program would lock up the processor.

Continuous oscillations at the Expression node level should not be part of a design and this situation
results in a warning message at run-time. Nevertheless for testing purposes, such a program should
be able to run without locking up the processor. To achieve this, a strategy is used, where the number
of times a particular node may be re-evaluated in one scan is limited – usually to three. This is the
maximum oscillator count, which may be changed with the -n <count> command-line switch. If the
maximum oscillator count is exceeded after re-evaluation of a node, that node is not linked to the
normal Combinatorial action list, but to an Alternate action list. This way the current Combinatorial
action list will always get empty within a finite number of actions. At the end of the scan, when the
Combinatorial action list does become empty, the current Combinatorial action list and the Alternate
action list are swapped. At this point in time the iC run-time process goes to sleep, waiting for new
input.

When a new external input interrupts the system, the associated input node is linked to the now current
swapped Combinatorial action list and triggers a new scan. Together with the new input and its follow
up events, the oscillating nodes, which were linked to the (then alternate) list during the previous scan,
will be evaluated again. This way the oscillations do get re-evaluated over and over – but at a rate
which does not block the processor. This is similar to the way oscillations manifest themselves in a
hardware IC circuit – a large but finite number of oscillations will occur between any two consecutive
external input events. In iC programs, this number has been reduced to three, which does not change
the way these oscillations affect other parts of the program. In practice it has been found useful to
make this an odd number, so that rising and falling edges alternate for digital oscillations.

All this takes care of what is called “combinatorial logic” for digital systems. Sequencing requires
different mechanisms and they are provided in the iC language by clocking and clocked functions.

8.2 Clocked actions
As mentioned before, Clock signals in iC are best thought of as timeless pulses, whose occurrence
marks the separation of one clock period from the next along the time axis. For these purposes actions
in the iC run-time occur in two phases – combinatorial actions, which were described in the previous
section and clocked actions, which are always master-slave actions, which occur during the Clock
phase.

Clocked functions contain one or more Master nodes and exactly one Slave node. Master nodes are
Expression nodes – just like the ones described in the previous section, except their output does not
act directly on follow on Expression nodes and therefore are not linked to the current Combinatorial
action list when they “fire”. There is a Master Node for every non-clock input parameter to a function.
Associated with each such non-clock parameter is a clock parameter. If it is not mentioned explicitly in
the parameter list, it has a default value – usually iClock. Master nodes which “fire”, are linked to the
Clock list associated with the clock parameter for the particular Master node.

Clock lists are similar to action lists – they may be empty or have one or more Expression nodes linked
to them. Clock lists are associated with the Slave node of a Clock function or “driver”. There is one
special Clock list called c_list, which is associated with the default iClock and which is scanned
every time a combinatorial scan completes unless c_list is empty. This Clock scan marks the
occurrence of iClock. In other words combinatorial scans and clock scans alternate until both the
current Combinatorial action list and c_list are empty. For the purpose of synchronisation, it is
important to remember that during the combinatorial scan new nodes are evaluated and linked to one
of the following:

43

1. the Combinatorial action list – described in the previous section.

2. c_list or another Clock list – which receive Master nodes of clocked functions.

3. s_list – which receives those Expression nodes whose action is external output.

During the clock scan only c_list is scanned. There are several different clock actions, but they only
involve the value of a Master node modifying the value of a Slave node and some side effect
associated with the clocked function. The different clock actions are:

1. Clocking of a logical or arithmetic function – the new value of the Slave node is determined
according to the truth-table of the function. As a side effect the Slave node is linked to the
current Combinatorial action list if its value has changed – it then becomes a new logical or
arithmetic input, which will not have any effect until after the current clock scan has completed.

2. Clocking of a CLOCK or TIMER driver function – the Clock action nodes linked to the the
Clock list associated with the CLOCK or TIMER function Slave node are all linked to c_list
immediately. This means, that the CLOCK or TIMER function has “fired” and the clock actions,
which have accumulated on its Clock list will also be executed during the current clock scan,
since they are now on c_list, which is currently being scanned.

3. Clocking of a conditional if else or switch statement function. Since these functions
execute C code embedded in the iC program, which may involve modifying logical or
arithmetic immediate variables, the actual execution of the C code must be deferred until after
completion of the clock scan. For this purpose the Slave nodes of any conditional if else or
switch statement function is linked to another action list – namely f_list. The scan of
c_list is always finite, since no new Master actions are added to any Clock list during the
scan. When the clock scan terminates a single scan of f_list follows, unless f_list is
empty. This f_list scan marks the end of a Clock phase and the beginning of a new
combinatorial phase.

After a completed clock scan the combinatorial scan is repeated, because both Clock actions and the
f_list scan may have generated new Combinatorial actions.

8.3 Output actions
Finally, when both the current Combinatorial action list and c_list are empty, a scan of s_list
follows. During that scan the actual external output is performed. Binary outputs are first distributed to
an output byte and then the output bytes, words and long words which have changed since the last
cycle are transmitted to iCserver, which distributes them to their final output destinations, where they
act physically.

8.4 Input actions
External inputs come from physical input device drivers and are transmitted as bytes, words or long
words via iCserver, using the same protocol as the output.

TCP/IP is used as the transport protocol from and to the iC run-time system and the final physical input
and output device(s) in the current implementation. This ensures, that no input or output is lost during
transmission. Other safe transmission systems can be used – only the actual input and output driver
software needs to be changed.

The run-time system also recognises internal inputs which are mainly interrupts from the processors
real-time-clock. These are described in 6.1.3.

External and internal inputs interrupt the run-time system. Initially the source of the interrupt is
analysed and Input nodes are “fired” for every changed input and these are linked immediately to the
Combinatorial action list. Then a new cycle is initiated starting with a scan of the current Combinatorial
action list.

44

8.5 Input/Output network
The network clients around iCserver can comprise one or more iC applications and any number of
iCboxes, which simulate real I/O in the current implementation. Input and output can be transmitted
not only to and from iC applications and iCboxes but also between iC applications. Since all of these
elements can run on any processor in a LAN or even in the Internet, this opens up interesting
possibilities for the iC system.

Fig. 2 Input/output network

Processor 2

Processor 1

1

iCserver

LAN or Internet

iCbox

2

iCbox

3

iCbox

iC application 1

iC application 2

45

9 Compiler and Run-time system

9.1 Compiler
The iC compiler immcc generates C code with the extension .c from iC source files with the extension
.ic, which is suggested for iC sources. It is also suggested, that iC header files have the extension
.ih For larger projects, several .ic files may be compiled to .c files, which are then compiled by cc
to .o files and linked with the library libict.a, which contains the run-time code. This produces a
finished application, which can be run in an environment compatible with the features of the run-time
library.

The iCa pre-compiler immac generates iC source files with the extension .ic from iC with arrays (iCa)
source files with the extension .ica. The shell script iCmake executes all these steps automatically – it
makes a complete iC application from one or more iC and/or iCa sources.

9.2 Run-time libraries
There are several versions of the run time library, depending on the hardware interfaces available for
Input and Output. The Demonstration library libict.a communicates its Input and Output via TCP/IP,
which provides a turnaround time of an input change to the arrival of the corresponding output change
in a lightly loaded network of less than 2 millisecond (measured on a Pentium 166). The uncertainty of
load occurring in such a network forces one to look at specialized bus systems for high speed
applications. Currently libict.a is a static library. For production purposes a dynamic library is
envisaged.

Other libraries have been built for industrial field bus systems. The library for InterBus-S is complete
and has been extensively tested with InterBus-S I/O modules. A library for a proprietary high speed
field bus system was used for early tests and provided turnaround times of under a 100 microseconds
on a 386 8 MHz processor. A CAN-Bus library is planned and could be implemented at short notice.

9.3 Run-time environment and system
For any applications where hard real time constraints are not a problem, the TCP/IP run-time system
provides a very flexible and easy to configure environment where Input and Output may be distributed
over a number of computers in a local area network. The system consists of a server called iCserver
and a number of clients for which iCserver is the hub. An iC application linked with the libict.a library
is one type of client, providing control in the system. The other client types are Input and Output
modules (or combined I/O modules) and debugging tools.

iCserver has been implemented in Perl, which is very flexible and fast enough to keep up with TCP/IP
traffic generated in a local area network. A faster C implementation of iCserver is possible. The
program iCbox simulates Input/Output modules as Perl/Tk dialog boxes for digital and analog inputs
and outputs. For real inputs and outputs iCbox can serve as a program template. Only the translation
of the I/O signals to a short network message for transmission to the iCserver is necessary to port an
I/O device. A simple and very compact protocol for passing messages to and from the iCserver has
been defined.

The program iClive provides an IDE for editing and debugging iC programs. It provides an edit
window, in which program text can be displayed and optionally edited, searched, saved, made into
runnable code, run and stopped. When running and debugging an iC program, iClive is a client of
iCserver and indirectly of the running iC program. iClive colours words in the program text according
to the state of the node named by a word – green/black for bit 0, yellow/red for bit 1 and blue for
arithmetic variables. The value of a node is also displayed when the cursor is on a word. To be
effective, the displayed text must be either the source of the running iC program or a text derived from
that source, such as the compiler generated listing, which shows all compiler generated extra nodes.
With this colour coded display of the statements of the iC program, it is easy to follow the progress of
execution and the related logic at run time. "Live displays" are commonly used in programming units
for PLC's in industrial control environments to provide debugging support.

46

Fig. 3 iCbox as IO for “sorti” - IX0.0, QX0.2 and QX8.1 are “on” - the rest are “off”.

Fig. 4 iClive in LIVE mode - QX8.1, QX0.2 and IX0.0 are “on” - the rest are “off”.
“sorti” is running. – it can be stopped by pressing the “Stop” button or switched
to Edit mode by pressing the “Edit” button (see Fig. 5).

47

Fig. 5 iClive in EDIT mode with a search for IX0.5 shown. The application “sorti” is not running –
press “Run” and then “Live” to get to Fig. 4. “Help” to get the following:

Fig. 6 iCman showing the start of the man-page for iClive. A search for “Text” is shown.

For command line use, a shell script iCmake builds one or more applications from iC sources using
the static library libict.a. The compiler immcc, the programs iCserver, iCbox, iClive and iCmake as
well as each compiled and linked iC application provide a generous help output with the -h switch
option. Each of these programs also has a full man page which may be viewed with 'man' in a Unix like
environment or with iCman, a man page viewer with interesting search and Hyperlink features.

48

10 Bibliography

[Aho86] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman
Compilers Principles, Techniques, and Tools
Addison-Wesley Publishing Company 1986

[Davis01] John Davis II, et al
Overview of the Ptolemy Project
University of California, Berkeley 2001

[Johnston04] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar
Advances in Dataflow Programming Languages
ACM Computing Surveys, Vol. 36, No. 1, March 2004, pp. 1–34.

[Kernighan84] Brian W. Kernighan, Rob Pike
The UNIX Programming Environment
Prentice Hall, Inc. 1984

[Kernighan88] Brian W. Kernighan, Dennis M. Ritchie
The C Programming Language
Prentice Hall, Inc. 1988

[Kluge92] Werner Kluge
The Organization of Reduction, Data Flow, and Control Flow Systems
The MIT Press 1992

[Lent89] Bogdan Lent
Dataflow Architecture for Machine Control
John Wiley & Sons Inc. 1989

[Phister63] Montgomery Phister, Jr.
Logical design of digital computers
John Wiley & Sons, Inc. 1963

[Sharp85] John A. Sharp
Data flow computing
Ellis Horwood Limited 1985

[Sparkes72] John Sparkes, Ed.
The Heart of Computers
The Open University Press 1972

[Srinivasan97] Sriram Srinivasan
Advanced Perl Programming
O'Reilly 1997

[Wall00] Larry Wall, Tom Christiansen & Jon Orwant
Programming Perl
O'Reilly 2000

[Walsh99] Nancy Walsh
Learning Perl/Tk
O'Reilly 1999

[Wulff72] E. Wulff
A Monitor for Real-Time-Control Systems
University of New South Wales 1972

49

11 The Author

John E. Wulff studied Electrical Engineering at the University of New South Wales in Sydney, Australia.
His first professional experience was in the Telephone industry, developing switching circuits with
electro-mechanical relays but also with vacuum tubes, cold cathode tubes and very soon with the
emerging transistors. In 1964 he spent 6 months in England, getting know-how on a new family of
switching circuits using germanium diodes and transistors, but which already supported clocked flip-
flops. These had been developed at the BICC research laboratory near Hampton Court, where John
Sparkes had invented the principle of clocking a few years earlier. With this experience, he was chief
designer for a special purpose computer with 100 kilobytes of magnetic drum memory, 1 million
transistors, 2.5 million diodes for logic and 100,000 silicon controlled rectifiers for power output drivers,
switching up to 5 Amps. This machine controlled a letter sorting system with 150 input consoles and a
throughput of 5 million letters a day. This system worked reliably for 25 years.

Experience with logic design based on integrated circuits followed. The availability of mini computers
led to an interest in programming. A Master of Engineering Science Degree in Information Science at
the University of New South Wales provided a solid foundation for future work as a Software Engineer.
The design and implementation of a Real Time Operating System (or Monitor, as it was then called),
which provided a task context switch in 15 machine instructions was the content of his Masters Thesis
[Wulff72], and later provided the basis for some very fast industrial machine control systems.

In the mid 80's John Wulff came in contact with PLC's. He was asked to help during the
commissioning of a PLC-system, controlling a parcel sorting complex consisting of 100 standard
conveyor systems and 4 high speed conveyors which had mechanical gates along its length, to divert
parcels. These high speed belts needed a control resolution of 15 milliseconds, in which time a parcel
had moved 3 cm. Unfortunately the function blocks for the standard conveyors, executed 100 times,
once for each of the conveyors, brought the total cycle time to over 1 second!! What to do? Fortunately
the PLC had just enough (8) interrupt inputs, to allow the implementation of an event driven sub-
system based on the assembler instruction set of the PLC. This saved the company a lot of liquidated
damages.

This experience spawned the idea for an event driven PLC, which resulted in the current iC system.
Although this system is demonstrably faster than a PLC with the same memory speed for any
reasonable application one can think of, it is difficult to compute a guaranteed maximum response
time. Since this is a requirement for hard real time applications, iC was never accepted for industrial
use. For a PLC the maximum response time is simply the time to execute all instructions making up
the program, which is the cycle time of the program. For an iC program this time can also be
computed. For a 10 MHz PC the execution time is about 2 microseconds per gate node processed.
The total number of gate nodes is provided in the listing produced by the compiler. An iC program with
10,000 gate nodes, which corresponds to a PLC program of approx. 32 kilobytes would thus have a
maximum response time of 20 milliseconds, if all nodes were somehow fired simultaneously. This
would be a good response time for a PLC. In practice this can never happen and a maximum response
times of < 200 microseconds was measured on such a 10 MHz machine. This corresponds to events
which cause 100 follow up nodes to fire. The typical number of follow up events is 7. Assuming this
figure is Poisson distributed the above assumption is not unreasonable.

Current plans are, to publish the complete system under an Open Source License and to see if the
Open Source Community can make a go of it. With the current emphasis on Linux in embedded
Systems, I see great scope here.

Id: iC.odt 1.30 2008/09/06

50

Appendix A README

 immediate C, iC rev 1.122

 Copyright (C) 1985-2008, John E. Wulff
 All rights reserved.

 This program is free software; you can redistribute it and/or modify
 it under the terms of either:

a) the GNU General Public License as published by the Free
 Software Foundation; either version 2, or (at your option)
 any later version,
 OR

b) the "Artistic License" which comes with this Kit.

 This program is distributed in the hope that it will be useful, but
 WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 See either the GNU General Public License or the Artistic License for
 more details.

 You should have received a copy of the Artistic License with this
 Kit, in the file named "Artistic". If not, I'll be glad to provide one.

 You should also have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software Foundation,
 Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

 For those of you that choose to use the GNU General Public License,
 my interpretation of the GNU General Public License is that no iC
 source falls under the terms of the GPL unless you explicitly put
 said source under the terms of the GPL yourself. Furthermore, any
 object code linked with iC does not automatically fall under the
 terms of the GPL, provided such object code only adds definitions
 of subroutines and variables, and does not otherwise impair the
 resulting interpreter from executing any standard iC source. I
 consider linking in C subroutines in this manner to be the moral
 equivalent of defining subroutines in the iC language itself. You
 may sell such an object file as proprietary provided that you provide
 or offer to provide the iC source, as specified by the GNU General
 Public License. (This is merely an alternate way of specifying input
 to the program.) You may also sell a binary produced by compiling an
 iC source that belongs to you with the iC compiler and linking it with
 the iC runtime library, provided that you provide or offer to provide
 the iC source as specified by the GPL. (The fact that the iC runtime
 library and your code are in the same binary file is, in this case,
 a form of mere aggregation.) This is my interpretation of the GPL.
 If you still have concerns or difficulties understanding my intent,
 feel free to contact me at <ic@je-wulff.de>.

 Of course, the Artistic License spells all this out for your protection,
 so you may prefer to use that.

 Acknowledgements to Larry Wall, whose README I used as a template.
 and for Perl - which is just GREAT.

 Acknowledgements to Nick Ing-Simmons for Perl/Tk - which is SMOOTH.

 Acknowledgements to Linus Torvalds and the Open-Software community
 for Linux(R) - which is SOMETHING ELSE.

--

51

 Notes for the installation of iC rev 1.122

 1) Pre-requisites. You need the following on your system:

 C compiler # tested with gcc, MSC and Borland
 Perl, Perl/Tk and Time::HiRes # to build iC applications

 1) Unpack the iC-archive in a suitable working directory with:

 tar -xvzf icc_1.122.tgz
 cd icc_1.122/src

 2) Excute the following:

 configure OR ./configure # if super user (depricated)
To make a Debug version do
 makeAll -gcl OR makeAll -qgcl # to supress intermediate output
OR to make a Release version do
 make OR make quiet # to supress intermediate output

this should build the files
 immcc # the iC to C compiler
 libict.a # the run-time library
without any errors

 3) To compile and compare the test iC files in Test0 execute:

 make test

 4) To use the Perl support programs, it is mandatory that you install the
Perl packages Tk800.024 or later and Time::HiRes unless they are already
installed on your system. Both are included with this distribution.
This can be checked by executing the following at this point:

 iClive -h

Skip to point 8) if you get a help output and no error message.
The last line tells you which version of Perl/Tk you are using.

 5) Unpack build and install the Time::HiRes archive in a suitable
working directory with:

 tar -xvzf Time-HiRes-01.20.tar.gz
 cd Time-HiRes-01.20
 perl Makefile.PL
 make
 make test
 su ### Password ###
 make install
 exit ### IMPORTANT ###
 cd ..
 rm -rf Time-HiRes-01.20 # unless you want to keep it

 6) Perl/Tk is usually contained in Linux distributions and will
be installed automatically when the package is selected.
If not, unpack, build and install Tk-800.024.tar.gz (or later).
Follow the instructions in the README.xxx and INSTALL files.
For Cygwin under WinXP a special binary distribution of Tk800.023
is included, which works fine.

 7) Return to the immediate C installtion

 cd icc_1.122/src # or the correct iC src directory

 8) To install the iC-compiler, library and scripts execute the
following as super user:

 su ### Password ###
 make install
 exit ### IMPORTANT ###

this copies the essential executables to /usr/local/bin
it also copies the include file icg.h to /usr/local/include
libict.a to /usr/local/lib and Msg.pm to /usr/lib/perl5/site...

 (make uninstall as su will remove all these files)

52

 9) To build and run the very simple iC application "hello.ic" do

 iClive hello.ic # starts the IDE with hell0.ic
 press Build > Build executable # displays 'hello' successfully built
 press Run # opens an iCbox with 1 button IX0.0
 press button IX0.0 in iCbox # button turns HI (input is green)

'Hello! world' is output in the window iClive was started from
 press Live

The word IX0.0 (the only immediate variable in hello.ic)
is coloured yellow/red, because IX0.0 is HI.
When IX0.0 is pressed again to LO, the colour in the live
display changes to green/black, indicating LO.

 press File > Quit # 'hello' and iCbox are terminated

 10) A slightly bigger application is "simple.ic". Build and run it with iClive.
An iCbox with 16 inputs and 8 outputs is started automatically.
Explore the logic of the statements by changing inputs and following
the outputs in iCbox and the live display in iClive.

 11) The application "bar.ic" uses flip flops to produce a bar of running lights.
The application also explores the use of programmable time delays, giving
some idea of the scope of the iC language.

Running 'iClive bar.ic' as a separate process, while 'bar' is running,
will display the source listing (in the edit window), connects to iCServer
as an auxiliary client to receive updates of all variables from the running
iC program (bar). These updates will change the colours of all words,
which are immediate variables. (green/black = 0, yellow/red = 1)
This "live display" shows the current state of logical relationships in
visible statements of the iC program. Arithmetic variables are displayed
in a balloon, when the cursor rests on a variable.
(Arithmetic variables have a blue background).

In 'Live' mode, when a "live display" is shown, the text is read only.
When the 'Edit' button is pressed 'iClive' is a full featured editor.
The edit facilities of this program are described in the iClive man page
under the Heading 'KEYBOARD BINDINGS' (press Help button in 'iClive').

'iClive' can use the Tk::TextUndo package, an extension of Tk::Text. This
allows undoing changes with the Ctrl-u key. (Control-u is <<Undo>>)
This is achieved by starting iClive with the -u option. Use this option
only for editing. In 'Live' mode the display is very jerky with -u active.

 12) Applications can of course be run without iClive. They do need iCserver
though, which is a hub server for the TCP/IP packets exchanged between
iC applications, I/O apllications (currently only iCbox) and optionally
iClive.

 iCserver & # server runs on the background
 iCbox IX0 & # start IX0 manually
 hello # start application

 ctrl-C # terminate application
 iCstop iCserver # kill iCserver and iCbox

A better way is to start iCserver with the -a (auto-vivify) option,
which will start simulated I/O iCbox, every time an iC application
is started. Otherwise these must be started manually, which can be
tedious for larger applications.

 iCserver -a & # auto-vivify iCbox for application
 simple # iCbox with 3 sets of I/O starts

If iClive is started first, it does all this automatically. It then kills
iCserver automatically when it quits. When iCserver quits it kills all
registered applications and I/O's.

 13) I have included a script called 'iCstop' from my private toolkit.
It can be used effectively to kill iCserver when it is executing
in the background, which is appropriate for a server.

 iCserver &

 ../iCstop iCserver # local copy of 'iCstop'

I have tried to use 'kill' with named processes as described in
the 'kill' manpage, but it does not seem to work, even called as
'command kill iCserver'.
You will have to install 'iCstop' manually in a PATH directory to

53

use it anywhere in your system. (see 'iCstop -h' for help)

 14) To make executable applications from iC sources, use the script iCmake.
iCmake is a shell script to compile iC sources into C sources using the
'immcc' compiler. These in turn are compiled and linked into an
executable iC applications (currently using gcc - this can be changed).
Various options allow partial compilation and generation of listings.

 iCmake -h OR iCman iCmake # gives a lot of help

 15) The OpenOffice 2.2 document doc/iC.odt (or doc/iC.pdf, doc/iC.html)
is the handbook for the iC Programming Language. It opens the way to
use "immediate C" fully.

 16) There is a generous help output for every tool in the 'iC Project'
initiated with the -h option. Each generated iC application also
has a help output:

 hello -h # list available options

These options allow connecting to iCserver on another computer in a
LAN - or with a differnt port number. Very detailed debugging output,
showing the change of state of every event in the system is available
for the Debug version of the iC system. (Supressed for Release version)

 17) There are 'man' pages for all the tools used in the 'iC Project'.
These can be viewed with the normal 'man' command under Linux or with
'iCman'. The man page viewer 'iCman' has some nifty web-browser
features to view and search man pages - try it with 'iCman iCman'.

 Lots of success

 John E. Wulff 2008.08.08 <ic@je-wulff.de>

 I currently use SuSE Linux 9.3 with Tk800.024. I have tested the
 distribution with Cygwin under WinXP and a special binary distribution
 of Tk800.023 (in the kit). Perl under Windows Vista will not execute
 forked processes, so the iC support programs don't work.

 A test with Tk804.027 under MAC-OSX 1.3 and SuSE Linux 10.2 both work,
 but live updates in iClive are noticably slow in both systems (about 10x).
 Tag-handling in Tk::Text is much slower under Tk804.27 than under
 Tk800.024 with Linux. Therefore I suggest staying with Tk800.024.

 I have now switched to openSUSE 11.0, which brings along Tk804.28,
 which provides fast live updates in iClive again. They seem to be as
 fast as with Tk800.24. This was only judged by observation - at least
 the performance is now subjectively good and I suggest you get Tk804.28.

 A Test with Knoppix and Tk804.25, which is still available for Debian
 also provided good performance with fast live updates in iClive.

mailto:ic@je-wulff.de?subject=Enquiry from iC 1.120 README

54

Appendix B Type Definition Table
The following table defines function types and output types of Gate nodes used in the iC run-time
system. In particular the abbreviation symbol columns 'os' and 'fos' are useful when interpreting the
compiler generated listings. Others help to interpret iC source code.

Define function type
type [0] [1] [2] [3]

0 UDF . UDFA YYERRC. pass1 pass2 gate3 pass4
1 ARNC - ARITH AVARC pass1 pass2 gate3 pass4
2 ARNF + ARITH YYERRC. pass1 pass2 gate3 pass4
3 ARN + ARITH YYERRC. pass1 pass2 gate3 pass4
4 LOGC „ GATE LVARC pass1 pass2 gate3 pass4
5 XOR ^ MIN_GT GATE YYERRC. pass1 pass2 gate3 pass4
6 AND & GATE YYERRC. pass1 pass2 gate3 pass4
7 OR | GATE YYERRC. pass1 pass2 gate3 pass4
8 LATCH % GATE YYERRC. pass1 pass2 gate3 pass4
9 SH * MAX_GT D_SH YYERRC. pass1 pass2 pass4
10 FF # D_FF YYERRC. pass1 pass2 pass4
11 EF / RI_BIT YYERRC. pass1 pass2 pass4
12 VF > CH_BIT YYERRC. pass1 pass2 pass4
13 SW (F_SW YYERRC. pass1 pass2 pass4
14 CF { F_CF YYERRC. pass1 pass2 pass4
15 NCONST = ARITH YYERRC. pass1 pass2 pass4
16 INPB] OUTX YYERRC. pass1 pass2 pass4
17 INPW [ARITH YYERRC. pass1 pass2 pass4
18 INPX < TRAB YYERRC. pass1 pass2 pass4
19 CLK : MAX_LV CLCK YYERRC. pass1 null1 null1
20 TIM ! TIMR YYERRC. pass1 null1 null1
21 ALIAS @ MAX_OP GATE YYERRC. pass1 null1 null1
22 ERR ? GATE YYERRC. pass1 null1 null1
23 KEYW ; MAX_LS 24 CTYPE 25 CWORD 26 IFUNCT 31 TM

Define output type Functp2 Functp2 Functp2
types init2 bit2

0 UDFA U UDF UNDEF null1 0
1 ARITH A ARN AVAR gate2 INPT_M
2 GATE MAX_AR OR LVAR gate2 INPT_M
3 GATEX _ OR LVAR gate2 INPT_M
4 RI_BIT E MIN_ACT EF YYERRC. link_c RI_B_M
5 S_SH s SH YYERRC. link_c S_SH_M
6 R_SH r SH YYERRC. link_c R_SH_M
7 D_SH H SH YYERRC. D_SH_M
8 CH_BIT V VF YYERRC. CH_B_M
9 S_FF S 1001 FF YYERRC. link_c S_FF_M
10 R_FF R 1010 FF YYERRC. link_c R_FF_M
11 D_FF D 1011 FF YYERRC. link_c D_FF_M
12 F_SW I SW YYERRC. null1 F_CW_M
13 F_CF F CF YYERRC. link_c null1 F_CF_M
14 F_CE G CF YYERRC. link_c null1 F_CF_M
15 CLCK C CLK YYERRC. link_c CLCK_M
16 TIMR T TIM YYERRC. link_c TIMR_M
17 TRAB B MAX_ACT INPX YYERRC. null1 0
18 OUTW W ARN AOUT null1 OUTP_M
19 OUTX X AND LOUT null1 0
20 CLCKL : ERR CVAR null1 0
21 TIMRL ! ERR TVAR null1 0
22 F_ERR e MAX_FTY ERR YYERRC. null1 0
23 ARITH_ALIAS arithmetic input arithmetic output
24 GATE_ALIAS a These values are only used logic input arithmetic output
25 GATEX_ALIAS a_ arithmetic input logic output
26 INV_ALIAS ~ of alias nodes correctly others: logic input and output
27 INVX_ALIAS ~_
42 CLCKL_ALIAS a:
43 TIMRL_ALIAS a!

Functp* Functp Functp Functp Functp
os -gt_ini ftypes yacc token i_lists

gate_i
gate_i
gate_i
gate_i
gate_i
gate_i
gate_i
gate_i
gate_i
ff_i i_ff3
ff_i i_ff3
ff_i i_ff3
ff_i i_ff3
ff_i i_ff3
ff_i i_ff3
ff_i i_ff3
ff_i i_ff3
ff_i i_ff3
ff_i i_ff3

clock_i i_ff3
clock_i i_ff3
clock_i i_ff3
clock_i i_ff3

Functp uint
ftype fos gt_fni yacc token initAct masterAct slaveAct

err_fn err_fn err_fn
arithMa arithMa err_fn
link_ol link_ol err_fn
link_ol link_ol err_fn

riMbit riSbit i_ff2
sMsh sSsh i_ff2
rMsh rSsh i_ff2

dMsh dMsh dSsh i_ff2
chMbit chMbit chSbit i_ff2

sMff sSff i_ff2
rMff rSff i_ff2
dMff dSff i_ff2

fMsw fMsw fSsw
fMcf fScf
fMce fScf
fMfn clockSfn i_ff2
fMfn timerSfn i_ff2

err_fn err_fn err_fn
outMw outMw err_fn
outMx outMx err_fn
err_fn err_fn err_fn
err_fn err_fn err_fn
err_fn err_fn err_fn

aA Live display

in iClive to colour names

 icc.ods 1.19 2008/07/30

	Abstract
	Zusammenfassung
	1 Introduction
	1.1 Relationship to Object Orientation
	1.2 Relationship to Instruction Flow Languages
	1.3 Programmable Logic Controllers
	1.4 Relationship to Integrated Circuits
	1.5 Summary

	2 Language description
	2.1 Immediate Variables
	2.2 Immediate Types
	2.2.1 Immediate declarations
	2.2.2 extern immediate declarations

	2.3 Immediate Expressions
	2.4 Operators in immediate expressions
	2.4.1 Arithmetic and Relational Operators
	2.4.2 Bitwise and Bit Operators
	2.4.3 Logical Operators
	2.4.4 Conditional Operators

	2.5 Function and macro calls
	2.6 Parentheses
	2.7 Immediate statements
	2.7.1 Immediate Assignments
	2.7.2 Aliases
	2.7.3 The single assignment rule

	2.8 Immediate control statements
	2.8.1 Immediate conditional statement
	2.8.2 Immediate switch statement

	2.9 Literal blocks
	2.10 Comments
	2.11 Scope of immediate statements
	2.12 Intrinsic limitations of immediate statements
	2.13 Pragmas

	3 Arrays
	3.1 Immediate Arrays
	3.2 Use of immediate Arrays
	3.3 Implementation of immediate Arrays
	3.3.1 FOR loops
	3.3.2 Index expressions
	3.3.3 immediate Array syntax

	3.4 immac Macro facility

	4 Built-in Functions
	4.1 Unclocked flip-flop or LATCH
	4.2 FORCE function
	4.3 Clocked D flip-flop
	4.4 Clocked SR flip-flop
	4.5 Clocked SRX flip-flop
	4.6 Clocked JK flip-flop
	4.7 D flip-flop with Set and Reset
	4.8 Mono-Flop with optional Reset
	4.9 Sample and Hold
	4.10 Sample and Hold with Set and Reset
	4.11 Edge detectors

	5 Clock Signals
	5.1 Built-in immediate clock
	5.2 CLOCK function
	5.3 TIMER function
	5.4 TIMER1 function

	6 Inputs and Outputs
	6.1 Built-in Inputs
	6.1.1 iClock
	6.1.2 End of Initialization
	6.1.3 Timing inputs

	6.2 External Inputs and Outputs
	6.2.1 Digital inputs
	6.2.2 Digital outputs
	6.2.3 Analog inputs
	6.2.4 Analog outputs

	7 User defined immediate Function Blocks
	7.1 immediate Function Block Definition
	7.2 immediate Function Block Call

	8 The iC run-time model
	8.1 Combinatorial actions
	8.2 Clocked actions
	8.3 Output actions
	8.4 Input actions
	8.5 Input/Output network

	9 Compiler and Run-time system
	9.1 Compiler
	9.2 Run-time libraries
	9.3 Run-time environment and system

	10 Bibliography
	11 The Author
	Appendix A README
	Appendix B Type Definition Table

