Dates and Events:
|
OSADL Articles:
2023-11-12 12:00
Open Source License Obligations Checklists even better nowImport the checklists to other tools, create context diffs and merged lists
2022-07-11 12:00
Call for participation in phase #4 of Open Source OPC UA open62541 support projectLetter of Intent fulfills wish list from recent survey
2022-01-13 12:00
Phase #3 of OSADL project on OPC UA PubSub over TSN successfully completedAnother important milestone on the way to interoperable Open Source real-time Ethernet has been reached
2021-02-09 12:00
Open Source OPC UA PubSub over TSN project phase #3 launchedLetter of Intent with call for participation is now available
2017-09-12 12:00
OSADL project to create Open Source license checklistsFacilitate Open Source software delivery |
Realtime capabilities of low-end PowerPC and ARM boards for embedded systems
Title
Realtime capabilities of low-end PowerPC and ARM boards for embedded systems
Authors
Alexander Bauer
Author Information
Phytec, Germany
Abstract
With the stepwise integration of the Realtime Preemption Patches (RT-Preempt) into the Mainline Linux kernel and their support for architectures other than Intel and AMD, there are now a number of choices which board to use for a particular embedded realtime project running Mainline Linux. In order to select the appropriate processor and clock frequency, it would be desirable to have some generally applicable ranges of worst-case latencies that can be obtained using the various processor types and conditions.
We, therefore, determined the internal worst-case latency of PowerPC and ARM boards running Linux 2.6.20 and above patched with RT-Preempt. The PowerPC board (Phytec phyCORE-MPC5200B) was running at 266 and 400 MHz, the ARM board (Phytec phyCORE-PXA270) was running at 266 and 520 MHz.
This talk will provide the details of the various measurement set-ups, present the results and discuss them with respect to the design differences between PowerPC and ARM.
Keywords
RT-Preempt, PowerPC, ARM, Latency